nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[1;4].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 1 und x2 = 4 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(4) - f(1) in den Zähler und die Differenz der x-Werte 4 - 1 in den Nenner schreiben:

f(4) - f(1) 4 - 1

= -4 - 5 4 - 1

= -9 3

= -3

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -2x -2 . Bestimme den Differenzenquotient von f im Intervall I=[0;3].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = 0 und x2 = 3 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(0) = 0 2 -20 -2 = 0 +0 -2 = -2 und
f(3) = 3 2 -23 -2 = 9 -6 -2 = 1
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(3) - f(0) in den Zähler und die Differenz der x-Werte 3 - 0 in den Nenner schreiben:

f(3) - f(0) 3 - 0

= 1 - ( - 2 ) 3 - 0

= 3 3

= 1

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=0 und x2=2,5 hat bei einer Funktion f den Wert 1.Es gilt: f(0) = 0. Bestimme f(2,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(2,5) - f(0) 2,5 - 0 = 1

f(2,5) = 0 eingestezt (und Nenner verrechnet):

f(2,5) - 0 2,5 = 1 |⋅ 2,5

f(2,5) -0 = 2,5 |+0

f(2,5) = 2.5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -3 x 2 -2 . Berechne f'(1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen 1 und einem allgemeinen x auf:

f(x) - f(1) x - 1

= -3 x 2 -2 - ( -3 1 2 -2 ) x -1

= -3 x 2 -2 +3 1 2 +2 x -1

= -3 x 2 +3 1 2 x -1

= -3( x 2 - 1 2 ) x -1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -3 ( x +1 ) · ( x -1 ) x -1

Jetzt lässt sich der Nenner x -1 rauskürzen:

= -3 · ( x +1 )

Jetzt können wir den Grenzwert für x → 1 leicht bestimmen:

f'(1) = lim x → 1 f(x) - f(1) x - 1 = lim x → 1 -3( x +1 ) = -3( 1 +1 ) = -6

2. Weg

Wir stellen den Differenzenquotient zwischen 1 + h und 1 auf:

f(1+h) - f(1) h

= -3 ( 1 + h ) 2 -2 - ( -3 1 2 -2 ) h

= -3 ( 1 + h ) 2 -2 +3 1 2 +2 h

= -3 ( h +1 ) 2 +3 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -3( h 2 +2h +1 ) +3 h

= -3 h 2 -6h -3 +3 h

= -3 h 2 -6h h

= -3 h ( h +2 ) h

Jetzt können wir mit h kürzen:

= -3( h +2 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(1) = lim h → 0 f(1+h) - f(1) h = lim h → 0 -3( h +2 ) = -3(0 +2 ) = -6

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x 4 -5 x 2 . Bestimme f'(2) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 2 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2 = 3 x 4 -5 x 2 - ( 3 2 4 -5 2 2 ) x -2 = 3 x 4 -5 x 2 -48 +20 x -2 = 3 x 4 -5 x 2 -28 x -2

Jetzt setzen wir Werte für x ein, die sich immer mehr der 2 annähern:

x = 2.1: 3 2,1 4 -5 2,1 2 -28 0,1 ≈ 82.943

x = 2.01: 3 2,01 4 -5 2,01 2 -28 0,01 ≈ 76.6724

x = 2.001: 3 2,001 4 -5 2,001 2 -28 0,001 ≈ 76.06702

x = 2.0001: 3 2,0001 4 -5 2,0001 2 -28 0,0001 ≈ 76.0067

x = 2.00001: 3 2 4 -5 2 2 -28 0.00001 ≈ 76.00067

Wir können nun also eine Vermutung für den Grenzwert für x → 2 bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 3 x 4 -5 x 2 -28 x -2 76

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 2 +3 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -2 x 2 +3 - ( -2 u 2 +3 ) x - u

= -2 x 2 +3 +2 u 2 -3 x - u

= -2 x 2 +2 u 2 x - u

= -2( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -2 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -2 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -2( x + u) = -2 · ( u + u ) = -4u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -4u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -4x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 + x . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= x 2 + x - ( u 2 + u) x - u

= x 2 + x - u 2 - u x - u

= x 2 - u 2 + x - u x - u

= x 2 - u 2 + ( x - u ) x - u

= x 2 - u 2 x - u + x - u x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= ( x - u ) · ( x + u ) x - u + x - u x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 1 · ( x + u ) +1

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 1 · ( x + u ) +1 = 1 · ( u + u ) +1 = 2u +1

Da die Ableitung an jeder Stelle x=u immer f'(u) = 2u +1 beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 2x +1 .