nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Binomialvert. mit variablem p (höchst.) für GTR

Beispiel:

Eine Produktionsstätte für HighTech-Chips hat Probleme mit der Qualitätssicherung. Ein Großhändler nimmt die übliche Liefermenge von 83 Stück nur an, wenn nicht mehr als 62 Teile defekt sind. Wie hoch darf der Prozentsatz der fehlerhaften Teile höchstens sein, dass eine Lieferung mit einer Wahrscheinlichkeit von mind. 90% angenommen werden.

Lösung einblenden
pP(X≥k)=1-P(X≤k-1)
......
0.630.9913
0.640.9859
0.650.9778
0.660.9658
0.670.9489
0.680.9256
0.690.8945
......

Es muss gelten: Pp83 (X62) =0.9 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(83,X,62) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.68 die gesuchte Wahrscheinlichkeit über 0.9 ist.

Binomialvert. mit variablem p (mind.) für GTR

Beispiel:

Ein Glücksrad soll mit nur zwei verschiedenen Sektoren (blau und rot) gebaut werden. Wie hoch muss man die Einzelwahrscheinlichkeit p mindestens wählen, dass die Wahrscheinlichkeit bei 82 Wiederholungen 46 mal (oder mehr) rot zu treffen bei mind. 70% liegt?

Lösung einblenden
pP(X≥46)=1-P(X≤45)
......
0.540.3946
0.550.4661
0.560.5389
0.570.6107
0.580.6791
0.590.7422
......

Es muss gelten: Pp82 (X46) =0.7 (oder mehr)

oder eben: 1- Pp82 (X45) =0.7 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=1-binomcdf(82,X,45) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden )

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei p=0.59 die gesuchte Wahrscheinlichkeit über 0.7 ist.