nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Binomialvert. mit variablem p (höchst.) für GTR

Beispiel:

Bei einem Glücksrad soll mit einer Wahrscheinlichkeit von 90% bei 55 Ausspielungen nicht öfters als 43 mal der grüne Bereich kommen. Wie hoch darf man die Wahrscheinlichkeit für den grünen Bereich auf dem Glücksrad maximal setzen?

Lösung einblenden
pP(X≥k)=1-P(X≤k-1)
......
0.660.9828
0.670.9752
0.680.9649
0.690.9512
0.70.9332
0.710.9102
0.720.8813
......

Es muss gelten: Pp55 (X43) =0.9 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(55,X,43) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.71 die gesuchte Wahrscheinlichkeit über 0.9 ist.

Binomialvert. mit variablem p (mind.) für GTR

Beispiel:

Bei einem Zufallsexperiment ist die Wahrscheinlichkeit für einen Treffer unbekannt. Das Zufallsexperinment wird 70 mal wiederholt (bzw. die Stichprobe hat die Größe 70)Wie hoch muss die Einzelwahrscheinlichkeit p mindestens sein, dass mit einer Wahrscheinlich von mind. 50% mindestens 60 Treffer erzielt werden?

Lösung einblenden
pP(X≥60)=1-P(X≤59)
......
0.80.1468
0.810.1992
0.820.2632
0.830.3386
0.840.4238
0.850.5158
......

Es muss gelten: Pp70 (X60) =0.5 (oder mehr)

oder eben: 1- Pp70 (X59) =0.5 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=1-binomcdf(70,X,59) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden )

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei p=0.85 die gesuchte Wahrscheinlichkeit über 0.5 ist.