Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Ableiten mit Parameter
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ableiten mit Parameter (BF)
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
=
=
=
=
=
gegebener Funktionswert (BF)
Beispiel:
Für welches t liegt der Punkt A(| ) auf dem Graph der Funktion f mit ?
Wir machen einfach eine Punktprobe mit A(| ) in f mit :
= f()
=
=
Jetzt müssen wir also nur noch die Gleichung = nach t auflösen.
= | | | ||
= | |:() | ||
= | = 0.5 |
Für t= liegt also der Punkt A auf dem Graph von f.
gegeb. Tangentensteigung (BF)
Beispiel:
Für welche t ist die Tangente von f mit im Punkt B(|f()) parallel zur Gerade y= ?
Um die Tangentensteigung zu bestimmen, leiten wir die Funktion erst einmal ab:
=
In diese Ableitung setzen wir x= ein:
f'()= =
Damit die Tangente parallel zur Geraden y=
x
also f'()=
soll gleich
sein.
Dazu lösen wir die Gleichung = nach t auf.
= | | | ||
= | |:() | ||
= |
Für t= ist also die Tangente parallel zu der gegebenen Gerade.
t-Wert bestimmen, dass f'(x0)=y0
Beispiel:
Für welche t ist die Tangente von f mit im Punkt B(|f()) parallel zur Gerade y= ?
Gib alle Möglichkeiten für t an.
Um die Tangentensteigung zu bestimmen, leiten wir die Funktion erst einmal ab:
In diese Ableitung setzen wir x= ein:
f'() = = =
Damit die Tangente parallel zur Geraden y=
x
also f'()=
soll gleich
sein.
Dazu lösen wir die Gleichung
=
nach t auf.
= | |: | ||
= | | | ||
t1 | = |
|
=
|
t2 | = |
|
=
|
Für t=
Gemeinsamer Punkt einer Schar
Beispiel:
Gegeben ist für alle t ≠ 0 die Funktionenschar ft mit
Wenn es einen Punkt gibt, durch den alle Graphen von ft verlaufen, so muss dieser Punkt insbesondere auch auf den Graphen von
f1 mit f1(x) =
f2
mit f2(x) =
liegen.
Also suchen wir erst mal die Schnittpunkte dieser beiden Graphen und setzen diese gleich:
|
= |
|
|
|
|
= |
|
|
|
|
= | ||
|
= | ||
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
|
= | |
|
|
x1 | = |
2. Fall:
|
= | |
|
|
x2 | = |
|
Die Graphen von f1 und f2 schneiden sich also bei x =
ft(
Da ft(
ft(
Da ft(
bestimmter x-Wert eines Extrempunkts
Beispiel:
Die Funktion ft mit
Als erstes leitet man die Funktion ab.
=>
Die notwendige Bedingung für einen Extrempunkt ist f'(x)=0.
(Alle Extrempunkte haben die Steigung 0).
Man setzt nun also f'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von f zu bestimmen.
|
= | |
|
|
|
= |
|
|:( |
|
= |
|
Die Lösung x=
Da in der Aufgabenstellung bereits angegeben ist, dass es genau einen Extrempunkt gibt, wissen wir also schon, dass unser Kandidat diese Extremstelle sein muss, und wir müssen ihn nicht weiter mit einer hinreichenden Bedingung prüfen.
Wir können also unsere mit Parameter behaftete Extremstelle mit der Vorgabe aus der Aufgabenstellung
(x=
D=R\{
Wir multiplizieren den Nenner
|
= |
|
|⋅(
|
|
= |
|
|
|
= |
|
|
= |
|
|
|
|
= |
|
|: |
|
= |
|
(Alle Lösungen sind auch in der Definitionsmenge).
Für t=
bestimmter x-Wert eines Wendepunkts
Beispiel:
Die Funktion ft mit
Als erstes leitet man die Funktion zwei mal ab.
=
=
Die notwendige Bedingung für einen Wendepunkt ist f''(x)=0.
(Wendestellen sind Extremstellen in der Ableitung, also haben Wendepunkten die Steigung 0 in f').
Man setzt nun also die zweite Ableitung gleich 0, um die einzig möglichen x-Werte für Wendepunkte zu bestimmen.
|
= | |
|
|
|
= |
|
|:( |
|
= |
|
Die Lösung x=
Da in der Aufgabenstellung bereits angegeben ist, dass es genau einen Wendepunkt gibt, wissen wir also schon, dass unser Kandidat diese Wendestelle sein muss, und wir müssen ihn nicht weiter mit einer hinreichenden Bedingung prüfen.
Wir können also unsere mit Parameter behaftete Wendestelle mit der Vorgabe aus der Aufgabenstellung
(x=
D=R\{
Wir multiplizieren den Nenner
|
= |
|
|⋅(
|
|
= |
|
|
|
= |
|
|
= |
|
|
|
|
= |
|
|:( |
|
= |
|
(Alle Lösungen sind auch in der Definitionsmenge).
Für t=
bestimmter y-Wert eines Extrempunkts
Beispiel:
Die Funktion ft mit
Als erstes leitet man die Funktion ab.
=>
Die notwendige Bedingung für einen Extrempunkt ist f'(x)=0.
(Alle Extrempunkte haben die Steigung 0).
Man setzt nun also f'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von f zu bestimmen.
|
= | |
|
|
|
= |
|
|:( |
|
= |
|
Die Lösung x=
Da in der Aufgabenstellung bereits angegeben ist, dass es genau einen Extrempunkt gibt, wissen wir also schon, dass unser Kandidat diese Extremstelle sein muss, und wir müssen ihn nicht weiter mit einer hinreichenden Bedingung prüfen.
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzen werden.
f(
Man erhält so den Extrempunkt EP:(
Wir können also den y-Wert unseres mit Parameter behafteten Extrempunktes mit der Vorgabe aus der Aufgabenstellung
(y=
D=R\{
Wir multiplizieren den Nenner
|
= |
|
|⋅(
|
|
= |
|
|
|
= |
|
|
= |
|
|
|
|
= |
|
|:( |
|
= |
|
(Alle Lösungen sind auch in der Definitionsmenge).
Für t=
bestimmter y-Wert eines Wendepunkts
Beispiel:
Die Funktion ft mit
Als erstes leitet man die Funktion zwei mal ab.
=
=
=
=
=
=
=
=
=
Die notwendige Bedingung für einen Wendepunkt ist f''(x)=0.
(Wendestellen sind Extremstellen in der Ableitung, also haben Wendepunkten die Steigung 0 in f').
Man setzt nun also die zweite Ableitung gleich 0, um die einzig möglichen x-Werte für Wendepunkte zu bestimmen.
|
= | ||
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
x1 | = |
2. Fall:
|
= |
Diese Gleichung hat keine Lösung!
Die Lösung x=
Da in der Aufgabenstellung bereits angegeben ist, dass es genau einen Wendepunkt gibt, wissen wir also schon, dass unser Kandidat diese Wendestelle sein muss, und wir müssen ihn nicht weiter mit einer hinreichenden Bedingung prüfen.
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzen werden.
f(
Man erhält so den Wendepunkt EP:(
Wir können also den y-Wert unseres mit Parameter behafteten Wendepunkts mit der Vorgabe aus der Aufgabenstellung
(y=
|
= | |:
|
|
|
= | |
|
|
t1 | = |
|
=
|
t2 | = |
|
=
|
Für t=
Ortskurve eines Extrempunkts
Beispiel:
Die Funktion ft mit
Als erstes leitet man die Funktion ab.
=>
=
Die notwendige Bedingung für einen Extrempunkt ist f'(x)=0.
(Alle Extrempunkte haben die Steigung 0).
Man setzt nun also f'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von f zu bestimmen.
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
|
= | |
|
|
|
= |
|
|: |
x1 | = |
|
2. Fall:
|
= |
Diese Gleichung hat keine Lösung!
Die Lösung x=
Da in der Aufgabenstellung bereits angegeben ist, dass es genau einen Extrempunkt gibt, wissen wir also schon, dass unser Kandidat diese Extremstelle sein muss, und wir müssen ihn nicht weiter mit einer hinreichenden Bedingung prüfen.
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzen werden.
f(
Man erhält so den Extrempunkt EP:(
Es gilt nun :
(I)
(II)
Um eine Ortskurve mit einer Funktionsgleichung nur mit x und y, also ohne t, zu erhalten, lösen wir die Gleichung (I) erst mal nach t auf:
|
= |
|
|
|
|
= |
|
Dieses t setzen wir nun in (II) ein und erhalten so die gewünschte x-y-Gleichung der Ortskurve:
y =
Die gesuchte Ortskurve ist also: y =
Ortskurve eines Wendepunkts
Beispiel:
Die Funktion ft mit
Als erstes leitet man die Funktion zwei mal ab.
=
Die notwendige Bedingung für einen Wendepunkt ist f''(x)=0.
(Wendestellen sind Extremstellen in der Ableitung, also haben Wendepunkten die Steigung 0 in f').
Man setzt nun also die zweite Ableitung gleich 0, um die einzig möglichen x-Werte für Wendepunkte zu bestimmen.
|
= | |
|
|
|
= |
|
|: |
|
= |
|
Die Lösung x=
Da in der Aufgabenstellung bereits angegeben ist, dass es genau einen Wendepunkt gibt, wissen wir also schon, dass unser Kandidat diese Wendestelle sein muss, und wir müssen ihn nicht weiter mit einer hinreichenden Bedingung prüfen.
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzen werden.
f(
Man erhält so den Wendepunkt WP:(
Es gilt nun :
(I)
(II)
Um eine Ortskurve mit einer Funktionsgleichung nur mit x und y, also ohne t, zu erhalten, lösen wir die Gleichung (I) erst mal nach t auf:
|
= |
|
|⋅ 3 |
|
= |
|
|: |
|
= |
|
Dieses t setzen wir nun in (II) ein und erhalten so die gewünschte x-y-Gleichung der Ortskurve:
y =
Die gesuchte Ortskurve ist also: y =
Tangente durch Ursprung mit 45°
Beispiel:
Für a ∈ R ist eine Funktion fa mit fa(x) =
Beschreibe wie der Graph von f2 aus dem Graph von f0 hervorgeht.
Für ein bestimmtes a gibt es eine Stelle x0, an der die Tangente an den Graph von fa im Punkt B(x0|fa(x0)) mit dem Steigungswinkel von 45° durch den Ursprung verläuft. Bestimme ein mögliches a.
Wir betrachten also erstmal f0 mit f0=
Wenn eine Tangente den Steigungswinkel 45° haben soll so muss die Steigung in diesem Punkt m = tan(45°) = 1 sein.
Da ja die Graphen der verschiedenen fa alle die gleiche Form und nur unterschiedliche Lagen haben, suchen wir erstmal bei der einfachsten Funktion der Schar, f0 nach einer Stelle mit Steigung 1. Dazu leiten wir erstmal ab:
=
Jetzt suchen wir nach einer Stelle mit f'(x) = 1:
|
= |
|
|
|
= | |: |
|
|
= | |ln(⋅) | |
|
= |
|
|: |
|
= |
|
≈ 0.8959 |
Damit wissen wir nun, dass im Berührpunkt B(0.896|f(0.896)) an f0 eine Tangente mit Steigung 1 angelegt wird.
Wir setzen also x = 0.896 in f0 ein und erhalten:
Nun setzt man die Ableitung m=1 und die errechneten Punktkoordinaten in eine allgemeine Geradengleichung (y=mx+c) ein:
4.5 = 1 ⋅0.896 + c
4.5 = 0.896 + c | -0.896
3.604 = cDa die Tangentensteigung 1 ist, muss der Schnittpunkt der Tangente y=
Wenn wir also f0 um 3.604 nach rechts verschieben, würde diese Tangente mit der Steigung 1 (und damit mit dem Steigungswinkel 45°) gerade durch den Ursprunge gehen.
Dieser um 3.604 nach rechts verschobene Graph gehört dann zur Funktion f3.604 =
Der gesuchte Paremeter a ist somit a = 3.604.
bestimmter x-Wert eines Wendepunkts
Beispiel:
Die Funktion ft mit
Als erstes leitet man die Funktion zwei mal ab.
=
=
=
=
=
=
=
=
Die notwendige Bedingung für einen Wendepunkt ist f''(x)=0.
(Wendestellen sind Extremstellen in der Ableitung, also haben Wendepunkten die Steigung 0 in f').
Man setzt nun also die zweite Ableitung gleich 0, um die einzig möglichen x-Werte für Wendepunkte zu bestimmen.
|
= | ||
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
|
= | |
|
|
|
= |
|
|: |
x1 | = |
|
2. Fall:
|
= |
Diese Gleichung hat keine Lösung!
Die Lösung x=
Da in der Aufgabenstellung bereits angegeben ist, dass es genau einen Wendepunkt gibt, wissen wir also schon, dass unser Kandidat diese Wendestelle sein muss, und wir müssen ihn nicht weiter mit einer hinreichenden Bedingung prüfen.
Wir können also unsere mit Parameter behaftete Wendestelle mit der Vorgabe aus der Aufgabenstellung
(x=
|
= |
|
|⋅ 3 |
|
= |
|
|
|
= |
|
|
|
|
= |
|
|: |
|
= |
|
Für t=