nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Volumen eines Prismas

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Berechne das Volumen des dargestellten, senkrechten Prismas.

Lösung einblenden

Das Volumen eines senkrechten Prismas berechnet man mit V = G ⋅ h,
also die Fläche der Grundseite multipliziert mit der Höhe des Prismas, wobei die Höhe hier die 6 cm nach schräg hinten ist.
Die Fläche der Grundseite berechnet man mit:
A = 1 2 ⋅ Grundseite ⋅ Höhe
also hier:

A = 1 2 ⋅ 9 cm ⋅ 7 cm = 31.5 cm²

Das wird dann mit der Höhe multipliziert: V = 31.5 cm² ⋅ 6 cm = 189 cm³

Volumen eines Prismas 2

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Ein Prisma hat die abgebildete Figur als Grundfläche und
die Höhe h = 50 m. Berechne das Volumen des Prismas.

Lösung einblenden

Die Grundfläche dieses regelmäßigen Sechseck besteht aus 6 kleinen gleichseitigen Dreiecken. Deswegen berechnen wir zuerst den Flächeninhalt eines dieser 6 kleinen gleichseitigen Dreiecke und nutzen hierfür die Flächeninhaltsformel des Dreiecks:

ADreieck = 1 2 c ⋅ hc

Dazu müssen wir zuerst noch die Höhe hc mit dem Satz des Pythagoras (im rechtwinkligen halben Dreieck) berechnen:

hc2 + ( 8 2 )2 = 82 |-( 8 2 )2

hc2 = 82 - ( 8 2 )2 = 82 - 42 = 64 - 16= 48

Daraus ergibt sich:

hc = 48 ≈ 6.928

Und daraus ergibt sich wiederum für die Grundfläche ADreieck:

ADreieck = 1 2 c ⋅ hc = 1 2 ⋅ 8 ⋅ 6.928 ≈ 27.7

Man hätte den Flächeninhalt des gleichseitigen Dreiecks auch mit dessen Flächenformel berechnen können:
ADreieck = 3 4 a2 = 3 4 64 ≈ 27.7

Damit haben wir den Flächeninhalt eines der 6 gleichseitiogen Dreiecke. Um nun auf die gesamte Grundfläche des Prismas, also auf das regelmäßige Sechseck zu kommen, müssen wir lediglich diese Dreiecksfläche ADreieck mal 6 nehmen:

G = 6 ⋅ ADreieck ≈ 6 ⋅ 27.7 ≈ 166.3

Um nun das gesuchte Volumen des Prismas zu berechnen, müssen wir nur noch die Grundfläche G mit der Höhe h=50 m multiplizieren:

V = G ⋅ h ≈ 166.3 m² ⋅ 50 m ≈ 8313.8 m³

Prismavolumen rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Ein Prisma hat das Volumen V = 2160 cm³, die Höhe h = 60 cm und als Grundfläche das abgebildete rechtwinklige gleichschenklige Dreieck.
Berechne die rote Strecke x.

Lösung einblenden

Da ja für das Volumen eines Prismas V = G ⋅ h gilt, können wir umgekehrt sofort die Grundfläche berechnen als :
G = V h 2160 60 ≈ 36

Jetzt müssen wir uns eine Formel für das rechtwinklige gleichschenklige Dreieck mit Basisseitenlänge x herleiten (oder in der Formelsammlung suchen ;-):

Nach dem Satz des Pythagoras gilt:

s2 + s2 = x2

also 2s2 = x2 oder eben s2 = 1 2 x2

Für den Flächeninhalt des rechtwinklig und gleichschenkligen Dreiecks gilt wegen des rechten Winkels oben in C aber:
A = 1 2 s ⋅ s = 1 2 s2

mit s2 = 1 2 x2 gilt somit;

A = 1 2 1 2 x2 = 1 4 x2

Hier können wir jetzt die bereits ermittelte Grundfläche G = 36 einsetzen:

36 ≈ 1 4 x2 | ⋅4

144 ≈ x2

x ≈ 144 ≈ 12

Für x = 12 cm ist somit die Grundfläche G ≈ 36 cm² und das Volumen des Prismas V ≈ 2160 cm³