- Klasse 5-6
- Klasse 7-8
- Klasse 9-10
- Kursstufe
- COSH
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Volumen eines Prismas
Beispiel:
Berechne das Volumen des dargestellten, senkrechten Prismas.
Das Volumen eines senkrechten Prismas berechnet man mit V = G ⋅ h,
also die Fläche der Grundseite multipliziert mit der Höhe des Prismas, wobei die Höhe hier die 6 cm nach oben ist.
Die Fläche der Grundseite berechnet man mit:
A = ⋅ Grundseite ⋅ Höhe
also hier:
A = ⋅ 14 cm ⋅ 7 cm = 49 cm²
Das wird dann mit der Höhe multipliziert: V = 49 cm² ⋅ 6 cm = 294 cm³
Volumen eines Prismas 2
Beispiel:
Ein Prisma hat die abgebildete Figur als Grundfläche und
die Höhe h = 60 m. Berechne das Volumen des Prismas.
Die Grundfläche dieses regelmäßigen Sechseck besteht aus 6 kleinen gleichseitigen Dreiecken. Deswegen berechnen wir zuerst den Flächeninhalt eines dieser 6 kleinen gleichseitigen Dreiecke und nutzen hierfür die Flächeninhaltsformel des Dreiecks:
ADreieck = c ⋅ hc
Dazu müssen wir zuerst noch die Höhe hc mit dem Satz des Pythagoras (im rechtwinkligen halben Dreieck) berechnen:
hc2 + ()2 = 72 |-()2
hc2 = 72 - ()2 = 72 - 3.52 = 49 - 12.25= 36.75
Daraus ergibt sich:
hc = ≈ 6.062
Und daraus ergibt sich wiederum für die Grundfläche ADreieck:
ADreieck = c ⋅ hc = ⋅ 7 ⋅ 6.062 ≈ 21.2
Man hätte den Flächeninhalt des gleichseitigen Dreiecks auch mit dessen Flächenformel berechnen können:
ADreieck =
a2 =
Damit haben wir den Flächeninhalt eines der 6 gleichseitiogen Dreiecke. Um nun auf die gesamte Grundfläche des Prismas, also auf das regelmäßige Sechseck zu kommen, müssen wir lediglich diese Dreiecksfläche ADreieck mal 6 nehmen:
G = 6 ⋅ ADreieck ≈ 6 ⋅ 21.2 ≈ 127.3
Um nun das gesuchte Volumen des Prismas zu berechnen, müssen wir nur noch die Grundfläche G mit der Höhe h=60 m multiplizieren:
V = G ⋅ h ≈ 127.3 m² ⋅ 60 m ≈ 7638.3 m³
Prismavolumen rückwärts
Beispiel:
Ein Prisma hat das Volumen V = 26188.6 cm³, die Höhe h = 70 cm und als Grundfläche das abgebildete regelmäßige Sechseck.
Berechne die rote Strecke x.
Da ja für das Volumen eines Prismas V = G ⋅ h gilt, können wir umgekehrt sofort die Grundfläche berechnen als :
G =
Die Grundfläche dieses regelmäßigen Sechseck besteht aus 6 kleinen gleichseitigen Dreiecken. Deswegen muss der Flächeninhalt eines dieser 6 kleinen gleichseitigen
Dreiecke eben gerade A =
Jetzt müssen wir uns eine Formel für das gleichseitige Dreieck mit Basisseitenlänge x herleiten (oder in der Formelsammlung suchen ;-):
Nach dem Satz des Pythagoras gilt:
hc2 + (
hc2 = x2 - (
Daraus ergibt sich:
hc =
Und daraus ergibt sich wiederum für die Grundfläche ADreieck:
ADreieck =
Hier können wir jetzt die bereits ermittelte Grundfläche ADreieck = 62.35 einsetzen:
62.35 ≈
144 ≈ x2
x ≈
Für x = 12 cm ist somit die Grundfläche ADreieck ≈ 62.4 cm² und das Volumen des Prismas V ≈ 26188.6 cm³