nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Linearfaktordarst. am Graph (|a|=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(-4|0) und N2(-2|0).

Also muss der Funktionsterm y= a · ( x +4 ) · ( x +2 ) sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach oben geöffnet, also muss a = 1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit y= ( x +4 ) ( x +2 ) .

Linearfaktordarst. aus Term (|a|=1)

Beispiel:

Gegeben ist die Funktion f mit y= x 2 +4x .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir können einfach x ausklammern und erhalten so y= ( x +4 ) x .

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-1|0) und N2(2|0).

Also muss der Funktionsterm y= a · ( x +1 ) · ( x -2 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(0|-1).
Es gilt dann ja: y = -1,
also y = a · ( 0 +1 ) · ( 0 -2 ) = -2a =-1.

Hieraus ergibt sich a= 1 2 .

Der gesuchte faktorisierte Funktionsterm ist somit y= 1 2 ( x +1 ) ( x -2 ) .

Linearfakt. am Graph (a≠1) + Ausmultipl.

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist das Schaubild einer Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in der Form y = ax² + bx + c an.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-1|0) und N2(5|0).

Also muss der Funktionsterm y= a · ( x +1 ) · ( x -5 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(1|-2).
Es gilt dann ja: y = -2,
also y = a · ( 1 +1 ) · ( 1 -5 ) = -8a =-2.

Hieraus ergibt sich a= 1 4 .

Der gesuchte faktorisierte Funktionsterm ist somit y= 1 4 ( x +1 ) ( x -5 ) .

Jetzt muss der faktorisierte Term eben noch ausmultipliziert werden:

y= 1 4 ( x +1 ) ( x -5 )

= 1 4 ( x · x + x · ( -5 ) + 1 · x + 1 · ( -5 ))

= 1 4 ( x · x -5x + x -5 )

= 1 4 ( x 2 -4x -5 )

= 1 4 x 2 - x - 5 4

Der gesuchte Funktionsterm in der Form y = ax² + bx + c ist somit y= 1 4 x 2 - x - 5 4

Linearfakt. aus Term (a≠1)

Beispiel:

Gegeben ist die Funktion f mit y= 2 x 2 +2x -4 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullstellen. Also berechnen wir diese als erstes.

2 x 2 +2x -4 = 0 |:2

x 2 + x -2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -1 ± 1 2 -4 · 1 · ( -2 ) 21

x1,2 = -1 ± 1 +8 2

x1,2 = -1 ± 9 2

x1 = -1 + 9 2 = -1 +3 2 = 2 2 = 1

x2 = -1 - 9 2 = -1 -3 2 = -4 2 = -2

Für jedes a hat also der Funktionterm a · ( x +2 ) · ( x -1 ) genau die gleichen Nullstellen wie y= 2 x 2 +2x -4 .

Wenn wir nun ausmultiplizieren, erkennenn wir, dass a genau der Koeffizient vor den x² bei unserer Originalfunktion sein muss:

y= a · ( x +2 ) · ( x -1 )

= a · ( x · x + x · ( -1 ) + 2 · x + 2 · ( -1 ) )

= a · ( x · x - x +2x -2 )

= a · ( x 2 + x -2 )

Für a = 2 ergibt sich also tatsächlich:

2( x 2 + x -2 ) = 2 x 2 +2x -4 = y

Der gesuchte Funktionsterm in faktorisierter Darstellung ist also: y= 2 ( x +2 ) ( x -1 )