nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Linearfaktordarst. am Graph (|a|=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine verschobene Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(0|0) und N2(2|0).

Also muss der Funktionsterm y= a · x · ( x -2 ) sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach unten geöffnet, also muss a = -1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit y= - x ( x -2 ) .

Linearfaktordarst. aus Term (|a|=1)

Beispiel:

Gegeben ist die Funktion f mit y= x 2 -1 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullstellen. Also berechnen wir diese als erstes.

x 2 -1 = 0 | +1
x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

Der Funktionterm ( x +1 ) ( x -1 ) hat nun also genau die gleichen Nullstellen wie y= x 2 -1 und beide Terme haben a=1 als Koeffizient vor dem x² (Normalparabeln).

Also ist y= ( x +1 ) ( x -1 ) bereits der gesuchte Term.

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-2|0) und N2(0|0).

Also muss der Funktionsterm y= a · ( x +2 ) · x sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-1|-2).
Es gilt dann ja: y = -2,
also y = a · ( -1 +2 ) · ( -1 ) = -a =-2.

Hieraus ergibt sich a=2.

Der gesuchte faktorisierte Funktionsterm ist somit y= 2 ( x +2 ) x .

Linearfakt. am Graph (a≠1) + Ausmultipl.

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist das Schaubild einer Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in der Form y = ax² + bx + c an.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-2|0) und N2(3|0).

Also muss der Funktionsterm y= a · ( x +2 ) · ( x -3 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-3|2).
Es gilt dann ja: y = 2,
also y = a · ( -3 +2 ) · ( -3 -3 ) = 6a =2.

Hieraus ergibt sich a= 1 3 .

Der gesuchte faktorisierte Funktionsterm ist somit y= 1 3 ( x +2 ) ( x -3 ) .

Jetzt muss der faktorisierte Term eben noch ausmultipliziert werden:

y= 1 3 ( x +2 ) ( x -3 )

= 1 3 ( x · x + x · ( -3 ) + 2 · x + 2 · ( -3 ))

= 1 3 ( x · x -3x +2x -6 )

= 1 3 ( x 2 - x -6 )

= 1 3 x 2 - 1 3 x -2

Der gesuchte Funktionsterm in der Form y = ax² + bx + c ist somit y= 1 3 x 2 - 1 3 x -2

Linearfakt. aus Term (a≠1)

Beispiel:

Gegeben ist die Funktion f mit y= -4 x 2 -16x .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir können einfach x ausklammern und erhalten so y= -4 ( x +4 ) x .