nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Linearfaktordarst. am Graph (|a|=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine verschobene Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(-2|0) und N2(2|0).

Also muss der Funktionsterm y= a · ( x +2 ) · ( x -2 ) sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach unten geöffnet, also muss a = -1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit y= - ( x +2 ) ( x -2 ) .

Linearfaktordarst. aus Term (|a|=1)

Beispiel:

Gegeben ist die Funktion f mit y= x 2 +4x .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir können einfach x ausklammern und erhalten so y= ( x +4 ) x .

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(1|0) und N2(3|0).

Also muss der Funktionsterm y= a · ( x -1 ) · ( x -3 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(0|1).
Es gilt dann ja: y = 1,
also y = a · ( 0 -1 ) · ( 0 -3 ) = 3a =1.

Hieraus ergibt sich a= 1 3 .

Der gesuchte faktorisierte Funktionsterm ist somit y= 1 3 ( x -1 ) ( x -3 ) .

Linearfakt. am Graph (a≠1) + Ausmultipl.

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist das Schaubild einer Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in der Form y = ax² + bx + c an.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-4|0) und N2(-1|0).

Also muss der Funktionsterm y= a · ( x +4 ) · ( x +1 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-5|-1).
Es gilt dann ja: y = -1,
also y = a · ( -5 +4 ) · ( -5 +1 ) = 4a =-1.

Hieraus ergibt sich a= - 1 4 .

Der gesuchte faktorisierte Funktionsterm ist somit y= - 1 4 ( x +4 ) ( x +1 ) .

Jetzt muss der faktorisierte Term eben noch ausmultipliziert werden:

y= - 1 4 ( x +4 ) ( x +1 )

= - 1 4 ( x · x + x · 1 + 4 · x + 4 · 1 )

= - 1 4 ( x · x + x +4x +4 )

= - 1 4 ( x 2 +5x +4 )

= - 1 4 x 2 - 5 4 x -1

Der gesuchte Funktionsterm in der Form y = ax² + bx + c ist somit y= - 1 4 x 2 - 5 4 x -1

Linearfakt. aus Term (a≠1)

Beispiel:

Gegeben ist die Funktion f mit y= -4 x 2 +16 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullstellen. Also berechnen wir diese als erstes.

-4 x 2 +16 = 0 | -16
-4 x 2 = -16 |: ( -4 )
x 2 = 4 | 2
x1 = - 4 = -2
x2 = 4 = 2

Für jedes a hat also der Funktionterm a · ( x +2 ) · ( x -2 ) genau die gleichen Nullstellen wie y= -4 x 2 +16 .

Wenn wir nun ausmultiplizieren, erkennenn wir, dass a genau der Koeffizient vor den x² bei unserer Originalfunktion sein muss:

y= a · ( x +2 ) · ( x -2 )

= a · ( x · x + x · ( -2 ) + 2 · x + 2 · ( -2 ) )

= a · ( x · x -2x +2x -4 )

= a · ( x 2 -4 )

Für a = -4 ergibt sich also tatsächlich:

-4( x 2 -4 ) = -4 x 2 +16 = y

Der gesuchte Funktionsterm in faktorisierter Darstellung ist also: y= -4 ( x +2 ) ( x -2 )