nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Linearfaktordarst. am Graph (|a|=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine verschobene Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(1|0) und N2(3|0).

Also muss der Funktionsterm y= a · ( x -1 ) · ( x -3 ) sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach oben geöffnet, also muss a = 1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit y= ( x -1 ) ( x -3 ) .

Linearfaktordarst. aus Term (|a|=1)

Beispiel:

Gegeben ist die Funktion f mit y= x 2 -4 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullstellen. Also berechnen wir diese als erstes.

x 2 -4 = 0 | +4
x 2 = 4 | 2
x1 = - 4 = -2
x2 = 4 = 2

Der Funktionterm ( x +2 ) ( x -2 ) hat nun also genau die gleichen Nullstellen wie y= x 2 -4 und beide Terme haben a=1 als Koeffizient vor dem x² (Normalparabeln).

Also ist y= ( x +2 ) ( x -2 ) bereits der gesuchte Term.

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-1|0) und N2(1|0).

Also muss der Funktionsterm y= a · ( x +1 ) · ( x -1 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(0|2).
Es gilt dann ja: y = 2,
also y = a · ( 0 +1 ) · ( 0 -1 ) = -a =2.

Hieraus ergibt sich a=-2.

Der gesuchte faktorisierte Funktionsterm ist somit y= -2 ( x +1 ) ( x -1 ) .

Linearfakt. am Graph (a≠1) + Ausmultipl.

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist das Schaubild einer Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in der Form y = ax² + bx + c an.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-1|0) und N2(2|0).

Also muss der Funktionsterm y= a · ( x +1 ) · ( x -2 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(0|-1).
Es gilt dann ja: y = -1,
also y = a · ( 0 +1 ) · ( 0 -2 ) = -2a =-1.

Hieraus ergibt sich a= 1 2 .

Der gesuchte faktorisierte Funktionsterm ist somit y= 1 2 ( x +1 ) ( x -2 ) .

Jetzt muss der faktorisierte Term eben noch ausmultipliziert werden:

y= 1 2 ( x +1 ) ( x -2 )

= 1 2 ( x · x + x · ( -2 ) + 1 · x + 1 · ( -2 ))

= 1 2 ( x · x -2x + x -2 )

= 1 2 ( x 2 - x -2 )

= 1 2 x 2 - 1 2 x -1

Der gesuchte Funktionsterm in der Form y = ax² + bx + c ist somit y= 1 2 x 2 - 1 2 x -1

Linearfakt. aus Term (a≠1)

Beispiel:

Gegeben ist die Funktion f mit y= -4 x 2 +24x -20 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullstellen. Also berechnen wir diese als erstes.

-4 x 2 +24x -20 = 0 |:4

- x 2 +6x -5 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · ( -1 ) · ( -5 ) 2( -1 )

x1,2 = -6 ± 36 -20 -2

x1,2 = -6 ± 16 -2

x1 = -6 + 16 -2 = -6 +4 -2 = -2 -2 = 1

x2 = -6 - 16 -2 = -6 -4 -2 = -10 -2 = 5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +6x -5 = 0 |: -1

x 2 -6x +5 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -3 ) 2 - 5 = 9 - 5 = 4

x1,2 = 3 ± 4

x1 = 3 - 2 = 1

x2 = 3 + 2 = 5

Für jedes a hat also der Funktionterm a · ( x -1 ) · ( x -5 ) genau die gleichen Nullstellen wie y= -4 x 2 +24x -20 .

Wenn wir nun ausmultiplizieren, erkennenn wir, dass a genau der Koeffizient vor den x² bei unserer Originalfunktion sein muss:

y= a · ( x -1 ) · ( x -5 )

= a · ( x · x + x · ( -5 ) -1 · x -1 · ( -5 ) )

= a · ( x · x -5x - x +5 )

= a · ( x 2 -6x +5 )

Für a = -4 ergibt sich also tatsächlich:

-4( x 2 -6x +5 ) = -4 x 2 +24x -20 = y

Der gesuchte Funktionsterm in faktorisierter Darstellung ist also: y= -4 ( x -1 ) ( x -5 )