nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Linearfaktordarst. am Graph (|a|=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine verschobene Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(-4|0) und N2(-1|0).

Also muss der Funktionsterm y= a · ( x +4 ) · ( x +1 ) sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach unten geöffnet, also muss a = -1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit y= - ( x +4 ) ( x +1 ) .

Linearfaktordarst. aus Term (|a|=1)

Beispiel:

Gegeben ist die Funktion f mit y= x 2 +2x -3 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullstellen. Also berechnen wir diese als erstes.

x 2 +2x -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

x1,2 = -2 ± 4 +12 2

x1,2 = -2 ± 16 2

x1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

x2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -3 ) = 1+ 3 = 4

x1,2 = -1 ± 4

x1 = -1 - 2 = -3

x2 = -1 + 2 = 1

Der Funktionterm ( x +3 ) ( x -1 ) hat nun also genau die gleichen Nullstellen wie y= x 2 +2x -3 und beide Terme haben a=1 als Koeffizient vor dem x² (Normalparabeln).

Also ist y= ( x +3 ) ( x -1 ) bereits der gesuchte Term.

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-2|0) und N2(0|0).

Also muss der Funktionsterm y= a · ( x +2 ) · x sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-1|2).
Es gilt dann ja: y = 2,
also y = a · ( -1 +2 ) · ( -1 ) = -a =2.

Hieraus ergibt sich a=-2.

Der gesuchte faktorisierte Funktionsterm ist somit y= -2 ( x +2 ) x .

Linearfakt. am Graph (a≠1) + Ausmultipl.

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist das Schaubild einer Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in der Form y = ax² + bx + c an.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-4|0) und N2(3|0).

Also muss der Funktionsterm y= a · ( x +4 ) · ( x -3 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-3|-2).
Es gilt dann ja: y = -2,
also y = a · ( -3 +4 ) · ( -3 -3 ) = -6a =-2.

Hieraus ergibt sich a= 1 3 .

Der gesuchte faktorisierte Funktionsterm ist somit y= 1 3 ( x +4 ) ( x -3 ) .

Jetzt muss der faktorisierte Term eben noch ausmultipliziert werden:

y= 1 3 ( x +4 ) ( x -3 )

= 1 3 ( x · x + x · ( -3 ) + 4 · x + 4 · ( -3 ))

= 1 3 ( x · x -3x +4x -12 )

= 1 3 ( x 2 + x -12 )

= 1 3 x 2 + 1 3 x -4

Der gesuchte Funktionsterm in der Form y = ax² + bx + c ist somit y= 1 3 x 2 + 1 3 x -4

Linearfakt. aus Term (a≠1)

Beispiel:

Gegeben ist die Funktion f mit y= -5 x 2 -10x +15 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullstellen. Also berechnen wir diese als erstes.

-5 x 2 -10x +15 = 0 |:5

- x 2 -2x +3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · ( -1 ) · 3 2( -1 )

x1,2 = +2 ± 4 +12 -2

x1,2 = +2 ± 16 -2

x1 = 2 + 16 -2 = 2 +4 -2 = 6 -2 = -3

x2 = 2 - 16 -2 = 2 -4 -2 = -2 -2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -2x +3 = 0 |: -1

x 2 +2x -3 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -3 ) = 1+ 3 = 4

x1,2 = -1 ± 4

x1 = -1 - 2 = -3

x2 = -1 + 2 = 1

Für jedes a hat also der Funktionterm a · ( x +3 ) · ( x -1 ) genau die gleichen Nullstellen wie y= -5 x 2 -10x +15 .

Wenn wir nun ausmultiplizieren, erkennenn wir, dass a genau der Koeffizient vor den x² bei unserer Originalfunktion sein muss:

y= a · ( x +3 ) · ( x -1 )

= a · ( x · x + x · ( -1 ) + 3 · x + 3 · ( -1 ) )

= a · ( x · x - x +3x -3 )

= a · ( x 2 +2x -3 )

Für a = -5 ergibt sich also tatsächlich:

-5( x 2 +2x -3 ) = -5 x 2 -10x +15 = y

Der gesuchte Funktionsterm in faktorisierter Darstellung ist also: y= -5 ( x +3 ) ( x -1 )