Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Volumeneinheiten umrechnen
Beispiel:
Wandle das Volumen in die angegebene Einheit um: 89400000 cm³ = ..... dm³
89400000 cm³ = 89400 dm³
Raumeinheiten verrechnen
Beispiel:
Berechne und gib das Ergebnis in mm³ an:
51 cm³ - 910 mm³
Um die beiden Werte miteinander verrechnen zu können, rechnen wir erst mal den Wert mit der größeren Einheit in die kleinere Einheit um:
51 cm³ = 51000 mm³
Jetzt können wir die beiden Werte gut verrechnen:
51 cm³ - 910 mm³
= 51000 mm³ - 910 mm³
= 50090 mm³
Volumen - Masse bei Wasser
Beispiel:
Ein Kubikzentimeter Wasser wiegt ein Gramm.
Wie viel wiegen 15 m³ Wasser ?
1 cm³ ≙ 1 g
1 000 000 cm³ ≙ 1 000 000 g
1 000 dm³ ≙ 1 000 kg
also 1 m³ ≙ 1 t
Somit wiegen 15 m³ Wasser eben 15 t
Volumen eines Quaders
Beispiel:
Ein Quader ist 5 mm lang, 7 mm breit und 8 mm hoch. Bestimme das Volumen V des Quaders.
Das Volumen des Quaders berechnet man durch Multiplizieren der Seitenlängen:
V = a ⋅ b ⋅ c
= 5 mm ⋅ 7 mm ⋅ 8 mm
= 280 mm³
Quadervolumen offen
Beispiel:
Ein Quader ist hat das Volumen 36 m³. Jede der drei Kantenlänge ist größer als 1 m.
Bestimme mögliche Kantenlängen a, b und c.
Mögliche Werte wären z.B.:
a = 2 m
b = 2 m
c = 9 m,
denn V = a ⋅ b ⋅ c = 2 m ⋅ 2 m ⋅ 9 m = 36 m³.
Volumen auch rückwärts
Beispiel:
Ein Quader ist 10 dm breit, 4 dm hoch und hat das Volumen V = 200 dm³. Bestimme die Länge a des Quaders.
Das Volumen eines Quaders berechnet man durch Multiplizieren der Seitenlängen: V = a ⋅ b ⋅ c
Also gilt: 200 dm³ = ⬜ ⋅ 10 dm ⋅ 4 dm
200 dm³ = ⬜ ⋅ 40 dm²
Das Kästchen kann man also mit 200 dm³ : 40 dm² = 5 dm berechnen.
Oberfläche eines Quaders
Beispiel:
Ein Quader ist 10 dm lang, 7 dm breit und 2 dm hoch. Bestimme die Oberfläche O des Quaders.
Bei der Oberfläche des Quaders kommt jede Seitenfläche zweimal vor (links und rechts, vorne und hinten, oben und unten):
O = 2⋅a⋅b + 2⋅a⋅c + 2⋅b⋅c
= 2⋅10 dm⋅7 dm + 2⋅10 dm⋅2 dm
+ 2⋅7 dm⋅2 dm
= 140 dm² + 40 dm² + 28 dm²
= 208 dm²
Volumen auch rückwärts + Oberfl.
Beispiel:
Ein Quader ist 8 m lang, 5 m breit und 10 m hoch. Bestimme das Volumen V und die Oberfläche O des Quaders.
Das Volumen des Quaders berechnet man durch Multiplizieren der Seitenlängen:
V = a ⋅ b ⋅ c
= 8 m ⋅ 5 m ⋅ 10 m
= 400 m³
Bei der Oberfläche des Quaders kommt jede Seitenfläche zweimal vor (links und rechts, vorne und hinten, oben und unten):
O = 2⋅a⋅b + 2⋅a⋅c + 2⋅b⋅c
= 2⋅8 m⋅5 m + 2⋅8 m⋅10 m
+ 2⋅5 m⋅10 m
= 80 m² + 160 m² + 100 m²
= 340 m²
Würfel V+O rückwärts
Beispiel:
Ein Würfel hat das Volumen V = 125 mm³. Berechne die Kantenlänge.
Das Volumen des Quaders berechnet man durch Multiplizieren der Seitenlängen: V = a ⋅ b ⋅ c
Bei einem Würfel sind ja alle Kantenlängen gleich, also gilt hier
V = a ⋅ a ⋅ a = a3
Es gilt somit:
125 mm³ = ⬜3
Mit gezieltem Probieren findet man, dass dies mit a = 5 mm funktioniert.
Schrägbild zeichnen
Beispiel:
Zeichne in ein Koordinatensystem die Eckpunkte A(2|3), B(6|3), C(9|6) und G(9|10) ein und verbinde diese der Reihe nach.
Ergänze die Zeichnung zum Schrägbild und gib dann die Koordinaten der restlichen Eckpunkte des Quaders an.
Da bei einem Quader die Bodenfläche ja immer ein Rechteck ist, muss die hintere Kante zwischen D und C parallel und gleich lang wie die vordere Kante zwischen A und B sein - also 4 Einheiten (oder 8 Kästchen) in x-Richtung und 0 Kästchen nach oben. Somit gilt für den Punkt D des Schrägbilds D(9-4|6) = D(5|6).
An der Kante zwischen C und G kann man gut die Höhe des Quaders ablesen: 10-6 = 4. Somit muss auch der Punkt E genau 4 Einheiten über dem Punkt A(2|3) liegen, also bei E(2|3+4) = E(2|7).
Gleiches gilt auch für den Punkt F, der genau 4 Einheiten über dem Punkt B(6|3) liegen muss, also bei F(6|3+4) = F(6|7).
Gleiches gilt auch für den Punkt H, der genau 4 Einheiten über dem Punkt D(5|6) liegen muss, also bei H(5|6+4) = H(5|10).
