nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Volumeneinheiten umrechnen

Beispiel:

Wandle das Volumen in die angegebene Einheit um: 392 m³ = ..... cm³

Lösung einblenden
Die korrekte Antwort lautet:
392 m³ = 392000000 cm³

Raumeinheiten verrechnen

Beispiel:

Berechne und gib das Ergebnis in cm³ an:

760 cm³ + 105 dm³

Lösung einblenden

Um die beiden Werte miteinander verrechnen zu können, rechnen wir erst mal den Wert mit der größeren Einheit in die kleinere Einheit um:

105 dm³ = 105000 cm³

Jetzt können wir die beiden Werte gut verrechnen:

760 cm³ + 105 dm³
= 760 cm³ + 105000 cm³
= 105760 cm³

Volumen - Masse bei Wasser

Beispiel:

Ein Kubikzentimeter Wasser wiegt ein Gramm.

Wie viel wiegen 13 mm³ Wasser ?

Lösung einblenden

1 cm³ ≙ 1 g
1000 mm³ ≙ 1000 mg
also 1 mm³ ≙ 1 mg

Somit wiegen 13 mm³ Wasser eben 13 mg

Volumen eines Quaders

Beispiel:

Ein Quader ist 4 dm lang, 4 dm breit und 5 dm hoch. Bestimme das Volumen V des Quaders.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das Volumen des Quaders berechnet man durch Multiplizieren der Seitenlängen:

V = a ⋅ b ⋅ c
= 4 dm ⋅ 4 dm ⋅ 5 dm
= 80 dm³

Quadervolumen offen

Beispiel:

Ein Quader ist hat das Volumen 160 dm³. Jede der drei Kantenlänge ist größer als 1 dm.

Bestimme mögliche Kantenlängen a, b und c.

Lösung einblenden

Mögliche Werte wären z.B.:
a = 2 dm
b = 2 dm
c = 40 dm,
denn V = a ⋅ b ⋅ c = 2 dm ⋅ 2 dm ⋅ 40 dm = 160 dm³.

Volumen auch rückwärts

Beispiel:

Ein Quader ist 5 cm lang, 8 cm breit und 9 cm hoch. Bestimme das Volumen V des Quaders.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das Volumen des Quaders berechnet man durch Multiplizieren der Seitenlängen:

V = a ⋅ b ⋅ c
= 5 cm ⋅ 8 cm ⋅ 9 cm
= 360 cm³

Oberfläche eines Quaders

Beispiel:

Ein Quader ist 2 mm lang, 10 mm breit und 3 mm hoch. Bestimme die Oberfläche O des Quaders.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bei der Oberfläche des Quaders kommt jede Seitenfläche zweimal vor (links und rechts, vorne und hinten, oben und unten):

O = 2⋅a⋅b + 2⋅a⋅c + 2⋅b⋅c
= 2⋅2 mm⋅10 mm + 2⋅2 mm⋅3 mm + 2⋅10 mm⋅3 mm
= 40 mm² + 12 mm² + 60 mm²
= 112 mm²

Volumen auch rückwärts + Oberfl.

Beispiel:

Ein Quader ist 10 mm lang, 3 mm breit und hat das Volumen V = 300 mm³. Bestimme die Höhe c und die Oberfläche O des Quaders.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das Volumen eines Quaders berechnet man durch Multiplizieren der Seitenlängen: V = a ⋅ b ⋅ c

Also gilt: 300 mm³ = 10 mm ⋅ 3 mm ⋅ ⬜

300 mm³ = ⬜ ⋅ 30 mm²

Das Kästchen kann man also mit 300 mm³ : 30 mm² = 10 mm berechnen.

Bei der Oberfläche des Quaders kommt jede Seitenfläche zweimal vor (links und rechts, vorne und hinten, oben und unten):

O = 2⋅a⋅b + 2⋅a⋅c + 2⋅b⋅c
= 2⋅10 mm⋅3 mm + 2⋅10 mm⋅10 mm + 2⋅3 mm⋅10 mm
= 60 mm² + 200 mm² + 60 mm²
= 320 mm²

Würfel V+O rückwärts

Beispiel:

Ein Würfel hat die Oberfläche O = 54 dm². Berechne die Kantenlänge.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Ein Würfel hat ja sechs gleich große Seitenflächen. Jede davon ist ein Quadrat mit der Kantenlänge a.
Also gilt für die Oberfläche eines Würfel mit Kantenlänge a:
O = 6 ⋅ a ⋅ a = 6a2

Es gilt somit:

54 dm² = 6 ⋅ ⬜2

Wenn 6 ⬜2 das Gleiche wie 54 ist, dann muss doch ein ⬜2 ein Sechstel von 54, also 9 ergeben.

9 dm² = ⬜2

Mit gezieltem Probieren findet man, dass dies mit a = 3 dm funktioniert.

Schrägbild zeichnen

Beispiel:

Zeichne in ein Koordinatensystem die Eckpunkte A(2|1), B(7|1), C(9|3) und G(9|10) ein und verbinde diese der Reihe nach.

Ergänze die Zeichnung zum Schrägbild und gib dann die Koordinaten der restlichen Eckpunkte des Quaders an.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da bei einem Quader die Bodenfläche ja immer ein Rechteck ist, muss die hintere Kante zwischen D und C parallel und gleich lang wie die vordere Kante zwischen A und B sein - also 5 Einheiten (oder 10 Kästchen) in x-Richtung und 0 Kästchen nach oben. Somit gilt für den Punkt D des Schrägbilds D(9-5|3) = D(4|3).

An der Kante zwischen C und G kann man gut die Höhe des Quaders ablesen: 10-3 = 7. Somit muss auch der Punkt E genau 7 Einheiten über dem Punkt A(2|1) liegen, also bei E(2|1+7) = E(2|8).

Gleiches gilt auch für den Punkt F, der genau 7 Einheiten über dem Punkt B(7|1) liegen muss, also bei F(7|1+7) = F(7|8).

Gleiches gilt auch für den Punkt H, der genau 7 Einheiten über dem Punkt D(4|3) liegen muss, also bei H(4|3+7) = H(4|10).