nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache Wurzelgleichung

Beispiel:

Löse die folgende Gleichung:

-x +14 = 3

Lösung einblenden
-x +14 = 3 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
-x +14 = 3 2
-x +14 = 9 | -14
-x = -5 |:(-1 )
x = 5

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = 5

Linke Seite:

x = 5 in -x +14

= -5 +14

= 9

= 3

Rechte Seite:

x = 5 in 3

= 3

Also 3 = 3

x = 5 ist somit eine Lösung !

L={ 5 }

Wurzelgleichung (-> quadr.)

Beispiel:

Löse die folgende Gleichung:

-2x +3 = x

Lösung einblenden
-2x +3 = x |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
-2x +3 = ( x ) 2
-2x +3 = x 2 | - x 2

- x 2 -2x +3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · ( -1 ) · 3 2( -1 )

x1,2 = +2 ± 4 +12 -2

x1,2 = +2 ± 16 -2

x1 = 2 + 16 -2 = 2 +4 -2 = 6 -2 = -3

x2 = 2 - 16 -2 = 2 -4 -2 = -2 -2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -2x +3 = 0 |: -1

x 2 +2x -3 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -3 ) = 1+ 3 = 4

x1,2 = -1 ± 4

x1 = -1 - 2 = -3

x2 = -1 + 2 = 1

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -3

Linke Seite:

x = -3 in -2x +3

= -2( -3 ) +3

= 6 +3

= 9

= 3

Rechte Seite:

x = -3 in x

= -3

Also 3 ≠ -3

x = -3 ist somit keine Lösung !

Probe für x = 1

Linke Seite:

x = 1 in -2x +3

= -21 +3

= -2 +3

= 1

= 1

Rechte Seite:

x = 1 in x

= 1

Also 1 = 1

x = 1 ist somit eine Lösung !

L={ 1 }

Wurzelgleichung (2 Wurzeln, 2x quadr.)

Beispiel:

Löse die folgende Gleichung:

7x +14 = 3x +10 +2

Lösung einblenden
7x +14 = 3x +10 +2 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
7x +14 = ( 3x +10 +2 ) 2
7x +14 = 4 3x +10 +3x +14 | -7x -14 -4 3x +10
-4 3x +10 = -4x |:(-4 )
3x +10 = x |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
3x +10 = ( x ) 2
3x +10 = x 2 | - x 2

- x 2 +3x +10 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -3 ± 3 2 -4 · ( -1 ) · 10 2( -1 )

x1,2 = -3 ± 9 +40 -2

x1,2 = -3 ± 49 -2

x1 = -3 + 49 -2 = -3 +7 -2 = 4 -2 = -2

x2 = -3 - 49 -2 = -3 -7 -2 = -10 -2 = 5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +3x +10 = 0 |: -1

x 2 -3x -10 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - ( -10 ) = 9 4 + 10 = 9 4 + 40 4 = 49 4

x1,2 = 3 2 ± 49 4

x1 = 3 2 - 7 2 = - 4 2 = -2

x2 = 3 2 + 7 2 = 10 2 = 5

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -2

Linke Seite:

x = -2 in 7x +14

= 7( -2 ) +14

= -14 +14

= 0

= 0

Rechte Seite:

x = -2 in 3x +10 +2

= 3( -2 ) +10 +2

= -6 +10 +2

= 4 +2

= 2 +2

= 4

Also 0 ≠ 4

x = -2 ist somit keine Lösung !

Probe für x = 5

Linke Seite:

x = 5 in 7x +14

= 75 +14

= 35 +14

= 49

= 7

Rechte Seite:

x = 5 in 3x +10 +2

= 35 +10 +2

= 15 +10 +2

= 25 +2

= 5 +2

= 7

Also 7 = 7

x = 5 ist somit eine Lösung !

L={ 5 }