nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache Wurzelgleichung

Beispiel:

Löse die folgende Gleichung:

-3x +3 = 3

Lösung einblenden
-3x +3 = 3 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
-3x +3 = 3 2
-3x +3 = 9 | -3
-3x = 6 |:(-3 )
x = -2

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -2

Linke Seite:

x = -2 in -3x +3

= -3( -2 ) +3

= 6 +3

= 9

= 3

Rechte Seite:

x = -2 in 3

= 3

Also 3 = 3

x = -2 ist somit eine Lösung !

L={ -2 }

Wurzelgleichung (-> quadr.)

Beispiel:

Löse die folgende Gleichung:

-x +20 = x

Lösung einblenden
-x +20 = x |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
-x +20 = ( x ) 2
-x +20 = x 2 | - x 2

- x 2 - x +20 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · ( -1 ) · 20 2( -1 )

x1,2 = +1 ± 1 +80 -2

x1,2 = +1 ± 81 -2

x1 = 1 + 81 -2 = 1 +9 -2 = 10 -2 = -5

x2 = 1 - 81 -2 = 1 -9 -2 = -8 -2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 - x +20 = 0 |: -1

x 2 + x -20 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -20 ) = 1 4 + 20 = 1 4 + 80 4 = 81 4

x1,2 = - 1 2 ± 81 4

x1 = - 1 2 - 9 2 = - 10 2 = -5

x2 = - 1 2 + 9 2 = 8 2 = 4

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -5

Linke Seite:

x = -5 in -x +20

= -( -5 ) +20

= 5 +20

= 25

= 5

Rechte Seite:

x = -5 in x

= -5

Also 5 ≠ -5

x = -5 ist somit keine Lösung !

Probe für x = 4

Linke Seite:

x = 4 in -x +20

= -4 +20

= 16

= 4

Rechte Seite:

x = 4 in x

= 4

Also 4 = 4

x = 4 ist somit eine Lösung !

L={ 4 }

Wurzelgleichung (2 Wurzeln, 2x quadr.)

Beispiel:

Löse die folgende Gleichung:

5x +24 = x +4 +2

Lösung einblenden
5x +24 = x +4 +2 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
5x +24 = ( x +4 +2 ) 2
5x +24 = 4 x +4 + x +8 | -5x -24 -4 x +4
-4 x +4 = -4x -16 |:(-4 )
x +4 = x +4 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
x +4 = ( x +4 ) 2
x +4 = x 2 +8x +16 | - x 2 -8x -16

- x 2 -7x -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +7 ± ( -7 ) 2 -4 · ( -1 ) · ( -12 ) 2( -1 )

x1,2 = +7 ± 49 -48 -2

x1,2 = +7 ± 1 -2

x1 = 7 + 1 -2 = 7 +1 -2 = 8 -2 = -4

x2 = 7 - 1 -2 = 7 -1 -2 = 6 -2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -7x -12 = 0 |: -1

x 2 +7x +12 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 7 2 ) 2 - 12 = 49 4 - 12 = 49 4 - 48 4 = 1 4

x1,2 = - 7 2 ± 1 4

x1 = - 7 2 - 1 2 = - 8 2 = -4

x2 = - 7 2 + 1 2 = - 6 2 = -3

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -4

Linke Seite:

x = -4 in 5x +24

= 5( -4 ) +24

= -20 +24

= 4

= 2

Rechte Seite:

x = -4 in x +4 +2

= -4 +4 +2

= 0 +2

= 0 +2

= 2

Also 2 = 2

x = -4 ist somit eine Lösung !

Probe für x = -3

Linke Seite:

x = -3 in 5x +24

= 5( -3 ) +24

= -15 +24

= 9

= 3

Rechte Seite:

x = -3 in x +4 +2

= -3 +4 +2

= 1 +2

= 1 +2

= 3

Also 3 = 3

x = -3 ist somit eine Lösung !

L={ -4 ; -3 }