nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache Wurzelgleichung

Beispiel:

Löse die folgende Gleichung:

-2 2x +6 = -4

Lösung einblenden
-2 2x +6 = -4 |:(-2 )
2x +6 = 2 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
2x +6 = 2 2
2x +6 = 4 | -6
2x = -2 |:2
x = -1

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -1

Linke Seite:

x = -1 in -2 2x +6

= -2 2( -1 ) +6

= -2 -2 +6

= -2 4

= -4

Rechte Seite:

x = -1 in -4

= -4

Also -4 = -4

x = -1 ist somit eine Lösung !

L={ -1 }

Wurzelgleichung (-> quadr.)

Beispiel:

Löse die folgende Gleichung:

8x -16 = x

Lösung einblenden
8x -16 = x |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
8x -16 = ( x ) 2
8x -16 = x 2 | - x 2

- x 2 +8x -16 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -8 ± 8 2 -4 · ( -1 ) · ( -16 ) 2( -1 )

x1,2 = -8 ± 64 -64 -2

x1,2 = -8 ± 0 -2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -8 -2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +8x -16 = 0 |: -1

x 2 -8x +16 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -4 ) 2 - 16 = 16 - 16 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 4 ± 0 = 4

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = 4

Linke Seite:

x = 4 in 8x -16

= 84 -16

= 32 -16

= 16

= 4

Rechte Seite:

x = 4 in x

= 4

Also 4 = 4

x = 4 ist somit eine Lösung !

L={ 4 }

Wurzelgleichung (2 Wurzeln, 2x quadr.)

Beispiel:

Löse die folgende Gleichung:

7x +11 = 5x +6 +1

Lösung einblenden
7x +11 = 5x +6 +1 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
7x +11 = ( 5x +6 +1 ) 2
7x +11 = 2 5x +6 +5x +7 | -7x -11 -2 5x +6
-2 5x +6 = -2x -4 |:(-2 )
5x +6 = x +2 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
5x +6 = ( x +2 ) 2
5x +6 = x 2 +4x +4 | - x 2 -4x -4

- x 2 + x +2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · ( -1 ) · 2 2( -1 )

x1,2 = -1 ± 1 +8 -2

x1,2 = -1 ± 9 -2

x1 = -1 + 9 -2 = -1 +3 -2 = 2 -2 = -1

x2 = -1 - 9 -2 = -1 -3 -2 = -4 -2 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 + x +2 = 0 |: -1

x 2 - x -2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = 1 2 ± 9 4

x1 = 1 2 - 3 2 = - 2 2 = -1

x2 = 1 2 + 3 2 = 4 2 = 2

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -1

Linke Seite:

x = -1 in 7x +11

= 7( -1 ) +11

= -7 +11

= 4

= 2

Rechte Seite:

x = -1 in 5x +6 +1

= 5( -1 ) +6 +1

= -5 +6 +1

= 1 +1

= 1 +1

= 2

Also 2 = 2

x = -1 ist somit eine Lösung !

Probe für x = 2

Linke Seite:

x = 2 in 7x +11

= 72 +11

= 14 +11

= 25

= 5

Rechte Seite:

x = 2 in 5x +6 +1

= 52 +6 +1

= 10 +6 +1

= 16 +1

= 4 +1

= 5

Also 5 = 5

x = 2 ist somit eine Lösung !

L={ -1 ; 2 }