nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache Wurzelgleichung

Beispiel:

Löse die folgende Gleichung:

-x +1 = 2

Lösung einblenden
-x +1 = 2 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
-x +1 = 2 2
-x +1 = 4 | -1
-x = 3 |:(-1 )
x = -3

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -3

Linke Seite:

x = -3 in -x +1

= -( -3 ) +1

= 3 +1

= 4

= 2

Rechte Seite:

x = -3 in 2

= 2

Also 2 = 2

x = -3 ist somit eine Lösung !

L={ -3 }

Wurzelgleichung (-> quadr.)

Beispiel:

Löse die folgende Gleichung:

-4x -3 = x

Lösung einblenden
-4x -3 = x |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
-4x -3 = ( x ) 2
-4x -3 = x 2 | - x 2

- x 2 -4x -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +4 ± ( -4 ) 2 -4 · ( -1 ) · ( -3 ) 2( -1 )

x1,2 = +4 ± 16 -12 -2

x1,2 = +4 ± 4 -2

x1 = 4 + 4 -2 = 4 +2 -2 = 6 -2 = -3

x2 = 4 - 4 -2 = 4 -2 -2 = 2 -2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -4x -3 = 0 |: -1

x 2 +4x +3 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - 3 = 4 - 3 = 1

x1,2 = -2 ± 1

x1 = -2 - 1 = -3

x2 = -2 + 1 = -1

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -3

Linke Seite:

x = -3 in -4x -3

= -4( -3 ) -3

= 12 -3

= 9

= 3

Rechte Seite:

x = -3 in x

= -3

Also 3 ≠ -3

x = -3 ist somit keine Lösung !

Probe für x = -1

Linke Seite:

x = -1 in -4x -3

= -4( -1 ) -3

= 4 -3

= 1

= 1

Rechte Seite:

x = -1 in x

= -1

Also 1 ≠ -1

x = -1 ist somit keine Lösung !

L={}

Wurzelgleichung (2 Wurzeln, 2x quadr.)

Beispiel:

Löse die folgende Gleichung:

5x +14 = 3x +7 +1

Lösung einblenden
5x +14 = 3x +7 +1 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
5x +14 = ( 3x +7 +1 ) 2
5x +14 = 2 3x +7 +3x +8 | -5x -14 -2 3x +7
-2 3x +7 = -2x -6 |:(-2 )
3x +7 = x +3 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
3x +7 = ( x +3 ) 2
3x +7 = x 2 +6x +9 | - x 2 -6x -9

- x 2 -3x -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · ( -1 ) · ( -2 ) 2( -1 )

x1,2 = +3 ± 9 -8 -2

x1,2 = +3 ± 1 -2

x1 = 3 + 1 -2 = 3 +1 -2 = 4 -2 = -2

x2 = 3 - 1 -2 = 3 -1 -2 = 2 -2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -3x -2 = 0 |: -1

x 2 +3x +2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - 2 = 9 4 - 2 = 9 4 - 8 4 = 1 4

x1,2 = - 3 2 ± 1 4

x1 = - 3 2 - 1 2 = - 4 2 = -2

x2 = - 3 2 + 1 2 = - 2 2 = -1

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -2

Linke Seite:

x = -2 in 5x +14

= 5( -2 ) +14

= -10 +14

= 4

= 2

Rechte Seite:

x = -2 in 3x +7 +1

= 3( -2 ) +7 +1

= -6 +7 +1

= 1 +1

= 1 +1

= 2

Also 2 = 2

x = -2 ist somit eine Lösung !

Probe für x = -1

Linke Seite:

x = -1 in 5x +14

= 5( -1 ) +14

= -5 +14

= 9

= 3

Rechte Seite:

x = -1 in 3x +7 +1

= 3( -1 ) +7 +1

= -3 +7 +1

= 4 +1

= 2 +1

= 3

Also 3 = 3

x = -1 ist somit eine Lösung !

L={ -2 ; -1 }