nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache Wurzelgleichung

Beispiel:

Löse die folgende Gleichung:

-2 -3x +15 = -6

Lösung einblenden
-2 -3x +15 = -6 |:(-2 )
-3x +15 = 3 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
-3x +15 = 3 2
-3x +15 = 9 | -15
-3x = -6 |:(-3 )
x = 2

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = 2

Linke Seite:

x = 2 in -2 -3x +15

= -2 -32 +15

= -2 -6 +15

= -2 9

= -6

Rechte Seite:

x = 2 in -6

= -6

Also -6 = -6

x = 2 ist somit eine Lösung !

L={ 2 }

Wurzelgleichung (-> quadr.)

Beispiel:

Löse die folgende Gleichung:

2x +3 = x

Lösung einblenden
2x +3 = x |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
2x +3 = ( x ) 2
2x +3 = x 2 | - x 2

- x 2 +2x +3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · ( -1 ) · 3 2( -1 )

x1,2 = -2 ± 4 +12 -2

x1,2 = -2 ± 16 -2

x1 = -2 + 16 -2 = -2 +4 -2 = 2 -2 = -1

x2 = -2 - 16 -2 = -2 -4 -2 = -6 -2 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +2x +3 = 0 |: -1

x 2 -2x -3 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -3 ) = 1+ 3 = 4

x1,2 = 1 ± 4

x1 = 1 - 2 = -1

x2 = 1 + 2 = 3

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -1

Linke Seite:

x = -1 in 2x +3

= 2( -1 ) +3

= -2 +3

= 1

= 1

Rechte Seite:

x = -1 in x

= -1

Also 1 ≠ -1

x = -1 ist somit keine Lösung !

Probe für x = 3

Linke Seite:

x = 3 in 2x +3

= 23 +3

= 6 +3

= 9

= 3

Rechte Seite:

x = 3 in x

= 3

Also 3 = 3

x = 3 ist somit eine Lösung !

L={ 3 }

Wurzelgleichung (2 Wurzeln, 2x quadr.)

Beispiel:

Löse die folgende Gleichung:

9x +13 = 5x +5 +2

Lösung einblenden
9x +13 = 5x +5 +2 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
9x +13 = ( 5x +5 +2 ) 2
9x +13 = 4 5x +5 +5x +9 | -9x -13 -4 5x +5
-4 5x +5 = -4x -4 |:(-4 )
5x +5 = x +1 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
5x +5 = ( x +1 ) 2
5x +5 = x 2 +2x +1 | - x 2 -2x -1

- x 2 +3x +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -3 ± 3 2 -4 · ( -1 ) · 4 2( -1 )

x1,2 = -3 ± 9 +16 -2

x1,2 = -3 ± 25 -2

x1 = -3 + 25 -2 = -3 +5 -2 = 2 -2 = -1

x2 = -3 - 25 -2 = -3 -5 -2 = -8 -2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +3x +4 = 0 |: -1

x 2 -3x -4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - ( -4 ) = 9 4 + 4 = 9 4 + 16 4 = 25 4

x1,2 = 3 2 ± 25 4

x1 = 3 2 - 5 2 = - 2 2 = -1

x2 = 3 2 + 5 2 = 8 2 = 4

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -1

Linke Seite:

x = -1 in 9x +13

= 9( -1 ) +13

= -9 +13

= 4

= 2

Rechte Seite:

x = -1 in 5x +5 +2

= 5( -1 ) +5 +2

= -5 +5 +2

= 0 +2

= 0 +2

= 2

Also 2 = 2

x = -1 ist somit eine Lösung !

Probe für x = 4

Linke Seite:

x = 4 in 9x +13

= 94 +13

= 36 +13

= 49

= 7

Rechte Seite:

x = 4 in 5x +5 +2

= 54 +5 +2

= 20 +5 +2

= 25 +2

= 5 +2

= 7

Also 7 = 7

x = 4 ist somit eine Lösung !

L={ -1 ; 4 }