nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache Wurzelgleichung

Beispiel:

Löse die folgende Gleichung:

-2 -3x +31 = 8

Lösung einblenden
-2 -3x +31 = 8 |:(-2 )
-3x +31 = -4

Diese Gleichung kann keine Lösung haben, da eine Wurzel nie einen negativen Wert annehmen kann!

L={}

Wurzelgleichung (-> quadr.)

Beispiel:

Löse die folgende Gleichung:

x +6 = x

Lösung einblenden
x +6 = x |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
x +6 = ( x ) 2
x +6 = x 2 | - x 2

- x 2 + x +6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · ( -1 ) · 6 2( -1 )

x1,2 = -1 ± 1 +24 -2

x1,2 = -1 ± 25 -2

x1 = -1 + 25 -2 = -1 +5 -2 = 4 -2 = -2

x2 = -1 - 25 -2 = -1 -5 -2 = -6 -2 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 + x +6 = 0 |: -1

x 2 - x -6 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -6 ) = 1 4 + 6 = 1 4 + 24 4 = 25 4

x1,2 = 1 2 ± 25 4

x1 = 1 2 - 5 2 = - 4 2 = -2

x2 = 1 2 + 5 2 = 6 2 = 3

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -2

Linke Seite:

x = -2 in x +6

= -2 +6

= 4

= 2

Rechte Seite:

x = -2 in x

= -2

Also 2 ≠ -2

x = -2 ist somit keine Lösung !

Probe für x = 3

Linke Seite:

x = 3 in x +6

= 3 +6

= 9

= 3

Rechte Seite:

x = 3 in x

= 3

Also 3 = 3

x = 3 ist somit eine Lösung !

L={ 3 }

Wurzelgleichung (2 Wurzeln, 2x quadr.)

Beispiel:

Löse die folgende Gleichung:

5x +66 = 3x +43 +1

Lösung einblenden
5x +66 = 3x +43 +1 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
5x +66 = ( 3x +43 +1 ) 2
5x +66 = 2 3x +43 +3x +44 | -5x -66 -2 3x +43
-2 3x +43 = -2x -22 |:(-2 )
3x +43 = x +11 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
3x +43 = ( x +11 ) 2
3x +43 = x 2 +22x +121 | - x 2 -22x -121

- x 2 -19x -78 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +19 ± ( -19 ) 2 -4 · ( -1 ) · ( -78 ) 2( -1 )

x1,2 = +19 ± 361 -312 -2

x1,2 = +19 ± 49 -2

x1 = 19 + 49 -2 = 19 +7 -2 = 26 -2 = -13

x2 = 19 - 49 -2 = 19 -7 -2 = 12 -2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -19x -78 = 0 |: -1

x 2 +19x +78 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 19 2 ) 2 - 78 = 361 4 - 78 = 361 4 - 312 4 = 49 4

x1,2 = - 19 2 ± 49 4

x1 = - 19 2 - 7 2 = - 26 2 = -13

x2 = - 19 2 + 7 2 = - 12 2 = -6

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -13

Linke Seite:

x = -13 in 5x +66

= 5( -13 ) +66

= -65 +66

= 1

= 1

Rechte Seite:

x = -13 in 3x +43 +1

= 3( -13 ) +43 +1

= -39 +43 +1

= 4 +1

= 2 +1

= 3

Also 1 ≠ 3

x = -13 ist somit keine Lösung !

Probe für x = -6

Linke Seite:

x = -6 in 5x +66

= 5( -6 ) +66

= -30 +66

= 36

= 6

Rechte Seite:

x = -6 in 3x +43 +1

= 3( -6 ) +43 +1

= -18 +43 +1

= 25 +1

= 5 +1

= 6

Also 6 = 6

x = -6 ist somit eine Lösung !

L={ -6 }