nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache Wurzelgleichung

Beispiel:

Löse die folgende Gleichung:

-3 2x +17 = -9

Lösung einblenden
-3 2x +17 = -9 |:(-3 )
2x +17 = 3 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
2x +17 = 3 2
2x +17 = 9 | -17
2x = -8 |:2
x = -4

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -4

Linke Seite:

x = -4 in -3 2x +17

= -3 2( -4 ) +17

= -3 -8 +17

= -3 9

= -9

Rechte Seite:

x = -4 in -9

= -9

Also -9 = -9

x = -4 ist somit eine Lösung !

L={ -4 }

Wurzelgleichung (-> quadr.)

Beispiel:

Löse die folgende Gleichung:

-8x -15 = x

Lösung einblenden
-8x -15 = x |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
-8x -15 = ( x ) 2
-8x -15 = x 2 | - x 2

- x 2 -8x -15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +8 ± ( -8 ) 2 -4 · ( -1 ) · ( -15 ) 2( -1 )

x1,2 = +8 ± 64 -60 -2

x1,2 = +8 ± 4 -2

x1 = 8 + 4 -2 = 8 +2 -2 = 10 -2 = -5

x2 = 8 - 4 -2 = 8 -2 -2 = 6 -2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -8x -15 = 0 |: -1

x 2 +8x +15 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 4 2 - 15 = 16 - 15 = 1

x1,2 = -4 ± 1

x1 = -4 - 1 = -5

x2 = -4 + 1 = -3

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -5

Linke Seite:

x = -5 in -8x -15

= -8( -5 ) -15

= 40 -15

= 25

= 5

Rechte Seite:

x = -5 in x

= -5

Also 5 ≠ -5

x = -5 ist somit keine Lösung !

Probe für x = -3

Linke Seite:

x = -3 in -8x -15

= -8( -3 ) -15

= 24 -15

= 9

= 3

Rechte Seite:

x = -3 in x

= -3

Also 3 ≠ -3

x = -3 ist somit keine Lösung !

L={}

Wurzelgleichung (2 Wurzeln, 2x quadr.)

Beispiel:

Löse die folgende Gleichung:

8x +84 = 4x +40 +2

Lösung einblenden
8x +84 = 4x +40 +2 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
8x +84 = ( 4x +40 +2 ) 2
8x +84 = 4 4x +40 +4x +44 | -8x -84 -4 4x +40
-4 4x +40 = -4x -40 |:(-4 )
4x +40 = x +10 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
4x +40 = ( x +10 ) 2
4x +40 = x 2 +20x +100 | - x 2 -20x -100

- x 2 -16x -60 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +16 ± ( -16 ) 2 -4 · ( -1 ) · ( -60 ) 2( -1 )

x1,2 = +16 ± 256 -240 -2

x1,2 = +16 ± 16 -2

x1 = 16 + 16 -2 = 16 +4 -2 = 20 -2 = -10

x2 = 16 - 16 -2 = 16 -4 -2 = 12 -2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -16x -60 = 0 |: -1

x 2 +16x +60 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 8 2 - 60 = 64 - 60 = 4

x1,2 = -8 ± 4

x1 = -8 - 2 = -10

x2 = -8 + 2 = -6

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -10

Linke Seite:

x = -10 in 8x +84

= 8( -10 ) +84

= -80 +84

= 4

= 2

Rechte Seite:

x = -10 in 4x +40 +2

= 4( -10 ) +40 +2

= -40 +40 +2

= 0 +2

= 0 +2

= 2

Also 2 = 2

x = -10 ist somit eine Lösung !

Probe für x = -6

Linke Seite:

x = -6 in 8x +84

= 8( -6 ) +84

= -48 +84

= 36

= 6

Rechte Seite:

x = -6 in 4x +40 +2

= 4( -6 ) +40 +2

= -24 +40 +2

= 16 +2

= 4 +2

= 6

Also 6 = 6

x = -6 ist somit eine Lösung !

L={ -10 ; -6 }