nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache Wurzelgleichung

Beispiel:

Löse die folgende Gleichung:

- 2x +3 = -3

Lösung einblenden
- 2x +3 = -3 |:(-1 )
2x +3 = 3 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
2x +3 = 3 2
2x +3 = 9 | -3
2x = 6 |:2
x = 3

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = 3

Linke Seite:

x = 3 in - 2x +3

= - 23 +3

= - 6 +3

= - 9

= -3

Rechte Seite:

x = 3 in -3

= -3

Also -3 = -3

x = 3 ist somit eine Lösung !

L={ 3 }

Wurzelgleichung (-> quadr.)

Beispiel:

Löse die folgende Gleichung:

8x +60 = -2x

Lösung einblenden
8x +60 = -2x |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
8x +60 = ( -2x ) 2
8x +60 = 4 x 2 | -4 x 2
-4 x 2 +8x +60 = 0 |:4

- x 2 +2x +15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · ( -1 ) · 15 2( -1 )

x1,2 = -2 ± 4 +60 -2

x1,2 = -2 ± 64 -2

x1 = -2 + 64 -2 = -2 +8 -2 = 6 -2 = -3

x2 = -2 - 64 -2 = -2 -8 -2 = -10 -2 = 5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +2x +15 = 0 |: -1

x 2 -2x -15 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -15 ) = 1+ 15 = 16

x1,2 = 1 ± 16

x1 = 1 - 4 = -3

x2 = 1 + 4 = 5

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -3

Linke Seite:

x = -3 in 8x +60

= 8( -3 ) +60

= -24 +60

= 36

= 6

Rechte Seite:

x = -3 in -2x

= -2( -3 )

= 6

Also 6 = 6

x = -3 ist somit eine Lösung !

Probe für x = 5

Linke Seite:

x = 5 in 8x +60

= 85 +60

= 40 +60

= 100

= 10

Rechte Seite:

x = 5 in -2x

= -25

= -10

Also 10 ≠ -10

x = 5 ist somit keine Lösung !

L={ -3 }

Wurzelgleichung (2 Wurzeln, 2x quadr.)

Beispiel:

Löse die folgende Gleichung:

3x +3 = x +2 +1

Lösung einblenden
3x +3 = x +2 +1 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
3x +3 = ( x +2 +1 ) 2
3x +3 = 2 x +2 + x +3 | -3x -3 -2 x +2
-2 x +2 = -2x |:(-2 )
x +2 = x |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
x +2 = ( x ) 2
x +2 = x 2 | - x 2

- x 2 + x +2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · ( -1 ) · 2 2( -1 )

x1,2 = -1 ± 1 +8 -2

x1,2 = -1 ± 9 -2

x1 = -1 + 9 -2 = -1 +3 -2 = 2 -2 = -1

x2 = -1 - 9 -2 = -1 -3 -2 = -4 -2 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 + x +2 = 0 |: -1

x 2 - x -2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = 1 2 ± 9 4

x1 = 1 2 - 3 2 = - 2 2 = -1

x2 = 1 2 + 3 2 = 4 2 = 2

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -1

Linke Seite:

x = -1 in 3x +3

= 3( -1 ) +3

= -3 +3

= 0

= 0

Rechte Seite:

x = -1 in x +2 +1

= -1 +2 +1

= 1 +1

= 1 +1

= 2

Also 0 ≠ 2

x = -1 ist somit keine Lösung !

Probe für x = 2

Linke Seite:

x = 2 in 3x +3

= 32 +3

= 6 +3

= 9

= 3

Rechte Seite:

x = 2 in x +2 +1

= 2 +2 +1

= 4 +1

= 2 +1

= 3

Also 3 = 3

x = 2 ist somit eine Lösung !

L={ 2 }