nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache Wurzelgleichung

Beispiel:

Löse die folgende Gleichung:

-x +6 = 2

Lösung einblenden
-x +6 = 2 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
-x +6 = 2 2
-x +6 = 4 | -6
-x = -2 |:(-1 )
x = 2

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = 2

Linke Seite:

x = 2 in -x +6

= -2 +6

= 4

= 2

Rechte Seite:

x = 2 in 2

= 2

Also 2 = 2

x = 2 ist somit eine Lösung !

L={ 2 }

Wurzelgleichung (-> quadr.)

Beispiel:

Löse die folgende Gleichung:

x +12 = x

Lösung einblenden
x +12 = x |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
x +12 = ( x ) 2
x +12 = x 2 | - x 2

- x 2 + x +12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · ( -1 ) · 12 2( -1 )

x1,2 = -1 ± 1 +48 -2

x1,2 = -1 ± 49 -2

x1 = -1 + 49 -2 = -1 +7 -2 = 6 -2 = -3

x2 = -1 - 49 -2 = -1 -7 -2 = -8 -2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 + x +12 = 0 |: -1

x 2 - x -12 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -12 ) = 1 4 + 12 = 1 4 + 48 4 = 49 4

x1,2 = 1 2 ± 49 4

x1 = 1 2 - 7 2 = - 6 2 = -3

x2 = 1 2 + 7 2 = 8 2 = 4

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -3

Linke Seite:

x = -3 in x +12

= -3 +12

= 9

= 3

Rechte Seite:

x = -3 in x

= -3

Also 3 ≠ -3

x = -3 ist somit keine Lösung !

Probe für x = 4

Linke Seite:

x = 4 in x +12

= 4 +12

= 16

= 4

Rechte Seite:

x = 4 in x

= 4

Also 4 = 4

x = 4 ist somit eine Lösung !

L={ 4 }

Wurzelgleichung (2 Wurzeln, 2x quadr.)

Beispiel:

Löse die folgende Gleichung:

5x +11 = x +3 +2

Lösung einblenden
5x +11 = x +3 +2 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
5x +11 = ( x +3 +2 ) 2
5x +11 = 4 x +3 + x +7 | -5x -11 -4 x +3
-4 x +3 = -4x -4 |:(-4 )
x +3 = x +1 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
x +3 = ( x +1 ) 2
x +3 = x 2 +2x +1 | - x 2 -2x -1

- x 2 - x +2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · ( -1 ) · 2 2( -1 )

x1,2 = +1 ± 1 +8 -2

x1,2 = +1 ± 9 -2

x1 = 1 + 9 -2 = 1 +3 -2 = 4 -2 = -2

x2 = 1 - 9 -2 = 1 -3 -2 = -2 -2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 - x +2 = 0 |: -1

x 2 + x -2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = - 1 2 ± 9 4

x1 = - 1 2 - 3 2 = - 4 2 = -2

x2 = - 1 2 + 3 2 = 2 2 = 1

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -2

Linke Seite:

x = -2 in 5x +11

= 5( -2 ) +11

= -10 +11

= 1

= 1

Rechte Seite:

x = -2 in x +3 +2

= -2 +3 +2

= 1 +2

= 1 +2

= 3

Also 1 ≠ 3

x = -2 ist somit keine Lösung !

Probe für x = 1

Linke Seite:

x = 1 in 5x +11

= 51 +11

= 5 +11

= 16

= 4

Rechte Seite:

x = 1 in x +3 +2

= 1 +3 +2

= 4 +2

= 2 +2

= 4

Also 4 = 4

x = 1 ist somit eine Lösung !

L={ 1 }