nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache Wurzelgleichung

Beispiel:

Löse die folgende Gleichung:

-3 3x +28 = -12

Lösung einblenden
-3 3x +28 = -12 |:(-3 )
3x +28 = 4 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
3x +28 = 4 2
3x +28 = 16 | -28
3x = -12 |:3
x = -4

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -4

Linke Seite:

x = -4 in -3 3x +28

= -3 3( -4 ) +28

= -3 -12 +28

= -3 16

= -12

Rechte Seite:

x = -4 in -12

= -12

Also -12 = -12

x = -4 ist somit eine Lösung !

L={ -4 }

Wurzelgleichung (-> quadr.)

Beispiel:

Löse die folgende Gleichung:

-7x -12 = x

Lösung einblenden
-7x -12 = x |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
-7x -12 = ( x ) 2
-7x -12 = x 2 | - x 2

- x 2 -7x -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +7 ± ( -7 ) 2 -4 · ( -1 ) · ( -12 ) 2( -1 )

x1,2 = +7 ± 49 -48 -2

x1,2 = +7 ± 1 -2

x1 = 7 + 1 -2 = 7 +1 -2 = 8 -2 = -4

x2 = 7 - 1 -2 = 7 -1 -2 = 6 -2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -7x -12 = 0 |: -1

x 2 +7x +12 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 7 2 ) 2 - 12 = 49 4 - 12 = 49 4 - 48 4 = 1 4

x1,2 = - 7 2 ± 1 4

x1 = - 7 2 - 1 2 = - 8 2 = -4

x2 = - 7 2 + 1 2 = - 6 2 = -3

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -4

Linke Seite:

x = -4 in -7x -12

= -7( -4 ) -12

= 28 -12

= 16

= 4

Rechte Seite:

x = -4 in x

= -4

Also 4 ≠ -4

x = -4 ist somit keine Lösung !

Probe für x = -3

Linke Seite:

x = -3 in -7x -12

= -7( -3 ) -12

= 21 -12

= 9

= 3

Rechte Seite:

x = -3 in x

= -3

Also 3 ≠ -3

x = -3 ist somit keine Lösung !

L={}

Wurzelgleichung (2 Wurzeln, 2x quadr.)

Beispiel:

Löse die folgende Gleichung:

8x +40 = 4x +16 +2

Lösung einblenden
8x +40 = 4x +16 +2 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
8x +40 = ( 4x +16 +2 ) 2
8x +40 = 4 4x +16 +4x +20 | -8x -40 -4 4x +16
-4 4x +16 = -4x -20 |:(-4 )
4x +16 = x +5 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
4x +16 = ( x +5 ) 2
4x +16 = x 2 +10x +25 | - x 2 -10x -25

- x 2 -6x -9 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +6 ± ( -6 ) 2 -4 · ( -1 ) · ( -9 ) 2( -1 )

x1,2 = +6 ± 36 -36 -2

x1,2 = +6 ± 0 -2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 6 -2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -6x -9 = 0 |: -1

x 2 +6x +9 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 3 2 - 9 = 9 - 9 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -3 ± 0 = -3

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -3

Linke Seite:

x = -3 in 8x +40

= 8( -3 ) +40

= -24 +40

= 16

= 4

Rechte Seite:

x = -3 in 4x +16 +2

= 4( -3 ) +16 +2

= -12 +16 +2

= 4 +2

= 2 +2

= 4

Also 4 = 4

x = -3 ist somit eine Lösung !

L={ -3 }