Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
alle Asymptoten bestimmen
Beispiel:
Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) =
senkrechte Asymptoten
Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.
= | | | ||
= | | | ||
x1 | = |
|
=
|
x2 | = |
|
=
|
also Definitionsmenge D=R\{
Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:
Wir untersuchen nun das Verhalten für x →
Für x
Für x
Die Funktion besitzt folglich eine senkrechte Asymptote bei x=
Wir untersuchen nun das Verhalten für x →
Für x
Für x
Die Funktion besitzt folglich eine senkrechte Asymptote bei x=
waagrechte Asymptoten
Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:
So können wir einfach das Verhalten für x→ ±∞ untersuchen:
Für x → ±∞ ⇒ f(x)=
Die Funktion besitzt folglich eine waagrechte Asymptote bei y =
senkrechte Asymptote (einfach)
Beispiel:
Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) =
Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.
|
= | |
|
|
|
= |
|
also Definitionsmenge D=R\{
Wir untersuchen nun das Verhalten für x →
Für x
Für x
Die Funktion besitzt folglich eine senkrechte Asymptote bei x=
senkrechte Asymptoten
Beispiel:
Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) =
Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.
|
= | ||
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
|
= | |
|
|
|
= | |ln(⋅) | |
|
= | |: |
|
x1 | = | ≈ 0 |
2. Fall:
|
= |
Diese Gleichung hat keine Lösung!
also Definitionsmenge D=R\{
Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:
Wir untersuchen nun das Verhalten für x →
Für x
Für x
Die Funktion besitzt folglich eine senkrechte Asymptote bei x=
Polstellen und hebbare Def.-Lücken
Beispiel:
Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) =
Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.
|
= | ||
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
x1 | = |
2. Fall:
|
= | |
|
|
x2 | = |
|
also Definitionsmenge D=R\{
Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:
Wir untersuchen nun das Verhalten für x →
Für x
Für x
Die Funktion besitzt folglich eine senkrechte Asymptote bei x=
Wir untersuchen nun das Verhalten für x →
Für x
Für x
Die Funktion besitzt folglich eine senkrechte Asymptote bei x=
Term mit Asymptoten bestimmen
Beispiel:
Bestimme einen Funktionsterm dessen Graph bei x= 3 eine senkrechte Asymptote ohne VZW (beides mal f(x) → +∞), bei y = 1 eine waagrechte Asymptote und keine Nullstelle besitzt.
Zuerst der Nenner
Aufgrund der senkrechten Asymptote bei x=3 (ohne VZW (beides mal f(x) → +∞)) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:
Nullstellen in den Zähler
Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also
Jetzt testen wir
Da im Nenner eine quadratische Funktion ist, brauchen wir im Zähler auch eine quadratische Funktion, die ja aber keine Nullstelle haben darf.
(z.B. x²+1). Außerdem muss der Koeffizient vor dem x² in unserem Fall 1 sein, damit die waagrechte Asymptote (nach Ausklammern und Kürzen von
x²) =1 wird. Dies funktioniert z.B. mit dem Zähler
waagrechte Asymptoten
Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:
Vorher sollte man allerdings noch ausmultiplizien.
So können wir einfach das Verhalten für x→ ±∞ untersuchen:
Für x → ±∞ ⇒ f(x)=
Mit f(x)=
Bruchterm mit Asymptoten bestimmen
Beispiel:
Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= -3 eine senkrechte Asymptote ohne VZW (beides mal f(x) → +∞), bei y = 0 eine waagrechte Asymptote und eine Nullstelle in N(0|0) besitzt.
Zuerst der Nenner
Aufgrund der senkrechten Asymptote bei x=-3 (ohne VZW (beides mal f(x) → +∞)) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:
Nullstellen in den Zähler
Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also
Jetzt testen wir
waagrechte Asymptoten
Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:
Vorher sollte man allerdings noch ausmultiplizien.
So können wir einfach das Verhalten für x→ ±∞ untersuchen:
Für x → ±∞ ⇒ f(x)=
Mit f(x)=
waagrechte Asymptoten
Beispiel:
Bestimme das Verhalten der Funktion f mit f(x) =
Für x → -∞ ⇒ f(x)=
Für x → ∞ ⇒ f(x)=
Die Funktion besitzt folglich eine waagrechte Asymptote bei y =
e-Fkt'n Verhalten → ∞
Beispiel:
Bestimme das Verhalten der Funktion f mit f(x) =
Für x → -∞ ⇒ f(x)=
Für x → ∞ ⇒ f(x)=
Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y =