nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = -x +5 - x 2 -2x +8

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

- x 2 -2x +8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · ( -1 ) · 8 2( -1 )

x1,2 = +2 ± 4 +32 -2

x1,2 = +2 ± 36 -2

x1 = 2 + 36 -2 = 2 +6 -2 = 8 -2 = -4

x2 = 2 - 36 -2 = 2 -6 -2 = -4 -2 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -2x +8 = 0 |: -1

x 2 +2x -8 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -8 ) = 1+ 8 = 9

x1,2 = -1 ± 9

x1 = -1 - 3 = -4

x2 = -1 + 3 = 2

also Definitionsmenge D=R\{ -4 ; 2 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-x +5 - x 2 -2x +8 = -x +5 - ( x +4 ) · ( x -2 )

Wir untersuchen nun das Verhalten für x → -4 (von links und von rechts)

Für x   x<-4   -4 - ⇒ f(x)= -x +5 - ( x +4 ) · ( x -2 ) +9 -1 ⋅"-0" ⋅ (-6) = +9 "-0" -

Für x   x>-4   -4 + ⇒ f(x)= -x +5 - ( x +4 ) · ( x -2 ) +9 -1 ⋅"+0" ⋅ (-6) = +9 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -4 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 2 (von links und von rechts)

Für x   x<2   2 - ⇒ f(x)= -x +5 - ( x +4 ) · ( x -2 ) +3 -1 ⋅(+6) ⋅ "-0" = +3 "+0"

Für x   x>2   2 + ⇒ f(x)= -x +5 - ( x +4 ) · ( x -2 ) +3 -1 ⋅(+6) ⋅ "+0" = +3 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 2 mit einem VZW von + nach -

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

-x +5 - x 2 -2x +8 = x 2 · ( - 1 x + 5 x 2 ) x 2 · ( -1 - 2 x + 8 x 2 ) = - 1 x + 5 x 2 -1 - 2 x + 8 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -x +5 - x 2 -2x +8 = - 1 x + 5 x 2 -1 - 2 x + 8 x 2 0+0 -1 +0+0 = 0 -1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 4x +1 e 3x - e x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

e 3x - e x = 0
( e 2x -1 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 2x -1 = 0 | +1
e 2x = 1 |ln(⋅)
2x = 0 |:2
x1 = 0 ≈ 0

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

also Definitionsmenge D=R\{0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

4x +1 e 3x - e x = 4x +1 ( e 2x -1 ) · e x

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= 4x +1 ( e 2x -1 ) · e x +1 "-0" ⋅ (+1) = +1 "-0" -

Für x   x>0   0 + ⇒ f(x)= 4x +1 ( e 2x -1 ) · e x +1 "+0" ⋅ (+1) = +1 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von - nach +

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -4x +4 ( x +1 ) ( x -4 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x +1 ) ( x -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +1 = 0 | -1
x1 = -1

2. Fall:

x -4 = 0 | +4
x2 = 4

also Definitionsmenge D=R\{ -1 ; 4 }

Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= -4x +4 ( x +1 ) ( x -4 ) +8 "-0" ⋅ (-5) = +8 "+0"

Für x   x>-1   -1 + ⇒ f(x)= -4x +4 ( x +1 ) ( x -4 ) +8 "+0" ⋅ (-5) = +8 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 4 (von links und von rechts)

Für x   x<4   4 - ⇒ f(x)= -4x +4 ( x +1 ) ( x -4 ) -12 (+5) ⋅ "-0" = -12 "-0"

Für x   x>4   4 + ⇒ f(x)= -4x +4 ( x +1 ) ( x -4 ) -12 (+5) ⋅ "+0" = -12 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 4 mit einem VZW von + nach -

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -2x +2 ( x -1 ) ( x -3 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x -1 ) ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -1 = 0 | +1
x1 = 1

2. Fall:

x -3 = 0 | +3
x2 = 3

also Definitionsmenge D=R\{ 1 ; 3 }

Wir untersuchen das Verhalten für x → 1 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x -1) erkennen, die wir dann kürzen können:

-2x +2 ( x -1 ) ( x -3 ) = -2x +2 ( x -1 ) ( x -3 ) = -2 1 · ( x -3 )

Für x → 1 ⇒ f(x)= -2x +2 ( x -1 ) ( x -3 ) = -2 1 · ( x -3 ) -2 1 · ( 1 -3 ) = 1

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(1 | 1 )


Wir untersuchen nun das Verhalten für x → 3 (von links und von rechts)

Für x   x<3   3 - ⇒ f(x)= -2x +2 ( x -1 ) ( x -3 ) -4 (+2) ⋅ "-0" = -4 "-0"

Für x   x>3   3 + ⇒ f(x)= -2x +2 ( x -1 ) ( x -3 ) -4 (+2) ⋅ "+0" = -4 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 3 mit einem VZW von + nach -

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= 0 eine senkrechte Asymptote ohne VZW (beides mal f(x) → +∞), bei y = 3 eine waagrechte Asymptote und eine Nullstelle in N(3|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=0 (ohne VZW (beides mal f(x) → +∞)) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:

? ( x +0 ) 2

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x -3 ) x 2

Jetzt testen wir x -3 ( x +0 ) 2 auf die waagrechte Asymptote:

Da im Nenner eine quadratische Funktion ist, im Zähler auch nur eine lineare Funktion, muss die Funktion für x → ∞ gegen 0 laufen. Um diesen Grenzwert aber auf 3 zu bringen, quadrieren wir einfach den Linearterm des Zählers und geben im als Koeffizient 3. Jetzt stimmt auch die waagrechte Asympzote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
3 ( x -3 ) 2 ( x +0 ) 2 = 3 x 2 -18x +27 x 2

3 x 2 -18x +27 x 2 = x 2 · ( 3 - 18 x + 27 x 2 ) x 2 · 1 = 3 - 18 x + 27 x 2 1

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 3 x 2 -18x +27 x 2 = 3 - 18 x + 27 x 2 1 3 +0+0 1 = 3 1 = 3

Mit f(x)= 3 ( x -3 ) 2 ( x +0 ) 2 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x1 = -3 und bei x2 = 0 jeweils eine senkrechte Asymptote, bei y = -3 eine waagrechte Asymptote und eine Nullstelle in N(-5|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptoten bei x1=-3 und x2=0 müssen die entsprechenden Linearterme in den Nenner unserer gesuchten Funktion, also:

? ( x +3 ) · ( x +0 ) = ? x 2 +3x

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x +5 ) x 2 +3x

Jetzt testen wir x +5 ( x +3 ) · ( x +0 ) auf die waagrechte Asymptote:

Da im Nenner eine quadratische Funktion ist, im Zähler auch nur eine lineare Funktion, muss die Funktion für x → ∞ gegen 0 laufen. Um diesen Grenzwert aber auf -3 zu bringen, quadrieren wir einfach den Linearterm des Zählers und geben im als Koeffizient -3. Jetzt stimmt auch die waagrechte Asympzote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-3 ( x +5 ) 2 ( x +3 ) · ( x +0 ) = -3 x 2 -30x -75 x 2 +3x

-3 x 2 -30x -75 x 2 +3x = x 2 · ( -3 - 30 x - 75 x 2 ) x 2 · ( 1 + 3 x ) = -3 - 30 x - 75 x 2 1 + 3 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -3 x 2 -30x -75 x 2 +3x = -3 - 30 x - 75 x 2 1 + 3 x -3 +0+0 1 +0 = -3 1 = -3

Mit f(x)= -3 ( x +5 ) 2 ( x +3 ) · ( x +0 ) sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = - 5 x 3 -3 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= - 5 x 3 -3 0 -3 -3

Für x → ∞ ⇒ f(x)= - 5 x 3 -3 0 -3 -3

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = -3 .

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = x 2 · e -0,5x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= x 2 · e -0,5x ·

Für x → ∞ ⇒ f(x)= x 2 · e -0,5x · 0 0( Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen 0 als der erste Faktor gegen und setzt sich deswegen durch)

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 0 (x-Achse).