nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = -5 x 3 -4 x 2 -2x +5 ( 2 + x ) ( x -3 )

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( 2 + x ) ( x -3 ) = 0
( x +2 ) ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +2 = 0 | -2
x1 = -2

2. Fall:

x -3 = 0 | +3
x2 = 3

also Definitionsmenge D=R\{ -2 ; 3 }

Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= -5 x 3 -4 x 2 -2x +5 ( 2 + x ) ( x -3 ) +33 "-0" ⋅ (-5) = +33 "+0"

Für x   x>-2   -2 + ⇒ f(x)= -5 x 3 -4 x 2 -2x +5 ( 2 + x ) ( x -3 ) +33 "+0" ⋅ (-5) = +33 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 3 (von links und von rechts)

Für x   x<3   3 - ⇒ f(x)= -5 x 3 -4 x 2 -2x +5 ( 2 + x ) ( x -3 ) -172 (+5) ⋅ "-0" = -172 "-0"

Für x   x>3   3 + ⇒ f(x)= -5 x 3 -4 x 2 -2x +5 ( 2 + x ) ( x -3 ) -172 (+5) ⋅ "+0" = -172 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 3 mit einem VZW von + nach -

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-5 x 3 -4 x 2 -2x +5 ( 2 + x ) ( x -3 ) = -5 x 3 -4 x 2 -2x +5 x 2 - x -6

-5 x 3 -4 x 2 -2x +5 x 2 - x -6 = x 2 · ( -5x -4 - 2 x + 5 x 2 ) x 2 · ( 1 - 1 x - 6 x 2 ) = -5x -4 - 2 x + 5 x 2 1 - 1 x - 6 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -5 x 3 -4 x 2 -2x +5 x 2 - x -6 = -5x -4 - 2 x + 5 x 2 1 - 1 x - 6 x 2 - -4 +0+0 1 +0+0 = -

Die Funktion besitzt folglich keine waagrechte Asymptote.

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = x -4 x -1

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x -1 = 0 | +1
x = 1

also Definitionsmenge D=R\{ 1 }

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= x -4 x -1 -3 "-0"

Für x   x>1   1 + ⇒ f(x)= x -4 x -1 -3 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 mit einem VZW von + nach -

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 4 x 2 +3x +3 e 2x - e x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

e 2x - e x = 0
( e x -1 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e x -1 = 0 | +1
e x = 1 |ln(⋅)
x1 = 0 ≈ 0

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

also Definitionsmenge D=R\{0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

4 x 2 +3x +3 e 2x - e x = 4 x 2 +3x +3 ( e x -1 ) · e x

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= 4 x 2 +3x +3 ( e x -1 ) · e x +3 "-0" ⋅ (+1) = +3 "-0" -

Für x   x>0   0 + ⇒ f(x)= 4 x 2 +3x +3 ( e x -1 ) · e x +3 "+0" ⋅ (+1) = +3 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von - nach +

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 2x +2 x 2 + x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 + x = 0
x ( x +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +1 = 0 | -1
x2 = -1

also Definitionsmenge D=R\{ -1 ; 0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

2x +2 x 2 + x = 2x +2 x · ( x +1 )

Wir untersuchen das Verhalten für x → -1 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x +1) erkennen, die wir dann kürzen können:

2x +2 x · ( x +1 ) = 2x +2 x · ( x +1 ) = 2 x

Für x → -1 ⇒ f(x)= 2x +2 x · ( x +1 ) = 2 x 2 ( -1 ) = -2

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(-1 | -2 )


Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= 2x +2 x · ( x +1 ) +2 "-0" ⋅ (+1) = +2 "-0" -

Für x   x>0   0 + ⇒ f(x)= 2x +2 x · ( x +1 ) +2 "+0" ⋅ (+1) = +2 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von - nach +

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= -3 eine senkrechte Asymptote mit einem VZW von + nach -, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-3 (mit einem VZW von + nach -) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x +3

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x +3 , passen bereits die Definitionslücke bei x = -3 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x +3 = x · 1 x x · ( 1 + 3 x ) = 1 x 1 + 3 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x +3 = 1 x 1 + 3 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<-3   -3- ⇒ f(x)= 1 x +3 +1 "-0" -

Für x   x>-3   -3+ ⇒ f(x)= 1 x +3 +1 "+0"

Wir haben also den falschen VZW. Wenn wir aber den Zähler mit -1 multiplizieren, bekommen wir gerade das entgegengesetzte Verhalten in der Nähe der Definitionslücke.

Mit f(x)= -1 x +3 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x1 = -1 und bei x2 = -4 jeweils eine senkrechte Asymptote, bei y = -1 eine waagrechte Asymptote und eine Nullstelle in N(-2|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptoten bei x1=-1 und x2=-4 müssen die entsprechenden Linearterme in den Nenner unserer gesuchten Funktion, also:

? ( x +1 ) · ( x +4 ) = ? x 2 +5x +4

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x +2 ) x 2 +5x +4

Jetzt testen wir x +2 ( x +1 ) · ( x +4 ) auf die waagrechte Asymptote:

Da im Nenner eine quadratische Funktion ist, im Zähler auch nur eine lineare Funktion, muss die Funktion für x → ∞ gegen 0 laufen. Um diesen Grenzwert aber auf -1 zu bringen, quadrieren wir einfach den Linearterm des Zählers und geben im als Koeffizient -1. Jetzt stimmt auch die waagrechte Asympzote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
- ( x +2 ) 2 ( x +1 ) · ( x +4 ) = - x 2 -4x -4 x 2 +5x +4

- x 2 -4x -4 x 2 +5x +4 = x 2 · ( -1 - 4 x - 4 x 2 ) x 2 · ( 1 + 5 x + 4 x 2 ) = -1 - 4 x - 4 x 2 1 + 5 x + 4 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= - x 2 -4x -4 x 2 +5x +4 = -1 - 4 x - 4 x 2 1 + 5 x + 4 x 2 -1 +0+0 1 +0+0 = -1 1 = -1

Mit f(x)= - ( x +2 ) 2 ( x +1 ) · ( x +4 ) sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e -0,5x -x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e -0,5x -x ( Der Exponentialterm im Zähler wächst sehr viel schneller gegen ∞ bzw. gegen 0 als der Nenner und setzt sich deswegen durch)

Für x → ∞ ⇒ f(x)= e -0,5x -x 0 - 0

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e 0,4x -2x -2 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e 0,4x -2x -2 0 -2 0 -2 -2

Für x → ∞ ⇒ f(x)= e 0,4x -2x -2 - -2 - -2 - e 0,4x -2x - : ( Der Exponentialterm im Zähler wächst sehr viel schneller gegen ∞ bzw. gegen 0 als der Nenner und setzt sich deswegen durch)

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = -2 .