nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = -3x -1 x 2 -9

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 -9 = 0 | +9
x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

also Definitionsmenge D=R\{ -3 ; 3 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-3x -1 x 2 -9 = -3x -1 ( x +3 ) · ( x -3 )

Wir untersuchen nun das Verhalten für x → -3 (von links und von rechts)

Für x   x<-3   -3 - ⇒ f(x)= -3x -1 ( x +3 ) · ( x -3 ) +8 "-0" ⋅ (-6) = +8 "+0"

Für x   x>-3   -3 + ⇒ f(x)= -3x -1 ( x +3 ) · ( x -3 ) +8 "+0" ⋅ (-6) = +8 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -3 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 3 (von links und von rechts)

Für x   x<3   3 - ⇒ f(x)= -3x -1 ( x +3 ) · ( x -3 ) -10 (+6) ⋅ "-0" = -10 "-0"

Für x   x>3   3 + ⇒ f(x)= -3x -1 ( x +3 ) · ( x -3 ) -10 (+6) ⋅ "+0" = -10 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 3 mit einem VZW von + nach -

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

-3x -1 x 2 -9 = x 2 · ( - 3 x - 1 x 2 ) x 2 · ( 1 - 9 x 2 ) = - 3 x - 1 x 2 1 - 9 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -3x -1 x 2 -9 = - 3 x - 1 x 2 1 - 9 x 2 0+0 1 +0 = 0 1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 2 x -2

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x -2 = 0 | +2
x = 2

also Definitionsmenge D=R\{ 2 }

Wir untersuchen nun das Verhalten für x → 2 (von links und von rechts)

Für x   x<2   2 - ⇒ f(x)= 2 x -2 +2 "-0" -

Für x   x>2   2 + ⇒ f(x)= 2 x -2 +2 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 2 mit einem VZW von - nach +

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -x +5 e 3x - e x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

e 3x - e x = 0
( e 2x -1 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 2x -1 = 0 | +1
e 2x = 1 |ln(⋅)
2x = 0 |:2
x1 = 0 ≈ 0

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

also Definitionsmenge D=R\{0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-x +5 e 3x - e x = -x +5 ( e 2x -1 ) · e x

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= -x +5 ( e 2x -1 ) · e x +5 "-0" ⋅ (+1) = +5 "-0" -

Für x   x>0   0 + ⇒ f(x)= -x +5 ( e 2x -1 ) · e x +5 "+0" ⋅ (+1) = +5 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von - nach +

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -2x +4 x 2 +2x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 +2x = 0
x ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +2 = 0 | -2
x2 = -2

also Definitionsmenge D=R\{ -2 ; 0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-2x +4 x 2 +2x = -2x +4 x · ( x +2 )

Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= -2x +4 x · ( x +2 ) +8 (-2) ⋅ "-0" = +8 "+0"

Für x   x>-2   -2 + ⇒ f(x)= -2x +4 x · ( x +2 ) +8 (-2) ⋅ "+0" = +8 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= -2x +4 x · ( x +2 ) +4 "-0" ⋅ (+2) = +4 "-0" -

Für x   x>0   0 + ⇒ f(x)= -2x +4 x · ( x +2 ) +4 "+0" ⋅ (+2) = +4 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von - nach +

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= 3 eine senkrechte Asymptote ohne VZW (beides mal f(x) → +∞), bei y = 1 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=3 (ohne VZW (beides mal f(x) → +∞)) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:

? ( x -3 ) 2 = ? x 2 -6x +9

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( 1 ) x 2 -6x +9

Jetzt testen wir 1 ( x -3 ) 2 auf die waagrechte Asymptote:

Da im Nenner eine quadratische Funktion ist, brauchen wir im Zähler auch eine quadratische Funktion, die ja aber keine Nullstelle haben darf. (z.B. x²+1). Außerdem muss der Koeffizient vor dem x² in unserem Fall 1 sein, damit die waagrechte Asymptote (nach Ausklammern und Kürzen von x²) =1 wird. Dies funktioniert z.B. mit dem Zähler x 2 +1

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
x 2 +1 ( x -3 ) 2 = x 2 +1 x 2 -6x +9

x 2 +1 x 2 -6x +9 = x 2 · ( 1 + 1 x 2 ) x 2 · ( 1 - 6 x + 9 x 2 ) = 1 + 1 x 2 1 - 6 x + 9 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= x 2 +1 x 2 -6x +9 = 1 + 1 x 2 1 - 6 x + 9 x 2 1 +0 1 +0+0 = 1 1 = 1

Mit f(x)= x 2 +1 ( x -3 ) 2 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= -3 eine senkrechte Asymptote ohne VZW (beides mal f(x) → +∞), bei y = 0 eine waagrechte Asymptote und eine Nullstelle in N(0|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-3 (ohne VZW (beides mal f(x) → +∞)) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:

? ( x +3 ) 2 = ? x 2 +6x +9

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x +0 ) x 2 +6x +9 = ?⋅ ( x ) x 2 +6x +9

Jetzt testen wir x ( x +3 ) 2 auf die waagrechte Asymptote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
x ( x +3 ) 2 = x x 2 +6x +9

x x 2 +6x +9 = x 2 · 1 x x 2 · ( 1 + 6 x + 9 x 2 ) = 1 x 1 + 6 x + 9 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= x x 2 +6x +9 = 1 x 1 + 6 x + 9 x 2 0 1 +0+0 = 0 1 = 0

Mit f(x)= -x ( x +3 ) 2 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = - 2 x +1 + 2 x 3 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= - 2 x +1 + 2 x 3 0 +1 +0 1

Für x → ∞ ⇒ f(x)= - 2 x +1 + 2 x 3 0 +1 +0 1

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 1 .

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e -0,2x -5 x 2 -4 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e -0,2x -5 x 2 -4 - -4 - -4 - e -0,2x -5 x 2 - : ( Der Exponentialterm im Zähler wächst sehr viel schneller gegen ∞ bzw. gegen 0 als der Nenner und setzt sich deswegen durch)

Für x → ∞ ⇒ f(x)= e -0,2x -5 x 2 -4 0 - -4 0 -4 -4

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = -4 .