nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = -5 x 2 + x +1 ( -2 + x ) ( x +4 )

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( -2 + x ) ( x +4 ) = 0
( x -2 ) ( x +4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -2 = 0 | +2
x1 = 2

2. Fall:

x +4 = 0 | -4
x2 = -4

also Definitionsmenge D=R\{ -4 ; 2 }

Wir untersuchen nun das Verhalten für x → -4 (von links und von rechts)

Für x   x<-4   -4 - ⇒ f(x)= -5 x 2 + x +1 ( -2 + x ) ( x +4 ) -83 (-6) ⋅ "-0" = -83 "+0" -

Für x   x>-4   -4 + ⇒ f(x)= -5 x 2 + x +1 ( -2 + x ) ( x +4 ) -83 (-6) ⋅ "+0" = -83 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -4 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 2 (von links und von rechts)

Für x   x<2   2 - ⇒ f(x)= -5 x 2 + x +1 ( -2 + x ) ( x +4 ) -17 "-0" ⋅ (+6) = -17 "-0"

Für x   x>2   2 + ⇒ f(x)= -5 x 2 + x +1 ( -2 + x ) ( x +4 ) -17 "+0" ⋅ (+6) = -17 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 2 mit einem VZW von + nach -

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-5 x 2 + x +1 ( -2 + x ) ( x +4 ) = -5 x 2 + x +1 x 2 +2x -8

-5 x 2 + x +1 x 2 +2x -8 = x 2 · ( -5 + 1 x + 1 x 2 ) x 2 · ( 1 + 2 x - 8 x 2 ) = -5 + 1 x + 1 x 2 1 + 2 x - 8 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -5 x 2 + x +1 x 2 +2x -8 = -5 + 1 x + 1 x 2 1 + 2 x - 8 x 2 -5 +0+0 1 +0+0 = -5 1 = -5

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = -5 .

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -2x -1 e 2x - e x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

e 2x - e x = 0
( e x -1 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e x -1 = 0 | +1
e x = 1 |ln(⋅)
x1 = 0 ≈ 0

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

also Definitionsmenge D=R\{0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-2x -1 e 2x - e x = -2x -1 ( e x -1 ) · e x

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= -2x -1 ( e x -1 ) · e x -1 "-0" ⋅ (+1) = -1 "-0"

Für x   x>0   0 + ⇒ f(x)= -2x -1 ( e x -1 ) · e x -1 "+0" ⋅ (+1) = -1 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von + nach -

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -2 - x 2 - x +20

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

- x 2 - x +20 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · ( -1 ) · 20 2( -1 )

x1,2 = +1 ± 1 +80 -2

x1,2 = +1 ± 81 -2

x1 = 1 + 81 -2 = 1 +9 -2 = 10 -2 = -5

x2 = 1 - 81 -2 = 1 -9 -2 = -8 -2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 - x +20 = 0 |: -1

x 2 + x -20 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -20 ) = 1 4 + 20 = 1 4 + 80 4 = 81 4

x1,2 = - 1 2 ± 81 4

x1 = - 1 2 - 9 2 = - 10 2 = -5

x2 = - 1 2 + 9 2 = 8 2 = 4

also Definitionsmenge D=R\{ -5 ; 4 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-2 - x 2 - x +20 = -2 - ( x +5 ) · ( x -4 )

Wir untersuchen nun das Verhalten für x → -5 (von links und von rechts)

Für x   x<-5   -5 - ⇒ f(x)= -2 - ( x +5 ) · ( x -4 ) -2 -1 ⋅"-0" ⋅ (-9) = -2 "-0"

Für x   x>-5   -5 + ⇒ f(x)= -2 - ( x +5 ) · ( x -4 ) -2 -1 ⋅"+0" ⋅ (-9) = -2 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -5 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 4 (von links und von rechts)

Für x   x<4   4 - ⇒ f(x)= -2 - ( x +5 ) · ( x -4 ) -2 -1 ⋅(+9) ⋅ "-0" = -2 "+0" -

Für x   x>4   4 + ⇒ f(x)= -2 - ( x +5 ) · ( x -4 ) -2 -1 ⋅(+9) ⋅ "+0" = -2 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 4 mit einem VZW von - nach +

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 3x -6 x 2 -1

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 -1 = 0 | +1
x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

also Definitionsmenge D=R\{ -1 ; 1 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

3x -6 x 2 -1 = 3x -6 ( x +1 ) ( x -1 )

Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= 3x -6 ( x +1 ) ( x -1 ) -9 "-0" ⋅ (-2) = -9 "+0" -

Für x   x>-1   -1 + ⇒ f(x)= 3x -6 ( x +1 ) ( x -1 ) -9 "+0" ⋅ (-2) = -9 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= 3x -6 ( x +1 ) ( x -1 ) -3 (+2) ⋅ "-0" = -3 "-0"

Für x   x>1   1 + ⇒ f(x)= 3x -6 ( x +1 ) ( x -1 ) -3 (+2) ⋅ "+0" = -3 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 mit einem VZW von + nach -

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= 2 eine senkrechte Asymptote mit einem VZW von - nach +, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=2 (mit einem VZW von - nach +) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x -2

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x -2 , passen bereits die Definitionslücke bei x = 2 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x -2 = x · 1 x x · ( 1 - 2 x ) = 1 x 1 - 2 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x -2 = 1 x 1 - 2 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<2   2- ⇒ f(x)= 1 x -2 +1 "-0" -

Für x   x>2   2+ ⇒ f(x)= 1 x -2 +1 "+0"

Mit f(x)= 1 x -2 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x1 = -3 und bei x2 = 0 jeweils eine senkrechte Asymptote, bei y = 0 eine waagrechte Asymptote und eine Nullstelle in N(-4|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptoten bei x1=-3 und x2=0 müssen die entsprechenden Linearterme in den Nenner unserer gesuchten Funktion, also:

? ( x +3 ) · ( x +0 ) = ? x 2 +3x

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x +4 ) x 2 +3x

Jetzt testen wir x +4 ( x +3 ) · ( x +0 ) auf die waagrechte Asymptote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
x +4 ( x +3 ) · ( x +0 ) = x +4 x 2 +3x

x +4 x 2 +3x = x 2 · ( 1 x + 4 x 2 ) x 2 · ( 1 + 3 x ) = 1 x + 4 x 2 1 + 3 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= x +4 x 2 +3x = 1 x + 4 x 2 1 + 3 x 0+0 1 +0 = 0 1 = 0

Mit f(x)= x +4 ( x +3 ) · ( x +0 ) sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = 2 x 3 + -3 e x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= 2 x 3 + -3 e x 0 + -3 0 0 - -

Für x → ∞ ⇒ f(x)= 2 x 3 + -3 e x 0 + -3 0+0 0

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e -0,2x 2 x 2 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e -0,2x 2 x 2 ( Der Exponentialterm im Zähler wächst sehr viel schneller gegen ∞ bzw. gegen 0 als der Nenner und setzt sich deswegen durch)

Für x → ∞ ⇒ f(x)= e -0,2x 2 x 2 0 0

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 0 (x-Achse).