nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = 5x +1 ( x +2 ) ( x -2 )

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x +2 ) ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +2 = 0 | -2
x1 = -2

2. Fall:

x -2 = 0 | +2
x2 = 2

also Definitionsmenge D=R\{ -2 ; 2 }

Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= 5x +1 ( x +2 ) ( x -2 ) -9 "-0" ⋅ (-4) = -9 "+0" -

Für x   x>-2   -2 + ⇒ f(x)= 5x +1 ( x +2 ) ( x -2 ) -9 "+0" ⋅ (-4) = -9 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 2 (von links und von rechts)

Für x   x<2   2 - ⇒ f(x)= 5x +1 ( x +2 ) ( x -2 ) +11 (+4) ⋅ "-0" = +11 "-0" -

Für x   x>2   2 + ⇒ f(x)= 5x +1 ( x +2 ) ( x -2 ) +11 (+4) ⋅ "+0" = +11 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 2 mit einem VZW von - nach +

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
5x +1 ( x +2 ) ( x -2 ) = 5x +1 x 2 -4

5x +1 x 2 -4 = x 2 · ( 5 x + 1 x 2 ) x 2 · ( 1 - 4 x 2 ) = 5 x + 1 x 2 1 - 4 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 5x +1 x 2 -4 = 5 x + 1 x 2 1 - 4 x 2 0+0 1 +0 = 0 1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 5x -2 2 - x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

2 - x = 0
-x +2 = 0 | -2
-x = -2 |:(-1 )
x = 2

also Definitionsmenge D=R\{ 2 }

Wir untersuchen nun das Verhalten für x → 2 (von links und von rechts)

Für x   x<2   2 - ⇒ f(x)= 5x -2 2 - x +8 "+0"

Für x   x>2   2 + ⇒ f(x)= 5x -2 2 - x +8 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 2 mit einem VZW von + nach -

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 3 x 2 -2x +3 x 2 + x -2

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 + x -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · 1 · ( -2 ) 21

x1,2 = -1 ± 1 +8 2

x1,2 = -1 ± 9 2

x1 = -1 + 9 2 = -1 +3 2 = 2 2 = 1

x2 = -1 - 9 2 = -1 -3 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = - 1 2 ± 9 4

x1 = - 1 2 - 3 2 = - 4 2 = -2

x2 = - 1 2 + 3 2 = 2 2 = 1

also Definitionsmenge D=R\{ -2 ; 1 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

3 x 2 -2x +3 x 2 + x -2 = 3 x 2 -2x +3 ( x -1 ) · ( x +2 )

Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= 3 x 2 -2x +3 ( x -1 ) · ( x +2 ) +19 (-3) ⋅ "-0" = +19 "+0"

Für x   x>-2   -2 + ⇒ f(x)= 3 x 2 -2x +3 ( x -1 ) · ( x +2 ) +19 (-3) ⋅ "+0" = +19 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= 3 x 2 -2x +3 ( x -1 ) · ( x +2 ) +4 "-0" ⋅ (+3) = +4 "-0" -

Für x   x>1   1 + ⇒ f(x)= 3 x 2 -2x +3 ( x -1 ) · ( x +2 ) +4 "+0" ⋅ (+3) = +4 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 mit einem VZW von - nach +

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 2x -4 ( x -2 ) ( x -4 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x -2 ) ( x -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -2 = 0 | +2
x1 = 2

2. Fall:

x -4 = 0 | +4
x2 = 4

also Definitionsmenge D=R\{ 2 ; 4 }

Wir untersuchen das Verhalten für x → 2 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x -2) erkennen, die wir dann kürzen können:

2x -4 ( x -2 ) ( x -4 ) = 2x -4 ( x -2 ) ( x -4 ) = 2 x -4

Für x → 2 ⇒ f(x)= 2x -4 ( x -2 ) ( x -4 ) = 2 x -4 2 2 -4 = -1

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(2 | -1 )


Wir untersuchen nun das Verhalten für x → 4 (von links und von rechts)

Für x   x<4   4 - ⇒ f(x)= 2x -4 ( x -2 ) ( x -4 ) +4 (+2) ⋅ "-0" = +4 "-0" -

Für x   x>4   4 + ⇒ f(x)= 2x -4 ( x -2 ) ( x -4 ) +4 (+2) ⋅ "+0" = +4 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 4 mit einem VZW von - nach +

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x1 = -3 und bei x2 = -5 jeweils eine senkrechte Asymptote, bei y = 0 eine waagrechte Asymptote und eine Nullstelle in N(-4|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptoten bei x1=-3 und x2=-5 müssen die entsprechenden Linearterme in den Nenner unserer gesuchten Funktion, also:

? ( x +3 ) · ( x +5 ) = ? x 2 +8x +15

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x +4 ) x 2 +8x +15

Jetzt testen wir x +4 ( x +3 ) · ( x +5 ) auf die waagrechte Asymptote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
x +4 ( x +3 ) · ( x +5 ) = x +4 x 2 +8x +15

x +4 x 2 +8x +15 = x 2 · ( 1 x + 4 x 2 ) x 2 · ( 1 + 8 x + 15 x 2 ) = 1 x + 4 x 2 1 + 8 x + 15 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= x +4 x 2 +8x +15 = 1 x + 4 x 2 1 + 8 x + 15 x 2 0+0 1 +0+0 = 0 1 = 0

Mit f(x)= x +4 ( x +3 ) · ( x +5 ) sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= -1 eine senkrechte Asymptote mit einem VZW von + nach -, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-1 (mit einem VZW von + nach -) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x +1

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x +1 , passen bereits die Definitionslücke bei x = -1 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x +1 = x · 1 x x · ( 1 + 1 x ) = 1 x 1 + 1 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x +1 = 1 x 1 + 1 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<-1   -1- ⇒ f(x)= 1 x +1 +1 "-0" -

Für x   x>-1   -1+ ⇒ f(x)= 1 x +1 +1 "+0"

Wir haben also den falschen VZW. Wenn wir aber den Zähler mit -1 multiplizieren, bekommen wir gerade das entgegengesetzte Verhalten in der Nähe der Definitionslücke.

Mit f(x)= -1 x +1 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e 0,3x 4 x 2 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e 0,3x 4 x 2 0 0

Für x → ∞ ⇒ f(x)= e 0,3x 4 x 2 ( Der Exponentialterm im Zähler wächst sehr viel schneller gegen ∞ bzw. gegen 0 als der Nenner und setzt sich deswegen durch)

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = 4 -2 e 0,3x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= 4 -2 e 0,3x 4 +0 4

Für x → ∞ ⇒ f(x)= 4 -2 e 0,3x 4 - -

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 4 .