nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = -5x -2 x 2 -3x +2

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 -3x +2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · 2 21

x1,2 = +3 ± 9 -8 2

x1,2 = +3 ± 1 2

x1 = 3 + 1 2 = 3 +1 2 = 4 2 = 2

x2 = 3 - 1 2 = 3 -1 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - 2 = 9 4 - 2 = 9 4 - 8 4 = 1 4

x1,2 = 3 2 ± 1 4

x1 = 3 2 - 1 2 = 2 2 = 1

x2 = 3 2 + 1 2 = 4 2 = 2

also Definitionsmenge D=R\{ 1 ; 2 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-5x -2 x 2 -3x +2 = -5x -2 ( x -2 ) · ( x -1 )

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= -5x -2 ( x -2 ) · ( x -1 ) -7 (-1) ⋅ "-0" = -7 "+0" -

Für x   x>1   1 + ⇒ f(x)= -5x -2 ( x -2 ) · ( x -1 ) -7 (-1) ⋅ "+0" = -7 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 2 (von links und von rechts)

Für x   x<2   2 - ⇒ f(x)= -5x -2 ( x -2 ) · ( x -1 ) -12 "-0" ⋅ (+1) = -12 "-0"

Für x   x>2   2 + ⇒ f(x)= -5x -2 ( x -2 ) · ( x -1 ) -12 "+0" ⋅ (+1) = -12 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 2 mit einem VZW von + nach -

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

-5x -2 x 2 -3x +2 = x 2 · ( - 5 x - 2 x 2 ) x 2 · ( 1 - 3 x + 2 x 2 ) = - 5 x - 2 x 2 1 - 3 x + 2 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -5x -2 x 2 -3x +2 = - 5 x - 2 x 2 1 - 3 x + 2 x 2 0+0 1 +0+0 = 0 1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = x -5 2 - x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

2 - x = 0
-x +2 = 0 | -2
-x = -2 |:(-1 )
x = 2

also Definitionsmenge D=R\{ 2 }

Wir untersuchen nun das Verhalten für x → 2 (von links und von rechts)

Für x   x<2   2 - ⇒ f(x)= x -5 2 - x -3 "+0" -

Für x   x>2   2 + ⇒ f(x)= x -5 2 - x -3 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 2 mit einem VZW von - nach +

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -2 x 2 -2x -15

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 -2x -15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -15 ) 21

x1,2 = +2 ± 4 +60 2

x1,2 = +2 ± 64 2

x1 = 2 + 64 2 = 2 +8 2 = 10 2 = 5

x2 = 2 - 64 2 = 2 -8 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -15 ) = 1+ 15 = 16

x1,2 = 1 ± 16

x1 = 1 - 4 = -3

x2 = 1 + 4 = 5

also Definitionsmenge D=R\{ -3 ; 5 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-2 x 2 -2x -15 = -2 ( x -5 ) · ( x +3 )

Wir untersuchen nun das Verhalten für x → -3 (von links und von rechts)

Für x   x<-3   -3 - ⇒ f(x)= -2 ( x -5 ) · ( x +3 ) -2 (-8) ⋅ "-0" = -2 "+0" -

Für x   x>-3   -3 + ⇒ f(x)= -2 ( x -5 ) · ( x +3 ) -2 (-8) ⋅ "+0" = -2 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -3 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 5 (von links und von rechts)

Für x   x<5   5 - ⇒ f(x)= -2 ( x -5 ) · ( x +3 ) -2 "-0" ⋅ (+8) = -2 "-0"

Für x   x>5   5 + ⇒ f(x)= -2 ( x -5 ) · ( x +3 ) -2 "+0" ⋅ (+8) = -2 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 5 mit einem VZW von + nach -

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = ( x -2 ) ( x -3 ) -2x +8

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

-2x +8 = 0 | -8
-2x = -8 |:(-2 )
x = 4

also Definitionsmenge D=R\{ 4 }

Wir untersuchen nun das Verhalten für x → 4 (von links und von rechts)

Für x   x<4   4 - ⇒ f(x)= ( x -2 ) ( x -3 ) -2x +8 +2 "+0"

Für x   x>4   4 + ⇒ f(x)= ( x -2 ) ( x -3 ) -2x +8 +2 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 4 mit einem VZW von + nach -

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= 0 eine senkrechte Asymptote ohne VZW (beides mal f(x) → +∞), bei y = 1 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=0 (ohne VZW (beides mal f(x) → +∞)) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:

? ( x +0 ) 2

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( 1 ) x 2

Jetzt testen wir 1 ( x +0 ) 2 auf die waagrechte Asymptote:

Da im Nenner eine quadratische Funktion ist, brauchen wir im Zähler auch eine quadratische Funktion, die ja aber keine Nullstelle haben darf. (z.B. x²+1). Außerdem muss der Koeffizient vor dem x² in unserem Fall 1 sein, damit die waagrechte Asymptote (nach Ausklammern und Kürzen von x²) =1 wird. Dies funktioniert z.B. mit dem Zähler x 2 +1

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
x 2 +1 ( x +0 ) 2 = x 2 +1 x 2

x 2 +1 x 2 = x 2 · ( 1 + 1 x 2 ) x 2 · 1 = 1 + 1 x 2 1

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= x 2 +1 x 2 = 1 + 1 x 2 1 1 +0 1 = 1 1 = 1

Mit f(x)= x 2 +1 ( x +0 ) 2 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x1 = 1 und bei x2 = 4 jeweils eine senkrechte Asymptote, bei y = -3 eine waagrechte Asymptote und in N1(2|0) und N2(0|0) Nullstellen besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptoten bei x1=1 und x2=4 müssen die entsprechenden Linearterme in den Nenner unserer gesuchten Funktion, also:

? ( x -1 ) · ( x -4 ) = ? x 2 -5x +4

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( ( x -2 ) · ( x +0 ) ) x 2 -5x +4 = ?⋅ ( x 2 -2x ) x 2 -5x +4

Jetzt testen wir x 2 -2x ( x -1 ) · ( x -4 ) auf die waagrechte Asymptote:

Um die waagrechte Asymptote von 1 auf -3 zu bringen multiplizieren wir einfach den Zähler mit -3 und erhalten so:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-3( x 2 -2x ) ( x -1 ) · ( x -4 ) = -3 x 2 +6x x 2 -5x +4

-3 x 2 +6x x 2 -5x +4 = x 2 · ( -3 + 6 x ) x 2 · ( 1 - 5 x + 4 x 2 ) = -3 + 6 x 1 - 5 x + 4 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -3 x 2 +6x x 2 -5x +4 = -3 + 6 x 1 - 5 x + 4 x 2 -3 +0 1 +0+0 = -3 1 = -3

Mit f(x)= -3( x 2 -2x ) ( x -1 ) · ( x -4 ) sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e -0,5x -5 + 3 x 2 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e -0,5x -5 + 3 x 2 -5 +0

Für x → ∞ ⇒ f(x)= e -0,5x -5 + 3 x 2 0 -5 +0 -5

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = -5 .

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = -4x · e 0,1x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= -4x · e 0,1x · 0 0( Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen 0 als der erste Faktor gegen und setzt sich deswegen durch)

Für x → ∞ ⇒ f(x)= -4x · e 0,1x - · -

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 0 (x-Achse).