nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = 5 x 2 -2x -5 x 2 -16

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 -16 = 0 | +16
x 2 = 16 | 2
x1 = - 16 = -4
x2 = 16 = 4

also Definitionsmenge D=R\{ -4 ; 4 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

5 x 2 -2x -5 x 2 -16 = 5 x 2 -2x -5 ( x +4 ) ( x -4 )

Wir untersuchen nun das Verhalten für x → -4 (von links und von rechts)

Für x   x<-4   -4 - ⇒ f(x)= 5 x 2 -2x -5 ( x +4 ) ( x -4 ) +83 "-0" ⋅ (-8) = +83 "+0"

Für x   x>-4   -4 + ⇒ f(x)= 5 x 2 -2x -5 ( x +4 ) ( x -4 ) +83 "+0" ⋅ (-8) = +83 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -4 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 4 (von links und von rechts)

Für x   x<4   4 - ⇒ f(x)= 5 x 2 -2x -5 ( x +4 ) ( x -4 ) +67 (+8) ⋅ "-0" = +67 "-0" -

Für x   x>4   4 + ⇒ f(x)= 5 x 2 -2x -5 ( x +4 ) ( x -4 ) +67 (+8) ⋅ "+0" = +67 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 4 mit einem VZW von - nach +

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

5 x 2 -2x -5 x 2 -16 = x 2 · ( 5 - 2 x - 5 x 2 ) x 2 · ( 1 - 16 x 2 ) = 5 - 2 x - 5 x 2 1 - 16 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 5 x 2 -2x -5 x 2 -16 = 5 - 2 x - 5 x 2 1 - 16 x 2 5 +0+0 1 +0 = 5 1 = 5

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 5 .

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 5 2 + x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

2 + x = 0
x +2 = 0 | -2
x = -2

also Definitionsmenge D=R\{ -2 }

Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= 5 2 + x +5 "-0" -

Für x   x>-2   -2 + ⇒ f(x)= 5 2 + x +5 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von - nach +

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 3x -2 - x 2 +3x +4

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

- x 2 +3x +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -3 ± 3 2 -4 · ( -1 ) · 4 2( -1 )

x1,2 = -3 ± 9 +16 -2

x1,2 = -3 ± 25 -2

x1 = -3 + 25 -2 = -3 +5 -2 = 2 -2 = -1

x2 = -3 - 25 -2 = -3 -5 -2 = -8 -2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +3x +4 = 0 |: -1

x 2 -3x -4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - ( -4 ) = 9 4 + 4 = 9 4 + 16 4 = 25 4

x1,2 = 3 2 ± 25 4

x1 = 3 2 - 5 2 = - 2 2 = -1

x2 = 3 2 + 5 2 = 8 2 = 4

also Definitionsmenge D=R\{ -1 ; 4 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

3x -2 - x 2 +3x +4 = 3x -2 - ( x +1 ) · ( x -4 )

Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= 3x -2 - ( x +1 ) · ( x -4 ) -5 -1 ⋅"-0" ⋅ (-5) = -5 "-0"

Für x   x>-1   -1 + ⇒ f(x)= 3x -2 - ( x +1 ) · ( x -4 ) -5 -1 ⋅"+0" ⋅ (-5) = -5 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 4 (von links und von rechts)

Für x   x<4   4 - ⇒ f(x)= 3x -2 - ( x +1 ) · ( x -4 ) +10 -1 ⋅(+5) ⋅ "-0" = +10 "+0"

Für x   x>4   4 + ⇒ f(x)= 3x -2 - ( x +1 ) · ( x -4 ) +10 -1 ⋅(+5) ⋅ "+0" = +10 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 4 mit einem VZW von + nach -

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 2x +6 ( x +3 ) ( x +5 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x +3 ) ( x +5 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +3 = 0 | -3
x1 = -3

2. Fall:

x +5 = 0 | -5
x2 = -5

also Definitionsmenge D=R\{ -5 ; -3 }

Wir untersuchen das Verhalten für x → -3 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x +3) erkennen, die wir dann kürzen können:

2x +6 ( x +3 ) ( x +5 ) = 2x +6 ( x +3 ) ( x +5 ) = 2 x +5

Für x → -3 ⇒ f(x)= 2x +6 ( x +3 ) ( x +5 ) = 2 x +5 2 -3 +5 = 1

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(-3 | 1 )


Wir untersuchen nun das Verhalten für x → -5 (von links und von rechts)

Für x   x<-5   -5 - ⇒ f(x)= 2x +6 ( x +3 ) ( x +5 ) -4 (-2) ⋅ "-0" = -4 "+0" -

Für x   x>-5   -5 + ⇒ f(x)= 2x +6 ( x +3 ) ( x +5 ) -4 (-2) ⋅ "+0" = -4 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -5 mit einem VZW von - nach +

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= 1 eine senkrechte Asymptote ohne VZW (beides mal f(x) → +∞), bei y = 0 eine waagrechte Asymptote und eine Nullstelle in N(3|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=1 (ohne VZW (beides mal f(x) → +∞)) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:

? ( x -1 ) 2 = ? x 2 -2x +1

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x -3 ) x 2 -2x +1

Jetzt testen wir x -3 ( x -1 ) 2 auf die waagrechte Asymptote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
x -3 ( x -1 ) 2 = x -3 x 2 -2x +1

x -3 x 2 -2x +1 = x 2 · ( 1 x - 3 x 2 ) x 2 · ( 1 - 2 x + 1 x 2 ) = 1 x - 3 x 2 1 - 2 x + 1 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= x -3 x 2 -2x +1 = 1 x - 3 x 2 1 - 2 x + 1 x 2 0+0 1 +0+0 = 0 1 = 0

Mit f(x)= -( x -3 ) ( x -1 ) 2 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= -3 eine senkrechte Asymptote mit einem VZW von - nach +, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-3 (mit einem VZW von - nach +) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x +3

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x +3 , passen bereits die Definitionslücke bei x = -3 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x +3 = x · 1 x x · ( 1 + 3 x ) = 1 x 1 + 3 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x +3 = 1 x 1 + 3 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<-3   -3- ⇒ f(x)= 1 x +3 +1 "-0" -

Für x   x>-3   -3+ ⇒ f(x)= 1 x +3 +1 "+0"

Mit f(x)= 1 x +3 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = 3 x 2 -3 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= 3 x 2 -3 0 -3 -3

Für x → ∞ ⇒ f(x)= 3 x 2 -3 0 -3 -3

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = -3 .

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = -3 e 0,1x -2 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= -3 e 0,1x -2 0 -2 -2

Für x → ∞ ⇒ f(x)= -3 e 0,1x -2 - -2 -

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = -2 .