nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = 5 x 2 -2x +2 ( x -4 ) ( x +1 )

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x -4 ) ( x +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -4 = 0 | +4
x1 = 4

2. Fall:

x +1 = 0 | -1
x2 = -1

also Definitionsmenge D=R\{ -1 ; 4 }

Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= 5 x 2 -2x +2 ( x -4 ) ( x +1 ) +9 (-5) ⋅ "-0" = +9 "+0"

Für x   x>-1   -1 + ⇒ f(x)= 5 x 2 -2x +2 ( x -4 ) ( x +1 ) +9 (-5) ⋅ "+0" = +9 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 4 (von links und von rechts)

Für x   x<4   4 - ⇒ f(x)= 5 x 2 -2x +2 ( x -4 ) ( x +1 ) +74 "-0" ⋅ (+5) = +74 "-0" -

Für x   x>4   4 + ⇒ f(x)= 5 x 2 -2x +2 ( x -4 ) ( x +1 ) +74 "+0" ⋅ (+5) = +74 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 4 mit einem VZW von - nach +

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
5 x 2 -2x +2 ( x -4 ) ( x +1 ) = 5 x 2 -2x +2 x 2 -3x -4

5 x 2 -2x +2 x 2 -3x -4 = x 2 · ( 5 - 2 x + 2 x 2 ) x 2 · ( 1 - 3 x - 4 x 2 ) = 5 - 2 x + 2 x 2 1 - 3 x - 4 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 5 x 2 -2x +2 x 2 -3x -4 = 5 - 2 x + 2 x 2 1 - 3 x - 4 x 2 5 +0+0 1 +0+0 = 5 1 = 5

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 5 .

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 1 4 + x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

4 + x = 0
x +4 = 0 | -4
x = -4

also Definitionsmenge D=R\{ -4 }

Wir untersuchen nun das Verhalten für x → -4 (von links und von rechts)

Für x   x<-4   -4 - ⇒ f(x)= 1 4 + x +1 "-0" -

Für x   x>-4   -4 + ⇒ f(x)= 1 4 + x +1 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -4 mit einem VZW von - nach +

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 3 x 2 + x -2

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 + x -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · 1 · ( -2 ) 21

x1,2 = -1 ± 1 +8 2

x1,2 = -1 ± 9 2

x1 = -1 + 9 2 = -1 +3 2 = 2 2 = 1

x2 = -1 - 9 2 = -1 -3 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = - 1 2 ± 9 4

x1 = - 1 2 - 3 2 = - 4 2 = -2

x2 = - 1 2 + 3 2 = 2 2 = 1

also Definitionsmenge D=R\{ -2 ; 1 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

3 x 2 + x -2 = 3 ( x -1 ) · ( x +2 )

Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= 3 ( x -1 ) · ( x +2 ) +3 (-3) ⋅ "-0" = +3 "+0"

Für x   x>-2   -2 + ⇒ f(x)= 3 ( x -1 ) · ( x +2 ) +3 (-3) ⋅ "+0" = +3 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= 3 ( x -1 ) · ( x +2 ) +3 "-0" ⋅ (+3) = +3 "-0" -

Für x   x>1   1 + ⇒ f(x)= 3 ( x -1 ) · ( x +2 ) +3 "+0" ⋅ (+3) = +3 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 mit einem VZW von - nach +

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = ( x +1 ) ( x +2 ) 3x +6

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

3x +6 = 0 | -6
3x = -6 |:3
x = -2

also Definitionsmenge D=R\{ -2 }

Wir untersuchen das Verhalten für x → -2 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x +2) erkennen, die wir dann kürzen können:

( x +1 ) ( x +2 ) 3x +6 = ( x +1 ) ( x +2 ) 3x +6 = 1 3 ( x +1 )

Für x → -2 ⇒ f(x)= ( x +1 ) ( x +2 ) 3x +6 = 1 3 ( x +1 ) 1 3 ( -2 +1 ) = - 1 3

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(-2 | - 1 3 )


Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x1 = -1 und bei x2 = -2 jeweils eine senkrechte Asymptote, bei y = -1 eine waagrechte Asymptote und eine Nullstelle in N(0|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptoten bei x1=-1 und x2=-2 müssen die entsprechenden Linearterme in den Nenner unserer gesuchten Funktion, also:

? ( x +1 ) · ( x +2 ) = ? x 2 +3x +2

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x +0 ) x 2 +3x +2 = ?⋅ ( x ) x 2 +3x +2

Jetzt testen wir x ( x +1 ) · ( x +2 ) auf die waagrechte Asymptote:

Da im Nenner eine quadratische Funktion ist, im Zähler auch nur eine lineare Funktion, muss die Funktion für x → ∞ gegen 0 laufen. Um diesen Grenzwert aber auf -1 zu bringen, quadrieren wir einfach den Linearterm des Zählers und geben im als Koeffizient -1. Jetzt stimmt auch die waagrechte Asympzote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
- x 2 ( x +1 ) · ( x +2 ) = - x 2 x 2 +3x +2

- x 2 x 2 +3x +2 = x 2 · ( -1 ) x 2 · ( 1 + 3 x + 2 x 2 ) = -1 1 + 3 x + 2 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= - x 2 x 2 +3x +2 = -1 1 + 3 x + 2 x 2 -1 1 +0+0 = -1 1 = -1

Mit f(x)= - x 2 ( x +1 ) · ( x +2 ) sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= -1 eine senkrechte Asymptote mit einem VZW von + nach -, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-1 (mit einem VZW von + nach -) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x +1

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x +1 , passen bereits die Definitionslücke bei x = -1 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x +1 = x · 1 x x · ( 1 + 1 x ) = 1 x 1 + 1 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x +1 = 1 x 1 + 1 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<-1   -1- ⇒ f(x)= 1 x +1 +1 "-0" -

Für x   x>-1   -1+ ⇒ f(x)= 1 x +1 +1 "+0"

Wir haben also den falschen VZW. Wenn wir aber den Zähler mit -1 multiplizieren, bekommen wir gerade das entgegengesetzte Verhalten in der Nähe der Definitionslücke.

Mit f(x)= -1 x +1 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = -2 x 2 · e 0,5x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= -2 x 2 · e 0,5x - · 0 0( Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen 0 als der erste Faktor gegen - und setzt sich deswegen durch)

Für x → ∞ ⇒ f(x)= -2 x 2 · e 0,5x - · -

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = 2 e 0,2x -2 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= 2 e 0,2x -2 0 -2 -2

Für x → ∞ ⇒ f(x)= 2 e 0,2x -2 -2

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = -2 .