nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = 5x -3 x 2 +6x +8

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 +6x +8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · 1 · 8 21

x1,2 = -6 ± 36 -32 2

x1,2 = -6 ± 4 2

x1 = -6 + 4 2 = -6 +2 2 = -4 2 = -2

x2 = -6 - 4 2 = -6 -2 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 3 2 - 8 = 9 - 8 = 1

x1,2 = -3 ± 1

x1 = -3 - 1 = -4

x2 = -3 + 1 = -2

also Definitionsmenge D=R\{ -4 ; -2 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

5x -3 x 2 +6x +8 = 5x -3 ( x +2 ) · ( x +4 )

Wir untersuchen nun das Verhalten für x → -4 (von links und von rechts)

Für x   x<-4   -4 - ⇒ f(x)= 5x -3 ( x +2 ) · ( x +4 ) -23 (-2) ⋅ "-0" = -23 "+0" -

Für x   x>-4   -4 + ⇒ f(x)= 5x -3 ( x +2 ) · ( x +4 ) -23 (-2) ⋅ "+0" = -23 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -4 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= 5x -3 ( x +2 ) · ( x +4 ) -13 "-0" ⋅ (+2) = -13 "-0"

Für x   x>-2   -2 + ⇒ f(x)= 5x -3 ( x +2 ) · ( x +4 ) -13 "+0" ⋅ (+2) = -13 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von + nach -

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

5x -3 x 2 +6x +8 = x 2 · ( 5 x - 3 x 2 ) x 2 · ( 1 + 6 x + 8 x 2 ) = 5 x - 3 x 2 1 + 6 x + 8 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 5x -3 x 2 +6x +8 = 5 x - 3 x 2 1 + 6 x + 8 x 2 0+0 1 +0+0 = 0 1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -x -1 x -1

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x -1 = 0 | +1
x = 1

also Definitionsmenge D=R\{ 1 }

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= -x -1 x -1 -2 "-0"

Für x   x>1   1 + ⇒ f(x)= -x -1 x -1 -2 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 mit einem VZW von + nach -

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = x +3 e 2x - e x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

e 2x - e x = 0
( e x -1 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e x -1 = 0 | +1
e x = 1 |ln(⋅)
x1 = 0 ≈ 0

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

also Definitionsmenge D=R\{0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

x +3 e 2x - e x = x +3 ( e x -1 ) · e x

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= x +3 ( e x -1 ) · e x +3 "-0" ⋅ (+1) = +3 "-0" -

Für x   x>0   0 + ⇒ f(x)= x +3 ( e x -1 ) · e x +3 "+0" ⋅ (+1) = +3 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von - nach +

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = x -4 ( x -3 ) ( x -4 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x -3 ) ( x -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -3 = 0 | +3
x1 = 3

2. Fall:

x -4 = 0 | +4
x2 = 4

also Definitionsmenge D=R\{ 3 ; 4 }

Wir untersuchen das Verhalten für x → 4 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x -4) erkennen, die wir dann kürzen können:

x -4 ( x -3 ) ( x -4 ) = x -4 ( x -3 ) ( x -4 ) = 1 x -3

Für x → 4 ⇒ f(x)= x -4 ( x -3 ) ( x -4 ) = 1 x -3 1 4 -3 = 1

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(4 | 1 )


Wir untersuchen nun das Verhalten für x → 3 (von links und von rechts)

Für x   x<3   3 - ⇒ f(x)= x -4 ( x -3 ) ( x -4 ) -1 "-0" ⋅ (-1) = -1 "+0" -

Für x   x>3   3 + ⇒ f(x)= x -4 ( x -3 ) ( x -4 ) -1 "+0" ⋅ (-1) = -1 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 3 mit einem VZW von - nach +

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x1 = 3 und bei x2 = 2 jeweils eine senkrechte Asymptote, bei y = 0 eine waagrechte Asymptote und eine Nullstelle in N(4|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptoten bei x1=3 und x2=2 müssen die entsprechenden Linearterme in den Nenner unserer gesuchten Funktion, also:

? ( x -3 ) · ( x -2 ) = ? x 2 -5x +6

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x -4 ) x 2 -5x +6

Jetzt testen wir x -4 ( x -3 ) · ( x -2 ) auf die waagrechte Asymptote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
x -4 ( x -3 ) · ( x -2 ) = x -4 x 2 -5x +6

x -4 x 2 -5x +6 = x 2 · ( 1 x - 4 x 2 ) x 2 · ( 1 - 5 x + 6 x 2 ) = 1 x - 4 x 2 1 - 5 x + 6 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= x -4 x 2 -5x +6 = 1 x - 4 x 2 1 - 5 x + 6 x 2 0+0 1 +0+0 = 0 1 = 0

Mit f(x)= x -4 ( x -3 ) · ( x -2 ) sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= 3 eine senkrechte Asymptote mit einem VZW von - nach +, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=3 (mit einem VZW von - nach +) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x -3

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x -3 , passen bereits die Definitionslücke bei x = 3 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x -3 = x · 1 x x · ( 1 - 3 x ) = 1 x 1 - 3 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x -3 = 1 x 1 - 3 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<3   3- ⇒ f(x)= 1 x -3 +1 "-0" -

Für x   x>3   3+ ⇒ f(x)= 1 x -3 +1 "+0"

Mit f(x)= 1 x -3 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = - 5 x 2 -2 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= - 5 x 2 -2 0 -2 -2

Für x → ∞ ⇒ f(x)= - 5 x 2 -2 0 -2 -2

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = -2 .

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = - x 2 · e -0,2x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= - x 2 · e -0,2x - · -

Für x → ∞ ⇒ f(x)= - x 2 · e -0,2x - · 0 0( Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen 0 als der erste Faktor gegen - und setzt sich deswegen durch)

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 0 (x-Achse).