nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = -5 x 2 - x +3 x 2 +2x

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 +2x = 0
x ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +2 = 0 | -2
x2 = -2

also Definitionsmenge D=R\{ -2 ; 0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-5 x 2 - x +3 x 2 +2x = -5 x 2 - x +3 x · ( x +2 )

Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= -5 x 2 - x +3 x · ( x +2 ) -15 (-2) ⋅ "-0" = -15 "+0" -

Für x   x>-2   -2 + ⇒ f(x)= -5 x 2 - x +3 x · ( x +2 ) -15 (-2) ⋅ "+0" = -15 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= -5 x 2 - x +3 x · ( x +2 ) +3 "-0" ⋅ (+2) = +3 "-0" -

Für x   x>0   0 + ⇒ f(x)= -5 x 2 - x +3 x · ( x +2 ) +3 "+0" ⋅ (+2) = +3 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von - nach +

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

-5 x 2 - x +3 x 2 +2x = x 2 · ( -5 - 1 x + 3 x 2 ) x 2 · ( 1 + 2 x ) = -5 - 1 x + 3 x 2 1 + 2 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -5 x 2 - x +3 x 2 +2x = -5 - 1 x + 3 x 2 1 + 2 x -5 +0+0 1 +0 = -5 1 = -5

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = -5 .

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -x -4 e 3x - e x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

e 3x - e x = 0
( e 2x -1 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 2x -1 = 0 | +1
e 2x = 1 |ln(⋅)
2x = 0 |:2
x1 = 0 ≈ 0

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

also Definitionsmenge D=R\{0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-x -4 e 3x - e x = -x -4 ( e 2x -1 ) · e x

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= -x -4 ( e 2x -1 ) · e x -4 "-0" ⋅ (+1) = -4 "-0"

Für x   x>0   0 + ⇒ f(x)= -x -4 ( e 2x -1 ) · e x -4 "+0" ⋅ (+1) = -4 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von + nach -

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -3 x 2 - x +3 x 2 -2x -3

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 -2x -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -3 ) 21

x1,2 = +2 ± 4 +12 2

x1,2 = +2 ± 16 2

x1 = 2 + 16 2 = 2 +4 2 = 6 2 = 3

x2 = 2 - 16 2 = 2 -4 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -3 ) = 1+ 3 = 4

x1,2 = 1 ± 4

x1 = 1 - 2 = -1

x2 = 1 + 2 = 3

also Definitionsmenge D=R\{ -1 ; 3 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-3 x 2 - x +3 x 2 -2x -3 = -3 x 2 - x +3 ( x -3 ) · ( x +1 )

Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= -3 x 2 - x +3 ( x -3 ) · ( x +1 ) +1 (-4) ⋅ "-0" = +1 "+0"

Für x   x>-1   -1 + ⇒ f(x)= -3 x 2 - x +3 ( x -3 ) · ( x +1 ) +1 (-4) ⋅ "+0" = +1 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 3 (von links und von rechts)

Für x   x<3   3 - ⇒ f(x)= -3 x 2 - x +3 ( x -3 ) · ( x +1 ) -27 "-0" ⋅ (+4) = -27 "-0"

Für x   x>3   3 + ⇒ f(x)= -3 x 2 - x +3 ( x -3 ) · ( x +1 ) -27 "+0" ⋅ (+4) = -27 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 3 mit einem VZW von + nach -

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -2x -2 x 2 + x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 + x = 0
x ( x +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +1 = 0 | -1
x2 = -1

also Definitionsmenge D=R\{ -1 ; 0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-2x -2 x 2 + x = -2x -2 x · ( x +1 )

Wir untersuchen das Verhalten für x → -1 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x +1) erkennen, die wir dann kürzen können:

-2x -2 x · ( x +1 ) = -2x -2 x · ( x +1 ) = - 2 x

Für x → -1 ⇒ f(x)= -2x -2 x · ( x +1 ) = - 2 x - 2 ( -1 ) = 2

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(-1 | 2 )


Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= -2x -2 x · ( x +1 ) -2 "-0" ⋅ (+1) = -2 "-0"

Für x   x>0   0 + ⇒ f(x)= -2x -2 x · ( x +1 ) -2 "+0" ⋅ (+1) = -2 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von + nach -

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x1 = -1 und bei x2 = -2 jeweils eine senkrechte Asymptote, bei y = -1 eine waagrechte Asymptote und in N1(1|0) und N2(-3|0) Nullstellen besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptoten bei x1=-1 und x2=-2 müssen die entsprechenden Linearterme in den Nenner unserer gesuchten Funktion, also:

? ( x +1 ) · ( x +2 ) = ? x 2 +3x +2

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( ( x -1 ) · ( x +3 ) ) x 2 +3x +2 = ?⋅ ( x 2 +2x -3 ) x 2 +3x +2

Jetzt testen wir x 2 +2x -3 ( x +1 ) · ( x +2 ) auf die waagrechte Asymptote:

Um die waagrechte Asymptote von 1 auf -1 zu bringen multiplizieren wir einfach den Zähler mit -1 und erhalten so:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-( x 2 +2x -3 ) ( x +1 ) · ( x +2 ) = - x 2 -2x +3 x 2 +3x +2

- x 2 -2x +3 x 2 +3x +2 = x 2 · ( -1 - 2 x + 3 x 2 ) x 2 · ( 1 + 3 x + 2 x 2 ) = -1 - 2 x + 3 x 2 1 + 3 x + 2 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= - x 2 -2x +3 x 2 +3x +2 = -1 - 2 x + 3 x 2 1 + 3 x + 2 x 2 -1 +0+0 1 +0+0 = -1 1 = -1

Mit f(x)= -( x 2 +2x -3 ) ( x +1 ) · ( x +2 ) sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= 3 eine senkrechte Asymptote mit einem VZW von + nach -, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=3 (mit einem VZW von + nach -) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x -3

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x -3 , passen bereits die Definitionslücke bei x = 3 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x -3 = x · 1 x x · ( 1 - 3 x ) = 1 x 1 - 3 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x -3 = 1 x 1 - 3 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<3   3- ⇒ f(x)= 1 x -3 +1 "-0" -

Für x   x>3   3+ ⇒ f(x)= 1 x -3 +1 "+0"

Wir haben also den falschen VZW. Wenn wir aber den Zähler mit -1 multiplizieren, bekommen wir gerade das entgegengesetzte Verhalten in der Nähe der Definitionslücke.

Mit f(x)= -1 x -3 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = 2x · e 0,5x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= 2x · e 0,5x - · 0 0( Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen 0 als der erste Faktor gegen - und setzt sich deswegen durch)

Für x → ∞ ⇒ f(x)= 2x · e 0,5x ·

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = 2 +3 e -0,2x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= 2 +3 e -0,2x 2 +

Für x → ∞ ⇒ f(x)= 2 +3 e -0,2x 2 +0 2

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 2 .