nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = -4x -5 ( x -1 ) ( x +1 )

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x -1 ) ( x +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -1 = 0 | +1
x1 = 1

2. Fall:

x +1 = 0 | -1
x2 = -1

also Definitionsmenge D=R\{ -1 ; 1 }

Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= -4x -5 ( x -1 ) ( x +1 ) -1 (-2) ⋅ "-0" = -1 "+0" -

Für x   x>-1   -1 + ⇒ f(x)= -4x -5 ( x -1 ) ( x +1 ) -1 (-2) ⋅ "+0" = -1 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= -4x -5 ( x -1 ) ( x +1 ) -9 "-0" ⋅ (+2) = -9 "-0"

Für x   x>1   1 + ⇒ f(x)= -4x -5 ( x -1 ) ( x +1 ) -9 "+0" ⋅ (+2) = -9 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 mit einem VZW von + nach -

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-4x -5 ( x -1 ) ( x +1 ) = -4x -5 x 2 -1

-4x -5 x 2 -1 = x 2 · ( - 4 x - 5 x 2 ) x 2 · ( 1 - 1 x 2 ) = - 4 x - 5 x 2 1 - 1 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -4x -5 x 2 -1 = - 4 x - 5 x 2 1 - 1 x 2 0+0 1 +0 = 0 1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -3 x -2

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x -2 = 0 | +2
x = 2

also Definitionsmenge D=R\{ 2 }

Wir untersuchen nun das Verhalten für x → 2 (von links und von rechts)

Für x   x<2   2 - ⇒ f(x)= -3 x -2 -3 "-0"

Für x   x>2   2 + ⇒ f(x)= -3 x -2 -3 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 2 mit einem VZW von + nach -

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 5 - x 2 - x +12

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

- x 2 - x +12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · ( -1 ) · 12 2( -1 )

x1,2 = +1 ± 1 +48 -2

x1,2 = +1 ± 49 -2

x1 = 1 + 49 -2 = 1 +7 -2 = 8 -2 = -4

x2 = 1 - 49 -2 = 1 -7 -2 = -6 -2 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 - x +12 = 0 |: -1

x 2 + x -12 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -12 ) = 1 4 + 12 = 1 4 + 48 4 = 49 4

x1,2 = - 1 2 ± 49 4

x1 = - 1 2 - 7 2 = - 8 2 = -4

x2 = - 1 2 + 7 2 = 6 2 = 3

also Definitionsmenge D=R\{ -4 ; 3 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

5 - x 2 - x +12 = 5 - ( x +4 ) · ( x -3 )

Wir untersuchen nun das Verhalten für x → -4 (von links und von rechts)

Für x   x<-4   -4 - ⇒ f(x)= 5 - ( x +4 ) · ( x -3 ) +5 -1 ⋅"-0" ⋅ (-7) = +5 "-0" -

Für x   x>-4   -4 + ⇒ f(x)= 5 - ( x +4 ) · ( x -3 ) +5 -1 ⋅"+0" ⋅ (-7) = +5 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -4 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 3 (von links und von rechts)

Für x   x<3   3 - ⇒ f(x)= 5 - ( x +4 ) · ( x -3 ) +5 -1 ⋅(+7) ⋅ "-0" = +5 "+0"

Für x   x>3   3 + ⇒ f(x)= 5 - ( x +4 ) · ( x -3 ) +5 -1 ⋅(+7) ⋅ "+0" = +5 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 3 mit einem VZW von + nach -

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = x 2 + x 3x +3

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

3x +3 = 0 | -3
3x = -3 |:3
x = -1

also Definitionsmenge D=R\{ -1 }

und den Zähler:

x 2 + x 3x +3 = x · ( x +1 ) 3x +3

Wir untersuchen das Verhalten für x → -1 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x +1) erkennen, die wir dann kürzen können:

x 2 + x 3x +3 = x · ( x +1 ) 3x +3 = 1 3 x

Für x → -1 ⇒ f(x)= x 2 + x 3x +3 = 1 3 x 1 3 ( -1 ) = - 1 3

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(-1 | - 1 3 )


Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= -1 eine senkrechte Asymptote mit einem VZW von + nach -, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-1 (mit einem VZW von + nach -) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x +1

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x +1 , passen bereits die Definitionslücke bei x = -1 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x +1 = x · 1 x x · ( 1 + 1 x ) = 1 x 1 + 1 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x +1 = 1 x 1 + 1 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<-1   -1- ⇒ f(x)= 1 x +1 +1 "-0" -

Für x   x>-1   -1+ ⇒ f(x)= 1 x +1 +1 "+0"

Wir haben also den falschen VZW. Wenn wir aber den Zähler mit -1 multiplizieren, bekommen wir gerade das entgegengesetzte Verhalten in der Nähe der Definitionslücke.

Mit f(x)= -1 x +1 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= -3 eine senkrechte Asymptote ohne VZW (beides mal f(x) → -∞), bei y = -2 eine waagrechte Asymptote und eine Nullstelle in N(-4|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-3 (ohne VZW (beides mal f(x) → -∞)) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:

? ( x +3 ) 2 = ? x 2 +6x +9

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x +4 ) x 2 +6x +9

Jetzt testen wir x +4 ( x +3 ) 2 auf die waagrechte Asymptote:

Da im Nenner eine quadratische Funktion ist, im Zähler auch nur eine lineare Funktion, muss die Funktion für x → ∞ gegen 0 laufen. Um diesen Grenzwert aber auf -2 zu bringen, quadrieren wir einfach den Linearterm des Zählers und geben im als Koeffizient -2. Jetzt stimmt auch die waagrechte Asympzote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-2 ( x +4 ) 2 ( x +3 ) 2 = -2 x 2 -16x -32 x 2 +6x +9

-2 x 2 -16x -32 x 2 +6x +9 = x 2 · ( -2 - 16 x - 32 x 2 ) x 2 · ( 1 + 6 x + 9 x 2 ) = -2 - 16 x - 32 x 2 1 + 6 x + 9 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -2 x 2 -16x -32 x 2 +6x +9 = -2 - 16 x - 32 x 2 1 + 6 x + 9 x 2 -2 +0+0 1 +0+0 = -2 1 = -2

Mit f(x)= -2 ( x +4 ) 2 ( x +3 ) 2 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e 0,4x +5 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e 0,4x +5 0 +5 5

Für x → ∞ ⇒ f(x)= e 0,4x +5 +5

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 5 .

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = 4 - e -0,5x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= 4 - e -0,5x 4 - -

Für x → ∞ ⇒ f(x)= 4 - e -0,5x 4 +0 4

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 4 .