nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = 5 x 3 -5 x 2 +4x +3 x 2 +5x +4

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 +5x +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -5 ± 5 2 -4 · 1 · 4 21

x1,2 = -5 ± 25 -16 2

x1,2 = -5 ± 9 2

x1 = -5 + 9 2 = -5 +3 2 = -2 2 = -1

x2 = -5 - 9 2 = -5 -3 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = - 5 2 ± 9 4

x1 = - 5 2 - 3 2 = - 8 2 = -4

x2 = - 5 2 + 3 2 = - 2 2 = -1

also Definitionsmenge D=R\{ -4 ; -1 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

5 x 3 -5 x 2 +4x +3 x 2 +5x +4 = 5 x 3 -5 x 2 +4x +3 ( x +1 ) · ( x +4 )

Wir untersuchen nun das Verhalten für x → -4 (von links und von rechts)

Für x   x<-4   -4 - ⇒ f(x)= 5 x 3 -5 x 2 +4x +3 ( x +1 ) · ( x +4 ) -413 (-3) ⋅ "-0" = -413 "+0" -

Für x   x>-4   -4 + ⇒ f(x)= 5 x 3 -5 x 2 +4x +3 ( x +1 ) · ( x +4 ) -413 (-3) ⋅ "+0" = -413 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -4 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= 5 x 3 -5 x 2 +4x +3 ( x +1 ) · ( x +4 ) -11 "-0" ⋅ (+3) = -11 "-0"

Für x   x>-1   -1 + ⇒ f(x)= 5 x 3 -5 x 2 +4x +3 ( x +1 ) · ( x +4 ) -11 "+0" ⋅ (+3) = -11 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von + nach -

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

5 x 3 -5 x 2 +4x +3 x 2 +5x +4 = x 2 · ( 5x -5 + 4 x + 3 x 2 ) x 2 · ( 1 + 5 x + 4 x 2 ) = 5x -5 + 4 x + 3 x 2 1 + 5 x + 4 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 5 x 3 -5 x 2 +4x +3 x 2 +5x +4 = 5x -5 + 4 x + 3 x 2 1 + 5 x + 4 x 2 -5 +0+0 1 +0+0 =

Die Funktion besitzt folglich keine waagrechte Asymptote.

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 2x -1 -2 - x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

-2 - x = 0
-x -2 = 0 | +2
-x = 2 |:(-1 )
x = -2

also Definitionsmenge D=R\{ -2 }

Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= 2x -1 -2 - x -5 "+0" -

Für x   x>-2   -2 + ⇒ f(x)= 2x -1 -2 - x -5 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von - nach +

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -3 x 2 +3x -1 ( 3 + x ) ( x +4 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( 3 + x ) ( x +4 ) = 0
( x +3 ) ( x +4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +3 = 0 | -3
x1 = -3

2. Fall:

x +4 = 0 | -4
x2 = -4

also Definitionsmenge D=R\{ -4 ; -3 }

Wir untersuchen nun das Verhalten für x → -4 (von links und von rechts)

Für x   x<-4   -4 - ⇒ f(x)= -3 x 2 +3x -1 ( 3 + x ) ( x +4 ) -61 (-1) ⋅ "-0" = -61 "+0" -

Für x   x>-4   -4 + ⇒ f(x)= -3 x 2 +3x -1 ( 3 + x ) ( x +4 ) -61 (-1) ⋅ "+0" = -61 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -4 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → -3 (von links und von rechts)

Für x   x<-3   -3 - ⇒ f(x)= -3 x 2 +3x -1 ( 3 + x ) ( x +4 ) -37 "-0" ⋅ (+1) = -37 "-0"

Für x   x>-3   -3 + ⇒ f(x)= -3 x 2 +3x -1 ( 3 + x ) ( x +4 ) -37 "+0" ⋅ (+1) = -37 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -3 mit einem VZW von + nach -

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 3x -3 x 2 -1

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 -1 = 0 | +1
x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

also Definitionsmenge D=R\{ -1 ; 1 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

3x -3 x 2 -1 = 3x -3 ( x +1 ) · ( x -1 )

Wir untersuchen das Verhalten für x → 1 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x -1) erkennen, die wir dann kürzen können:

3x -3 ( x +1 ) · ( x -1 ) = 3x -3 ( x +1 ) · ( x -1 ) = 3 x +1

Für x → 1 ⇒ f(x)= 3x -3 ( x +1 ) · ( x -1 ) = 3 x +1 3 1 +1 = 3 2

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(1 | 3 2 )


Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= 3x -3 ( x +1 ) · ( x -1 ) -6 "-0" ⋅ (-2) = -6 "+0" -

Für x   x>-1   -1 + ⇒ f(x)= 3x -3 ( x +1 ) · ( x -1 ) -6 "+0" ⋅ (-2) = -6 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von - nach +

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= 0 eine senkrechte Asymptote mit einem VZW von + nach -, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=0 (mit einem VZW von + nach -) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x +0 = ? x

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x +0 , passen bereits die Definitionslücke bei x = 0 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x +0 = x · 1 x x · 1 = 1 x 1

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x +0 = 1 x 1 0 1 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<0   0- ⇒ f(x)= 1 x +0 +1 "-0" -

Für x   x>0   0+ ⇒ f(x)= 1 x +0 +1 "+0"

Wir haben also den falschen VZW. Wenn wir aber den Zähler mit -1 multiplizieren, bekommen wir gerade das entgegengesetzte Verhalten in der Nähe der Definitionslücke.

Mit f(x)= -1 x +0 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= 3 eine senkrechte Asymptote mit einem VZW von - nach +, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=3 (mit einem VZW von - nach +) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x -3

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x -3 , passen bereits die Definitionslücke bei x = 3 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x -3 = x · 1 x x · ( 1 - 3 x ) = 1 x 1 - 3 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x -3 = 1 x 1 - 3 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<3   3- ⇒ f(x)= 1 x -3 +1 "-0" -

Für x   x>3   3+ ⇒ f(x)= 1 x -3 +1 "+0"

Mit f(x)= 1 x -3 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e -0,2x - x 2 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e -0,2x - x 2 - - ( Der Exponentialterm im Zähler wächst sehr viel schneller gegen ∞ bzw. gegen 0 als der Nenner und setzt sich deswegen durch)

Für x → ∞ ⇒ f(x)= e -0,2x - x 2 0 - 0

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = -4 x 2 · e -0,2x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= -4 x 2 · e -0,2x - · -

Für x → ∞ ⇒ f(x)= -4 x 2 · e -0,2x - · 0 0( Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen 0 als der erste Faktor gegen - und setzt sich deswegen durch)

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 0 (x-Achse).