nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = 2 x 3 -3 x 2 + x +2 ( x +1 ) ( x +2 )

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x +1 ) ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +1 = 0 | -1
x1 = -1

2. Fall:

x +2 = 0 | -2
x2 = -2

also Definitionsmenge D=R\{ -2 ; -1 }

Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= 2 x 3 -3 x 2 + x +2 ( x +1 ) ( x +2 ) -28 (-1) ⋅ "-0" = -28 "+0" -

Für x   x>-2   -2 + ⇒ f(x)= 2 x 3 -3 x 2 + x +2 ( x +1 ) ( x +2 ) -28 (-1) ⋅ "+0" = -28 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= 2 x 3 -3 x 2 + x +2 ( x +1 ) ( x +2 ) -4 "-0" ⋅ (+1) = -4 "-0"

Für x   x>-1   -1 + ⇒ f(x)= 2 x 3 -3 x 2 + x +2 ( x +1 ) ( x +2 ) -4 "+0" ⋅ (+1) = -4 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von + nach -

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
2 x 3 -3 x 2 + x +2 ( x +1 ) ( x +2 ) = 2 x 3 -3 x 2 + x +2 x 2 +3x +2

2 x 3 -3 x 2 + x +2 x 2 +3x +2 = x 2 · ( 2x -3 + 1 x + 2 x 2 ) x 2 · ( 1 + 3 x + 2 x 2 ) = 2x -3 + 1 x + 2 x 2 1 + 3 x + 2 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 2 x 3 -3 x 2 + x +2 x 2 +3x +2 = 2x -3 + 1 x + 2 x 2 1 + 3 x + 2 x 2 -3 +0+0 1 +0+0 =

Die Funktion besitzt folglich keine waagrechte Asymptote.

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -2x +5 e 3x - e x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

e 3x - e x = 0
( e 2x -1 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 2x -1 = 0 | +1
e 2x = 1 |ln(⋅)
2x = 0 |:2
x1 = 0 ≈ 0

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

also Definitionsmenge D=R\{0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-2x +5 e 3x - e x = -2x +5 ( e 2x -1 ) · e x

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= -2x +5 ( e 2x -1 ) · e x +5 "-0" ⋅ (+1) = +5 "-0" -

Für x   x>0   0 + ⇒ f(x)= -2x +5 ( e 2x -1 ) · e x +5 "+0" ⋅ (+1) = +5 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von - nach +

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -x +4 x 2 - x -12

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 - x -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -12 ) 21

x1,2 = +1 ± 1 +48 2

x1,2 = +1 ± 49 2

x1 = 1 + 49 2 = 1 +7 2 = 8 2 = 4

x2 = 1 - 49 2 = 1 -7 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -12 ) = 1 4 + 12 = 1 4 + 48 4 = 49 4

x1,2 = 1 2 ± 49 4

x1 = 1 2 - 7 2 = - 6 2 = -3

x2 = 1 2 + 7 2 = 8 2 = 4

also Definitionsmenge D=R\{ -3 ; 4 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-x +4 x 2 - x -12 = -x +4 ( x -4 ) · ( x +3 )

Wir untersuchen das Verhalten für x → 4 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x -4) erkennen, die wir dann kürzen können:

-x +4 ( x -4 ) · ( x +3 ) = -1 1 · ( x +3 )

Für x → 4 ⇒ f(x)= -x +4 ( x -4 ) · ( x +3 ) = -1 1 · ( x +3 ) -1 1 · ( 4 +3 ) = - 1 7

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(4 | - 1 7 )


Wir untersuchen nun das Verhalten für x → -3 (von links und von rechts)

Für x   x<-3   -3 - ⇒ f(x)= -x +4 ( x -4 ) · ( x +3 ) +7 (-7) ⋅ "-0" = +7 "+0"

Für x   x>-3   -3 + ⇒ f(x)= -x +4 ( x -4 ) · ( x +3 ) +7 (-7) ⋅ "+0" = +7 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -3 mit einem VZW von + nach -

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -2x +2 x 2 - x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 - x = 0
x ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

also Definitionsmenge D=R\{0; 1 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-2x +2 x 2 - x = -2x +2 x · ( x -1 )

Wir untersuchen das Verhalten für x → 1 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x -1) erkennen, die wir dann kürzen können:

-2x +2 x · ( x -1 ) = -2x +2 x · ( x -1 ) = -2 x · 1

Für x → 1 ⇒ f(x)= -2x +2 x · ( x -1 ) = -2 x · 1 -2 1 · 1 = -2

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(1 | -2 )


Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= -2x +2 x · ( x -1 ) +2 "-0" ⋅ (-1) = +2 "+0"

Für x   x>0   0 + ⇒ f(x)= -2x +2 x · ( x -1 ) +2 "+0" ⋅ (-1) = +2 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von + nach -

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x1 = -1 und bei x2 = 0 jeweils eine senkrechte Asymptote, bei y = -3 eine waagrechte Asymptote und eine Nullstelle in N(-4|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptoten bei x1=-1 und x2=0 müssen die entsprechenden Linearterme in den Nenner unserer gesuchten Funktion, also:

? ( x +1 ) · ( x +0 ) = ? x 2 + x

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x +4 ) x 2 + x

Jetzt testen wir x +4 ( x +1 ) · ( x +0 ) auf die waagrechte Asymptote:

Da im Nenner eine quadratische Funktion ist, im Zähler auch nur eine lineare Funktion, muss die Funktion für x → ∞ gegen 0 laufen. Um diesen Grenzwert aber auf -3 zu bringen, quadrieren wir einfach den Linearterm des Zählers und geben im als Koeffizient -3. Jetzt stimmt auch die waagrechte Asympzote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-3 ( x +4 ) 2 ( x +1 ) · ( x +0 ) = -3 x 2 -24x -48 x 2 + x

-3 x 2 -24x -48 x 2 + x = x 2 · ( -3 - 24 x - 48 x 2 ) x 2 · ( 1 + 1 x ) = -3 - 24 x - 48 x 2 1 + 1 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -3 x 2 -24x -48 x 2 + x = -3 - 24 x - 48 x 2 1 + 1 x -3 +0+0 1 +0 = -3 1 = -3

Mit f(x)= -3 ( x +4 ) 2 ( x +1 ) · ( x +0 ) sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= 2 eine senkrechte Asymptote mit einem VZW von - nach +, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=2 (mit einem VZW von - nach +) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x -2

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x -2 , passen bereits die Definitionslücke bei x = 2 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x -2 = x · 1 x x · ( 1 - 2 x ) = 1 x 1 - 2 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x -2 = 1 x 1 - 2 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<2   2- ⇒ f(x)= 1 x -2 +1 "-0" -

Für x   x>2   2+ ⇒ f(x)= 1 x -2 +1 "+0"

Mit f(x)= 1 x -2 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = 5x · e -0,5x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= 5x · e -0,5x - · -

Für x → ∞ ⇒ f(x)= 5x · e -0,5x · 0 0( Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen 0 als der erste Faktor gegen und setzt sich deswegen durch)

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = 3 +3 e 0,5x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= 3 +3 e 0,5x 3 +0 3

Für x → ∞ ⇒ f(x)= 3 +3 e 0,5x 3 +

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 3 .