nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = -1 ( x -4 ) ( x -3 )

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x -4 ) ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -4 = 0 | +4
x1 = 4

2. Fall:

x -3 = 0 | +3
x2 = 3

also Definitionsmenge D=R\{ 3 ; 4 }

Wir untersuchen nun das Verhalten für x → 3 (von links und von rechts)

Für x   x<3   3 - ⇒ f(x)= -1 ( x -4 ) ( x -3 ) -1 (-1) ⋅ "-0" = -1 "+0" -

Für x   x>3   3 + ⇒ f(x)= -1 ( x -4 ) ( x -3 ) -1 (-1) ⋅ "+0" = -1 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 3 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 4 (von links und von rechts)

Für x   x<4   4 - ⇒ f(x)= -1 ( x -4 ) ( x -3 ) -1 "-0" ⋅ (+1) = -1 "-0"

Für x   x>4   4 + ⇒ f(x)= -1 ( x -4 ) ( x -3 ) -1 "+0" ⋅ (+1) = -1 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 4 mit einem VZW von + nach -

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-1 ( x -4 ) ( x -3 ) = -1 x 2 -7x +12

-1 x 2 -7x +12 = x 2 · ( - 1 x 2 ) x 2 · ( 1 - 7 x + 12 x 2 ) = - 1 x 2 1 - 7 x + 12 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -1 x 2 -7x +12 = - 1 x 2 1 - 7 x + 12 x 2 0 1 +0+0 = 0 1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 2x +2 x +4

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x +4 = 0 | -4
x = -4

also Definitionsmenge D=R\{ -4 }

Wir untersuchen nun das Verhalten für x → -4 (von links und von rechts)

Für x   x<-4   -4 - ⇒ f(x)= 2x +2 x +4 -6 "-0"

Für x   x>-4   -4 + ⇒ f(x)= 2x +2 x +4 -6 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -4 mit einem VZW von + nach -

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 4x -5 e 2x - e x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

e 2x - e x = 0
( e x -1 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e x -1 = 0 | +1
e x = 1 |ln(⋅)
x1 = 0 ≈ 0

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

also Definitionsmenge D=R\{0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

4x -5 e 2x - e x = 4x -5 ( e x -1 ) · e x

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= 4x -5 ( e x -1 ) · e x -5 "-0" ⋅ (+1) = -5 "-0"

Für x   x>0   0 + ⇒ f(x)= 4x -5 ( e x -1 ) · e x -5 "+0" ⋅ (+1) = -5 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von + nach -

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -x +1 ( x -1 ) ( x -3 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x -1 ) ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -1 = 0 | +1
x1 = 1

2. Fall:

x -3 = 0 | +3
x2 = 3

also Definitionsmenge D=R\{ 1 ; 3 }

Wir untersuchen das Verhalten für x → 1 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x -1) erkennen, die wir dann kürzen können:

-x +1 ( x -1 ) ( x -3 ) = -1 1 · ( x -3 )

Für x → 1 ⇒ f(x)= -x +1 ( x -1 ) ( x -3 ) = -1 1 · ( x -3 ) -1 1 · ( 1 -3 ) = 1 2

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(1 | 1 2 )


Wir untersuchen nun das Verhalten für x → 3 (von links und von rechts)

Für x   x<3   3 - ⇒ f(x)= -x +1 ( x -1 ) ( x -3 ) -2 (+2) ⋅ "-0" = -2 "-0"

Für x   x>3   3 + ⇒ f(x)= -x +1 ( x -1 ) ( x -3 ) -2 (+2) ⋅ "+0" = -2 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 3 mit einem VZW von + nach -

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x1 = -1 und bei x2 = -3 jeweils eine senkrechte Asymptote, bei y = -3 eine waagrechte Asymptote und in N1(0|0) und N2(2|0) Nullstellen besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptoten bei x1=-1 und x2=-3 müssen die entsprechenden Linearterme in den Nenner unserer gesuchten Funktion, also:

? ( x +1 ) · ( x +3 ) = ? x 2 +4x +3

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( ( x +0 ) · ( x -2 ) ) x 2 +4x +3 = ?⋅ ( x 2 -2x ) x 2 +4x +3

Jetzt testen wir x 2 -2x ( x +1 ) · ( x +3 ) auf die waagrechte Asymptote:

Um die waagrechte Asymptote von 1 auf -3 zu bringen multiplizieren wir einfach den Zähler mit -3 und erhalten so:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-3( x 2 -2x ) ( x +1 ) · ( x +3 ) = -3 x 2 +6x x 2 +4x +3

-3 x 2 +6x x 2 +4x +3 = x 2 · ( -3 + 6 x ) x 2 · ( 1 + 4 x + 3 x 2 ) = -3 + 6 x 1 + 4 x + 3 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -3 x 2 +6x x 2 +4x +3 = -3 + 6 x 1 + 4 x + 3 x 2 -3 +0 1 +0+0 = -3 1 = -3

Mit f(x)= -3( x 2 -2x ) ( x +1 ) · ( x +3 ) sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x1 = 2 und bei x2 = 1 jeweils eine senkrechte Asymptote, bei y = -3 eine waagrechte Asymptote und in N1(3|0) und N2(4|0) Nullstellen besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptoten bei x1=2 und x2=1 müssen die entsprechenden Linearterme in den Nenner unserer gesuchten Funktion, also:

? ( x -2 ) · ( x -1 ) = ? x 2 -3x +2

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( ( x -3 ) · ( x -4 ) ) x 2 -3x +2 = ?⋅ ( x 2 -7x +12 ) x 2 -3x +2

Jetzt testen wir x 2 -7x +12 ( x -2 ) · ( x -1 ) auf die waagrechte Asymptote:

Um die waagrechte Asymptote von 1 auf -3 zu bringen multiplizieren wir einfach den Zähler mit -3 und erhalten so:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-3( x 2 -7x +12 ) ( x -2 ) · ( x -1 ) = -3 x 2 +21x -36 x 2 -3x +2

-3 x 2 +21x -36 x 2 -3x +2 = x 2 · ( -3 + 21 x - 36 x 2 ) x 2 · ( 1 - 3 x + 2 x 2 ) = -3 + 21 x - 36 x 2 1 - 3 x + 2 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -3 x 2 +21x -36 x 2 -3x +2 = -3 + 21 x - 36 x 2 1 - 3 x + 2 x 2 -3 +0+0 1 +0+0 = -3 1 = -3

Mit f(x)= -3( x 2 -7x +12 ) ( x -2 ) · ( x -1 ) sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = - 4 x 2 + -5 e x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= - 4 x 2 + -5 e x 0 + -5 0 0 - -

Für x → ∞ ⇒ f(x)= - 4 x 2 + -5 e x 0 + -5 0+0 0

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e 0,5x x 2 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e 0,5x x 2 0 0

Für x → ∞ ⇒ f(x)= e 0,5x x 2 ( Der Exponentialterm im Zähler wächst sehr viel schneller gegen ∞ bzw. gegen 0 als der Nenner und setzt sich deswegen durch)

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 0 (x-Achse).