nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = -1 x 2 +6x +9

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 +6x +9 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · 1 · 9 21

x1,2 = -6 ± 36 -36 2

x1,2 = -6 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 3 2 - 9 = 9 - 9 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -3 ± 0 = -3

also Definitionsmenge D=R\{ -3 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-1 x 2 +6x +9 = -1 ( x +3 ) 2

Wir untersuchen nun das Verhalten für x → -3 (von links und von rechts)

Für x   x<-3   -3 - ⇒ f(x)= -1 ( x +3 ) 2 -1 "+0" -

Für x   x>-3   -3 + ⇒ f(x)= -1 ( x +3 ) 2 -1 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -3 ohne VZW (beides - )

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

-1 x 2 +6x +9 = x 2 · ( - 1 x 2 ) x 2 · ( 1 + 6 x + 9 x 2 ) = - 1 x 2 1 + 6 x + 9 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -1 x 2 +6x +9 = - 1 x 2 1 + 6 x + 9 x 2 0 1 +0+0 = 0 1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -3 e 4x - e x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

e 4x - e x = 0
( e 3x -1 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 3x -1 = 0 | +1
e 3x = 1 |ln(⋅)
3x = 0 |:3
x1 = 0 ≈ 0

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

also Definitionsmenge D=R\{0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-3 e 4x - e x = -3 ( e 3x -1 ) · e x

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= -3 ( e 3x -1 ) · e x -3 "-0" ⋅ (+1) = -3 "-0"

Für x   x>0   0 + ⇒ f(x)= -3 ( e 3x -1 ) · e x -3 "+0" ⋅ (+1) = -3 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von + nach -

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 3 x 2 -5x -2 e 2x - e x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

e 2x - e x = 0
( e x -1 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e x -1 = 0 | +1
e x = 1 |ln(⋅)
x1 = 0 ≈ 0

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

also Definitionsmenge D=R\{0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

3 x 2 -5x -2 e 2x - e x = 3 x 2 -5x -2 ( e x -1 ) · e x

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= 3 x 2 -5x -2 ( e x -1 ) · e x -2 "-0" ⋅ (+1) = -2 "-0"

Für x   x>0   0 + ⇒ f(x)= 3 x 2 -5x -2 ( e x -1 ) · e x -2 "+0" ⋅ (+1) = -2 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von + nach -

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -2x +4 x 2 -2x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 -2x = 0
x ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -2 = 0 | +2
x2 = 2

also Definitionsmenge D=R\{0; 2 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-2x +4 x 2 -2x = -2x +4 x · ( x -2 )

Wir untersuchen das Verhalten für x → 2 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x -2) erkennen, die wir dann kürzen können:

-2x +4 x · ( x -2 ) = -2x +4 x · ( x -2 ) = -2 x · 1

Für x → 2 ⇒ f(x)= -2x +4 x · ( x -2 ) = -2 x · 1 -2 2 · 1 = -1

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(2 | -1 )


Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= -2x +4 x · ( x -2 ) +4 "-0" ⋅ (-2) = +4 "+0"

Für x   x>0   0 + ⇒ f(x)= -2x +4 x · ( x -2 ) +4 "+0" ⋅ (-2) = +4 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von + nach -

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= -3 eine senkrechte Asymptote ohne VZW (beides mal f(x) → +∞), bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-3 (ohne VZW (beides mal f(x) → +∞)) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:

? ( x +3 ) 2 = ? x 2 +6x +9

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( 1 ) x 2 +6x +9

Jetzt testen wir 1 ( x +3 ) 2 auf die waagrechte Asymptote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
1 ( x +3 ) 2 = 1 x 2 +6x +9

1 x 2 +6x +9 = x 2 · 1 x 2 x 2 · ( 1 + 6 x + 9 x 2 ) = 1 x 2 1 + 6 x + 9 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x 2 +6x +9 = 1 x 2 1 + 6 x + 9 x 2 0 1 +0+0 = 0 1 = 0

Mit f(x)= 1 ( x +3 ) 2 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= 1 eine senkrechte Asymptote ohne VZW (beides mal f(x) → +∞), bei y = 2 eine waagrechte Asymptote und eine Nullstelle in N(2|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=1 (ohne VZW (beides mal f(x) → +∞)) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:

? ( x -1 ) 2 = ? x 2 -2x +1

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x -2 ) x 2 -2x +1

Jetzt testen wir x -2 ( x -1 ) 2 auf die waagrechte Asymptote:

Da im Nenner eine quadratische Funktion ist, im Zähler auch nur eine lineare Funktion, muss die Funktion für x → ∞ gegen 0 laufen. Um diesen Grenzwert aber auf 2 zu bringen, quadrieren wir einfach den Linearterm des Zählers und geben im als Koeffizient 2. Jetzt stimmt auch die waagrechte Asympzote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
2 ( x -2 ) 2 ( x -1 ) 2 = 2 x 2 -8x +8 x 2 -2x +1

2 x 2 -8x +8 x 2 -2x +1 = x 2 · ( 2 - 8 x + 8 x 2 ) x 2 · ( 1 - 2 x + 1 x 2 ) = 2 - 8 x + 8 x 2 1 - 2 x + 1 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 2 x 2 -8x +8 x 2 -2x +1 = 2 - 8 x + 8 x 2 1 - 2 x + 1 x 2 2 +0+0 1 +0+0 = 2 1 = 2

Mit f(x)= 2 ( x -2 ) 2 ( x -1 ) 2 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e -0,1x -4 x 2 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e -0,1x -4 x 2 - - ( Der Exponentialterm im Zähler wächst sehr viel schneller gegen ∞ bzw. gegen 0 als der Nenner und setzt sich deswegen durch)

Für x → ∞ ⇒ f(x)= e -0,1x -4 x 2 0 - 0

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = -5x · e 0,5x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= -5x · e 0,5x · 0 0( Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen 0 als der erste Faktor gegen und setzt sich deswegen durch)

Für x → ∞ ⇒ f(x)= -5x · e 0,5x - · -

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 0 (x-Achse).