nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = 5x +2 x 2 - x

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 - x = 0
x ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

also Definitionsmenge D=R\{0; 1 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

5x +2 x 2 - x = 5x +2 x · ( x -1 )

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= 5x +2 x · ( x -1 ) +2 "-0" ⋅ (-1) = +2 "+0"

Für x   x>0   0 + ⇒ f(x)= 5x +2 x · ( x -1 ) +2 "+0" ⋅ (-1) = +2 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= 5x +2 x · ( x -1 ) +7 (+1) ⋅ "-0" = +7 "-0" -

Für x   x>1   1 + ⇒ f(x)= 5x +2 x · ( x -1 ) +7 (+1) ⋅ "+0" = +7 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 mit einem VZW von - nach +

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

5x +2 x 2 - x = x 2 · ( 5 x + 2 x 2 ) x 2 · ( 1 - 1 x ) = 5 x + 2 x 2 1 - 1 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 5x +2 x 2 - x = 5 x + 2 x 2 1 - 1 x 0+0 1 +0 = 0 1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -3 x +4

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x +4 = 0 | -4
x = -4

also Definitionsmenge D=R\{ -4 }

Wir untersuchen nun das Verhalten für x → -4 (von links und von rechts)

Für x   x<-4   -4 - ⇒ f(x)= -3 x +4 -3 "-0"

Für x   x>-4   -4 + ⇒ f(x)= -3 x +4 -3 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -4 mit einem VZW von + nach -

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -2 x 2 + x -1 x 2 -8x +16

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 -8x +16 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +8 ± ( -8 ) 2 -4 · 1 · 16 21

x1,2 = +8 ± 64 -64 2

x1,2 = +8 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 8 2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -4 ) 2 - 16 = 16 - 16 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 4 ± 0 = 4

also Definitionsmenge D=R\{ 4 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-2 x 2 + x -1 x 2 -8x +16 = -2 x 2 + x -1 ( x -4 ) 2

Wir untersuchen nun das Verhalten für x → 4 (von links und von rechts)

Für x   x<4   4 - ⇒ f(x)= -2 x 2 + x -1 ( x -4 ) 2 -29 "+0" -

Für x   x>4   4 + ⇒ f(x)= -2 x 2 + x -1 ( x -4 ) 2 -29 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 4 ohne VZW (beides - )

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -3x -9 ( x +1 ) ( x +3 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x +1 ) ( x +3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +1 = 0 | -1
x1 = -1

2. Fall:

x +3 = 0 | -3
x2 = -3

also Definitionsmenge D=R\{ -3 ; -1 }

Wir untersuchen das Verhalten für x → -3 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x +3) erkennen, die wir dann kürzen können:

-3x -9 ( x +1 ) ( x +3 ) = -3x -9 ( x +1 ) ( x +3 ) = - 3 x +1

Für x → -3 ⇒ f(x)= -3x -9 ( x +1 ) ( x +3 ) = - 3 x +1 - 3 -3 +1 = 3 2

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(-3 | 3 2 )


Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= -3x -9 ( x +1 ) ( x +3 ) -6 "-0" ⋅ (+2) = -6 "-0"

Für x   x>-1   -1 + ⇒ f(x)= -3x -9 ( x +1 ) ( x +3 ) -6 "+0" ⋅ (+2) = -6 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von + nach -

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= 1 eine senkrechte Asymptote ohne VZW (beides mal f(x) → -∞), bei y = 0 eine waagrechte Asymptote und eine Nullstelle in N(3|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=1 (ohne VZW (beides mal f(x) → -∞)) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:

? ( x -1 ) 2 = ? x 2 -2x +1

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x -3 ) x 2 -2x +1

Jetzt testen wir x -3 ( x -1 ) 2 auf die waagrechte Asymptote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
x -3 ( x -1 ) 2 = x -3 x 2 -2x +1

x -3 x 2 -2x +1 = x 2 · ( 1 x - 3 x 2 ) x 2 · ( 1 - 2 x + 1 x 2 ) = 1 x - 3 x 2 1 - 2 x + 1 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= x -3 x 2 -2x +1 = 1 x - 3 x 2 1 - 2 x + 1 x 2 0+0 1 +0+0 = 0 1 = 0

Mit f(x)= x -3 ( x -1 ) 2 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= -3 eine senkrechte Asymptote ohne VZW (beides mal f(x) → -∞), bei y = 0 eine waagrechte Asymptote und eine Nullstelle in N(0|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-3 (ohne VZW (beides mal f(x) → -∞)) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:

? ( x +3 ) 2 = ? x 2 +6x +9

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x +0 ) x 2 +6x +9 = ?⋅ ( x ) x 2 +6x +9

Jetzt testen wir x ( x +3 ) 2 auf die waagrechte Asymptote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
x ( x +3 ) 2 = x x 2 +6x +9

x x 2 +6x +9 = x 2 · 1 x x 2 · ( 1 + 6 x + 9 x 2 ) = 1 x 1 + 6 x + 9 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= x x 2 +6x +9 = 1 x 1 + 6 x + 9 x 2 0 1 +0+0 = 0 1 = 0

Mit f(x)= x ( x +3 ) 2 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e 0,4x -3x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e 0,4x -3x 0 0

Für x → ∞ ⇒ f(x)= e 0,4x -3x - - ( Der Exponentialterm im Zähler wächst sehr viel schneller gegen ∞ bzw. gegen 0 als der Nenner und setzt sich deswegen durch)

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = -4 x 2 · e 0,3x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= -4 x 2 · e 0,3x - · 0 0( Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen 0 als der erste Faktor gegen - und setzt sich deswegen durch)

Für x → ∞ ⇒ f(x)= -4 x 2 · e 0,3x - · -

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 0 (x-Achse).