nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = -5 x 3 +3 x 2 - x +1 x 2 + x

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 + x = 0
x ( x +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +1 = 0 | -1
x2 = -1

also Definitionsmenge D=R\{ -1 ; 0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-5 x 3 +3 x 2 - x +1 x 2 + x = -5 x 3 +3 x 2 - x +1 x · ( x +1 )

Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= -5 x 3 +3 x 2 - x +1 x · ( x +1 ) +10 (-1) ⋅ "-0" = +10 "+0"

Für x   x>-1   -1 + ⇒ f(x)= -5 x 3 +3 x 2 - x +1 x · ( x +1 ) +10 (-1) ⋅ "+0" = +10 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= -5 x 3 +3 x 2 - x +1 x · ( x +1 ) +1 "-0" ⋅ (+1) = +1 "-0" -

Für x   x>0   0 + ⇒ f(x)= -5 x 3 +3 x 2 - x +1 x · ( x +1 ) +1 "+0" ⋅ (+1) = +1 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von - nach +

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

-5 x 3 +3 x 2 - x +1 x 2 + x = x 2 · ( -5x +3 - 1 x + 1 x 2 ) x 2 · ( 1 + 1 x ) = -5x +3 - 1 x + 1 x 2 1 + 1 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -5 x 3 +3 x 2 - x +1 x 2 + x = -5x +3 - 1 x + 1 x 2 1 + 1 x - +3 +0+0 1 +0 = -

Die Funktion besitzt folglich keine waagrechte Asymptote.

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 2 e 3x - e x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

e 3x - e x = 0
( e 2x -1 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 2x -1 = 0 | +1
e 2x = 1 |ln(⋅)
2x = 0 |:2
x1 = 0 ≈ 0

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

also Definitionsmenge D=R\{0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

2 e 3x - e x = 2 ( e 2x -1 ) · e x

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= 2 ( e 2x -1 ) · e x +2 "-0" ⋅ (+1) = +2 "-0" -

Für x   x>0   0 + ⇒ f(x)= 2 ( e 2x -1 ) · e x +2 "+0" ⋅ (+1) = +2 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von - nach +

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -3x +2 e 3x - e x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

e 3x - e x = 0
( e 2x -1 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 2x -1 = 0 | +1
e 2x = 1 |ln(⋅)
2x = 0 |:2
x1 = 0 ≈ 0

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

also Definitionsmenge D=R\{0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-3x +2 e 3x - e x = -3x +2 ( e 2x -1 ) · e x

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= -3x +2 ( e 2x -1 ) · e x +2 "-0" ⋅ (+1) = +2 "-0" -

Für x   x>0   0 + ⇒ f(x)= -3x +2 ( e 2x -1 ) · e x +2 "+0" ⋅ (+1) = +2 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von - nach +

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = ( x -1 ) ( x -3 ) 2x -6

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

2x -6 = 0 | +6
2x = 6 |:2
x = 3

also Definitionsmenge D=R\{ 3 }

Wir untersuchen das Verhalten für x → 3 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x -3) erkennen, die wir dann kürzen können:

( x -1 ) ( x -3 ) 2x -6 = ( x -1 ) ( x -3 ) 2x -6 = 1 2 ( x -1 )

Für x → 3 ⇒ f(x)= ( x -1 ) ( x -3 ) 2x -6 = 1 2 ( x -1 ) 1 2 ( 3 -1 ) = 1

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(3 | 1 )


Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x1 = -2 und bei x2 = 0 jeweils eine senkrechte Asymptote, bei y = -2 eine waagrechte Asymptote und eine Nullstelle in N(-4|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptoten bei x1=-2 und x2=0 müssen die entsprechenden Linearterme in den Nenner unserer gesuchten Funktion, also:

? ( x +2 ) · ( x +0 ) = ? x 2 +2x

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x +4 ) x 2 +2x

Jetzt testen wir x +4 ( x +2 ) · ( x +0 ) auf die waagrechte Asymptote:

Da im Nenner eine quadratische Funktion ist, im Zähler auch nur eine lineare Funktion, muss die Funktion für x → ∞ gegen 0 laufen. Um diesen Grenzwert aber auf -2 zu bringen, quadrieren wir einfach den Linearterm des Zählers und geben im als Koeffizient -2. Jetzt stimmt auch die waagrechte Asympzote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-2 ( x +4 ) 2 ( x +2 ) · ( x +0 ) = -2 x 2 -16x -32 x 2 +2x

-2 x 2 -16x -32 x 2 +2x = x 2 · ( -2 - 16 x - 32 x 2 ) x 2 · ( 1 + 2 x ) = -2 - 16 x - 32 x 2 1 + 2 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -2 x 2 -16x -32 x 2 +2x = -2 - 16 x - 32 x 2 1 + 2 x -2 +0+0 1 +0 = -2 1 = -2

Mit f(x)= -2 ( x +4 ) 2 ( x +2 ) · ( x +0 ) sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= 2 eine senkrechte Asymptote mit einem VZW von - nach +, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=2 (mit einem VZW von - nach +) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x -2

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x -2 , passen bereits die Definitionslücke bei x = 2 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x -2 = x · 1 x x · ( 1 - 2 x ) = 1 x 1 - 2 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x -2 = 1 x 1 - 2 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<2   2- ⇒ f(x)= 1 x -2 +1 "-0" -

Für x   x>2   2+ ⇒ f(x)= 1 x -2 +1 "+0"

Mit f(x)= 1 x -2 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e -0,4x 4 x 2 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e -0,4x 4 x 2 ( Der Exponentialterm im Zähler wächst sehr viel schneller gegen ∞ bzw. gegen 0 als der Nenner und setzt sich deswegen durch)

Für x → ∞ ⇒ f(x)= e -0,4x 4 x 2 0 0

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e -0,2x -5x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e -0,2x -5x ( Der Exponentialterm im Zähler wächst sehr viel schneller gegen ∞ bzw. gegen 0 als der Nenner und setzt sich deswegen durch)

Für x → ∞ ⇒ f(x)= e -0,2x -5x 0 - 0

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 0 (x-Achse).