nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = 1 x 2 -9

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 -9 = 0 | +9
x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

also Definitionsmenge D=R\{ -3 ; 3 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

1 x 2 -9 = 1 ( x +3 ) ( x -3 )

Wir untersuchen nun das Verhalten für x → -3 (von links und von rechts)

Für x   x<-3   -3 - ⇒ f(x)= 1 ( x +3 ) ( x -3 ) +1 "-0" ⋅ (-6) = +1 "+0"

Für x   x>-3   -3 + ⇒ f(x)= 1 ( x +3 ) ( x -3 ) +1 "+0" ⋅ (-6) = +1 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -3 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 3 (von links und von rechts)

Für x   x<3   3 - ⇒ f(x)= 1 ( x +3 ) ( x -3 ) +1 (+6) ⋅ "-0" = +1 "-0" -

Für x   x>3   3 + ⇒ f(x)= 1 ( x +3 ) ( x -3 ) +1 (+6) ⋅ "+0" = +1 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 3 mit einem VZW von - nach +

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x 2 -9 = x 2 · 1 x 2 x 2 · ( 1 - 9 x 2 ) = 1 x 2 1 - 9 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x 2 -9 = 1 x 2 1 - 9 x 2 0 1 +0 = 0 1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 3x -3 -1 - x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

-1 - x = 0
-x -1 = 0 | +1
-x = 1 |:(-1 )
x = -1

also Definitionsmenge D=R\{ -1 }

Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= 3x -3 -1 - x -6 "+0" -

Für x   x>-1   -1 + ⇒ f(x)= 3x -3 -1 - x -6 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von - nach +

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 4 x 2 -5x +1 x 2 +5x +6

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 +5x +6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -5 ± 5 2 -4 · 1 · 6 21

x1,2 = -5 ± 25 -24 2

x1,2 = -5 ± 1 2

x1 = -5 + 1 2 = -5 +1 2 = -4 2 = -2

x2 = -5 - 1 2 = -5 -1 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - 6 = 25 4 - 6 = 25 4 - 24 4 = 1 4

x1,2 = - 5 2 ± 1 4

x1 = - 5 2 - 1 2 = - 6 2 = -3

x2 = - 5 2 + 1 2 = - 4 2 = -2

also Definitionsmenge D=R\{ -3 ; -2 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

4 x 2 -5x +1 x 2 +5x +6 = 4 x 2 -5x +1 ( x +2 ) · ( x +3 )

Wir untersuchen nun das Verhalten für x → -3 (von links und von rechts)

Für x   x<-3   -3 - ⇒ f(x)= 4 x 2 -5x +1 ( x +2 ) · ( x +3 ) +52 (-1) ⋅ "-0" = +52 "+0"

Für x   x>-3   -3 + ⇒ f(x)= 4 x 2 -5x +1 ( x +2 ) · ( x +3 ) +52 (-1) ⋅ "+0" = +52 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -3 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= 4 x 2 -5x +1 ( x +2 ) · ( x +3 ) +27 "-0" ⋅ (+1) = +27 "-0" -

Für x   x>-2   -2 + ⇒ f(x)= 4 x 2 -5x +1 ( x +2 ) · ( x +3 ) +27 "+0" ⋅ (+1) = +27 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von - nach +

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -2x -4 ( x +1 ) ( x +2 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x +1 ) ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +1 = 0 | -1
x1 = -1

2. Fall:

x +2 = 0 | -2
x2 = -2

also Definitionsmenge D=R\{ -2 ; -1 }

Wir untersuchen das Verhalten für x → -2 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x +2) erkennen, die wir dann kürzen können:

-2x -4 ( x +1 ) ( x +2 ) = -2x -4 ( x +1 ) ( x +2 ) = - 2 x +1

Für x → -2 ⇒ f(x)= -2x -4 ( x +1 ) ( x +2 ) = - 2 x +1 - 2 -2 +1 = 2

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(-2 | 2 )


Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= -2x -4 ( x +1 ) ( x +2 ) -2 "-0" ⋅ (+1) = -2 "-0"

Für x   x>-1   -1 + ⇒ f(x)= -2x -4 ( x +1 ) ( x +2 ) -2 "+0" ⋅ (+1) = -2 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von + nach -

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= 2 eine senkrechte Asymptote mit einem VZW von + nach -, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=2 (mit einem VZW von + nach -) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x -2

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x -2 , passen bereits die Definitionslücke bei x = 2 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x -2 = x · 1 x x · ( 1 - 2 x ) = 1 x 1 - 2 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x -2 = 1 x 1 - 2 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<2   2- ⇒ f(x)= 1 x -2 +1 "-0" -

Für x   x>2   2+ ⇒ f(x)= 1 x -2 +1 "+0"

Wir haben also den falschen VZW. Wenn wir aber den Zähler mit -1 multiplizieren, bekommen wir gerade das entgegengesetzte Verhalten in der Nähe der Definitionslücke.

Mit f(x)= -1 x -2 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x1 = -3 und bei x2 = -1 jeweils eine senkrechte Asymptote, bei y = -1 eine waagrechte Asymptote und in N1(0|0) und N2(-2|0) Nullstellen besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptoten bei x1=-3 und x2=-1 müssen die entsprechenden Linearterme in den Nenner unserer gesuchten Funktion, also:

? ( x +3 ) · ( x +1 ) = ? x 2 +4x +3

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( ( x +0 ) · ( x +2 ) ) x 2 +4x +3 = ?⋅ ( x 2 +2x ) x 2 +4x +3

Jetzt testen wir x 2 +2x ( x +3 ) · ( x +1 ) auf die waagrechte Asymptote:

Um die waagrechte Asymptote von 1 auf -1 zu bringen multiplizieren wir einfach den Zähler mit -1 und erhalten so:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-( x 2 +2x ) ( x +3 ) · ( x +1 ) = - x 2 -2x x 2 +4x +3

- x 2 -2x x 2 +4x +3 = x 2 · ( -1 - 2 x ) x 2 · ( 1 + 4 x + 3 x 2 ) = -1 - 2 x 1 + 4 x + 3 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= - x 2 -2x x 2 +4x +3 = -1 - 2 x 1 + 4 x + 3 x 2 -1 +0 1 +0+0 = -1 1 = -1

Mit f(x)= -( x 2 +2x ) ( x +3 ) · ( x +1 ) sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = 4 x +1 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= 4 x +1 0 +1 1

Für x → ∞ ⇒ f(x)= 4 x +1 0 +1 1

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 1 .

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = 3 x 2 · e 0,3x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= 3 x 2 · e 0,3x · 0 0( Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen 0 als der erste Faktor gegen und setzt sich deswegen durch)

Für x → ∞ ⇒ f(x)= 3 x 2 · e 0,3x ·

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 0 (x-Achse).