nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Dezimal aus Binär

Beispiel:

Gib die Zahl (1.0010.0000)2 im Dezimalsystem an.

Lösung einblenden

Als Dezimalzahl

20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:

(1.0010.0000)2 = 0⋅1 + 0⋅2 + 0⋅4 + 0⋅8 + 0⋅16 + 1⋅32 + 0⋅64 + 0⋅128 + 1⋅256= 288

Somit ergibt sich die Dezimaldarstellung von (1.0010.0000)2 = 288

Binär aus Dezimal

Beispiel:

Gib die Zahl 166 im Binärsystem an.

Lösung einblenden
20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Zuerst versuchen wir Schritt für Schritt die Zahl 166 als Summe von 2er-Potenzen (siehe rechts) zu schreiben:

166 = 128 + 38
= 128 + 32 + 6
= 128 + 32 + 4 + 2

= 1⋅128 + 0⋅64 + 1⋅32 + 0⋅16 + 0⋅8 + 1⋅4 + 1⋅2 + 0⋅1

Somit ergibt sich die Binärdarstellung von 166 = (1010.0110)2

Binäres Addieren

Beispiel:

Berechne ohne die Binärzahlen in Dezimalzahlen umzuwandeln:

               ( 1100.1100)2
            + (1.0010.0000)2

Lösung einblenden

Wir schreiben die beiden Binärzahlen untereinander und gehen wie beim schriftlichen Addieren von Dezimalzahlen vor:

               ( 1100.1100)2
            + (1.0010.0000)2
                         
              (1 1110 1100)2

negative Binärzahlen

Beispiel:

Gegeben ist die 8-Bit-Binärzahl (0111.1101)2 = 125.

Bestimme -125 als 8-Bit-Binärzahl (in der Zweierkomplement-Darstellung):

Lösung einblenden

Wir invertieren im ersten Schritt unsere Binärzahl (d.h. aus jeder 0 wird eine 1 und aus jeder 1 wird eine 0).

so wird (0111.1101)2
zu (1000.0010)2

Jetzt müssen wir nur noch die binäre 1 auf diese invertierte Zahl draufaddieren:

               ( 1000.0010)2
             + ( 0000.0001)2
                         
               ( 1000 0011)2

Binäres Subtrahieren

Beispiel:

Berechne ohne die Binärzahlen in Dezimalzahlen umzuwandeln:

               ( 0101.0010)2
             - ( 0001.0100)2

Lösung einblenden

Wir wandeln erst den Subtrahend b, also die untere Zahl, die angezogen wird, in ihre negative Zahl um, so dass wir dann einfach die beiden Zahlen addieren können (a-b = a+(-b).

Wir invertieren im ersten Schritt unsere Binärzahl (d.h. aus jeder 0 wird eine 1 und aus jeder 1 wird eine 0).

so wird (0001.0100)2
zu (1110.1011)2

Jetzt müssen wir nur noch die binäre 1 auf diese invertierte Zahl draufaddieren:

               ( 1110.1011)2
             + ( 0000.0001)2
                       11
               ( 1110 1100)2

Jetzt können wir einfach a=(0101.0010)2 und -b = (1110.1100)2 addieren:

               ( 0101.0010)2
             + ( 1110.1100)2
               1 1       
              (1 0011 1110)2

Da wir ja aber nur 8-Bit Speicherplatz haben "verpufft der Overflow" und als Ergebnis stehen nur die 8 rechten Bit:

(0011.1110)2

Binäres Multiplizieren

Beispiel:

Berechne ohne die Binärzahlen in Dezimalzahlen umzuwandeln:

(101.0111)2 ⋅ (110.0001)2 =

Lösung einblenden

Der zweite Faktor (110.0001)2 lässt sich als Summe von reinen 2-er-Potenzen schreiben:

                        (1)2
                  (10.0000)2
              +  (100.0000)2
                 (110 0001)2

somit gilt:

(101.0111)2 ⋅ (110.0001)2 = 101.0111 ⋅ (100.0000 + 10.0000 + 1)

Das Multiplizieren mit einer 2-er-Potenz bedeutet aber ja, dass man einfach die entsprechende Anzahl an Nullen hintenanhängt, somit gilt:

(101.0111)2 ⋅ (110.0001)2 = (1.0101.1100.0000)2 + (1010.1110.0000)2 + (101.0111)2

Diese 3 Summanden können wir nun schrittweise addieren:

                 (101.0111)2
        + ( 1010.1110.0000)2
               1 1       
          ( 1011 0011 0111)2

Zu diesem Ergebnis dann die nächste Zahl dazu:

          ( 1011.0011.0111)2
       + (1.0101.1100.0000)2
         11 111          
        (10 0000 1111 0111)2

Das Ergebnis ist somit: (10.0000.1111.0111)2

(Zum Vergleich in Dezimalzahlen: 87 ⋅ 97 = 8439)

Binäres Dividieren

Beispiel:

Berechne ohne die Binärzahlen in Dezimalzahlen umzuwandeln:

(1100.1100)2 : (1100)2 =

Lösung einblenden
11001100 : 1100 = 10001     
- 1100                        
00001                       
- 0000                       
00011                      
- 0000                      
00110                     
- 0000                     
01100                    
- 1100                    
0000                    
  • Die obige Differenz (1100)2 - (1100)2 = (0)2 kann man entweder mit binärer Subtraktion berechnen oder - oft schneller - durch Umrechnen in Dezimalzahlen: 12 - 12 = 0
  • Die obige Differenz (01100)2 - (1100)2 = (0)2 kann man entweder mit binärer Subtraktion berechnen oder - oft schneller - durch Umrechnen in Dezimalzahlen: 12 - 12 = 0

(Zum Vergleich in Dezimalzahlen: 204 : 12 = 17)

Binär und Hexdezimal aus Dezimal

Beispiel:

Gib die Zahl 33 sowohl im Binär- als auch im Hexdezimalsystem an.

Lösung einblenden
20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Zuerst versuchen wir Schritt für Schritt die Zahl 33 als Summe von 2er-Potenzen (siehe rechts) zu schreiben:

33 = 32 + 1

= 1⋅32 + 0⋅16 + 0⋅8 + 0⋅4 + 0⋅2 + 1⋅1

Somit ergibt sich die Binärdarstellung von 33 = (10.0001)2

Um die Zahl 33 als Hexadzimalzahl auszugeben, gibt es zwei Möglichkeiten:

Theoretisch könnte man 33 wieder als Summe von 16er-Potenzen zerlegen und so die Koeffizienten vor den 16er-Potenzen als Hexadezimalzahl erhalten.

Wenn man bereits die Binärzahl hat, gibt es aber einen schnelleren Weg;

Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:

(10)2 = 1⋅2 + 0⋅1 = 2 = (2)16

(0001)2 = 0⋅8 + 0⋅4 + 0⋅2 + 1⋅1 = 1 = (1)16

Somit ergibt sich die Hexadezimaldarstellung von (10.0001)2 = (21)16

Dezimal und Hexdezimal aus Binär

Beispiel:

Gib die Zahl (1000.0100)2 sowohl im Dezimal- als auch im Hexdezimalsystem an.

Lösung einblenden

Als Dezimalzahl

20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:

(1000.0100)2 = 0⋅1 + 0⋅2 + 1⋅4 + 0⋅8 + 0⋅16 + 0⋅32 + 0⋅64 + 1⋅128= 132

Somit ergibt sich die Dezimaldarstellung von (1000.0100)2 = 132

Als Hexadezimalzahl

Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:

(1000)2 = 1⋅8 + 0⋅4 + 0⋅2 + 0⋅1 = 8 = (8)16

(0100)2 = 0⋅8 + 1⋅4 + 0⋅2 + 0⋅1 = 4 = (4)16

Somit ergibt sich die Hexadezimaldarstellung von (1000.0100)2 = (84)16

Binär und Dezimal aus Hexdezimal

Beispiel:

Gib die Zahl (D0)16 sowohl im Dezimal- als auch im Binärsystem an.

Lösung einblenden

Als Binärzahl

Jede Ziffer im Hexadezimalsystem kann in einen 4-er-Block im Binärsystem umgewandelt werden. Dazu zerlegen wir den Wert einfach als Summe der 2-er-Potenzen 8,4,2 und 1:

(D)16 = 13 = 8 + 4 + 1 = 1⋅8 + 1⋅4 + 0⋅2 + 1⋅1 = (1101)2

(0)16 = 0 = 0 = 0⋅8 + 0⋅4 + 0⋅2 + 0⋅1 = (0000)2

Diese binären 4-er-Blöcke können dann einfach hintereinander gesetzt werden.

Somit ergibt sich die Binärdarstellung von (D0)16 = (1101.0000)2

Als Dezimalzahl

20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:

(1101.0000)2 = 0⋅1 + 0⋅2 + 0⋅4 + 0⋅8 + 1⋅16 + 0⋅32 + 1⋅64 + 1⋅128= 208

Somit ergibt sich die Dezimaldarstellung von (1101.0000)2 = 208

Binär und Hexdezimal aus Dezimal

Beispiel:

Gib die Zahl 164 sowohl im Binär- als auch im Hexdezimalsystem an.

Lösung einblenden
20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Zuerst versuchen wir Schritt für Schritt die Zahl 164 als Summe von 2er-Potenzen (siehe rechts) zu schreiben:

164 = 128 + 36
= 128 + 32 + 4

= 1⋅128 + 0⋅64 + 1⋅32 + 0⋅16 + 0⋅8 + 1⋅4 + 0⋅2 + 0⋅1

Somit ergibt sich die Binärdarstellung von 164 = (1010.0100)2

Um die Zahl 164 als Hexadzimalzahl auszugeben, gibt es zwei Möglichkeiten:

Theoretisch könnte man 164 wieder als Summe von 16er-Potenzen zerlegen und so die Koeffizienten vor den 16er-Potenzen als Hexadezimalzahl erhalten.

Wenn man bereits die Binärzahl hat, gibt es aber einen schnelleren Weg;

Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:

(1010)2 = 1⋅8 + 0⋅4 + 1⋅2 + 0⋅1 = 10 = (A)16

(0100)2 = 0⋅8 + 1⋅4 + 0⋅2 + 0⋅1 = 4 = (4)16

Somit ergibt sich die Hexadezimaldarstellung von (1010.0100)2 = (A4)16

alle Teiler einer Zahl

Beispiel:

Gib alle Teiler von 45 an:

Lösung einblenden

Wir suchen alle Teiler von 45. Dabei beginnen wir mit der 1 und testen die weiteren Zahlen.

Wenn eine Zahl ein Teiler von 45 ist, teilen wir 45 durch diese Zahl und erhalten so automatisch einen weiteren Teiler. Wir erhalten so also immer Teiler-Paare mit einem größerem und einem kleineren Teiler (die multipliziert wieder 45 ergeben).

Somit genügt es, nur die kleineren Teiler zu finden, weil wir ja so die Größeren automatisch mit erhalten.

1 ist Teiler von 45, denn 45 = 1 ⋅ 45, also ist auch 45 ein Teiler.

2 ist kein Teiler von 45, denn 45 = 2 ⋅ 22 + 1.

3 ist Teiler von 45, denn 45 = 3 ⋅ 15, also ist auch 15 ein Teiler.

4 ist kein Teiler von 45, denn 45 = 4 ⋅ 11 + 1.

5 ist Teiler von 45, denn 45 = 5 ⋅ 9, also ist auch 9 ein Teiler.

6 ist kein Teiler von 45, denn 45 = 6 ⋅ 7 + 3.

Jetzt können wir das Ausprobieren beenden, weil ja 7 kein kleinerer, sondern nur ein größerer Teiler sein könnte
- schließlich ist 7 ⋅ 7 = 49 > 45, aber die größeren Teiler haben wir ja bereits alle bei den kleineren mit erhalten.

Richtig sortiert ergibt sich also für die Teilermenge von 45:
1, 3, 5, 9, 15, 45

Teilbarkeitsregeln rückwärts

Beispiel:

Bestimme eine Ziffer, die man für das Kästchen ⬜ einsetzen kann, damit ⬜0 sowohl durch 3 als auch durch 4 teilbar ist.

Lösung einblenden

1. Wir schauen zuerst, welche Ziffern möglich sind, dass die Zahl durch 4 teilbar ist.

Dazu müssen wir ja nur die letzten beiden Stellen betrachten, also ⬜0.

Da an der letzten Stelle eine 0 steht, muss an der vorletzten Stelle eine gerade Zahl (also 0, 2, 4, 6 oder 8) stehen, damit sie durch 4 teilbar ist (weil eben nur 00, 20, 40, 60, 80 durch 4 teilbar sind).

2. Diese verbleibenden Möglichkeiten überprüfen wir nun noch auf Teilbarkeit durch 3.

0: Dann wäre die Zahl 0, für die Quersumme gilt dann: 0 = 0, also durch 3 teilbar.

2: Dann wäre die Zahl 20, für die Quersumme gilt dann: 2 + 0 = 2, also nicht durch 3 teilbar.

4: Dann wäre die Zahl 40, für die Quersumme gilt dann: 4 + 0 = 4, also nicht durch 3 teilbar.

6: Dann wäre die Zahl 60, für die Quersumme gilt dann: 6 + 0 = 6, also durch 3 teilbar.

8: Dann wäre die Zahl 80, für die Quersumme gilt dann: 8 + 0 = 8, also nicht durch 3 teilbar.

Die möglichen Ziffern sind also 0 und 6.

Summe von Primzahlen

Beispiel:

Schreibe 19 als Summe von zwei Primzahlen:

Lösung einblenden

Wir testen der Reihe nach alle Primzahlen, ob sie mit einer weiteren Primzahl die Summe von 19 bilden:

2 + 17 = 19, dabei ist 17 auch eine Primzahl

2 und 17 wären also zwei Primzahlen mit 2 + 17 = 19

Primfaktorzerlegung

Beispiel:

Bestimme die Primfaktorzerlegung von 44 :

Lösung einblenden

Wir testen der Reihe nach alle Primzahlen, ob sie Teiler von 44 sind und zerlegen dann immer die Zahl in die Primzahl und den anderen Faktor:

44
= 2 ⋅ 22
= 2 ⋅ 2 ⋅ 11

kgV mit Primfaktoren

Beispiel:

Bestimme das kleinste gemeinsame Vielfache von 35 und 42.

Lösung einblenden

Wir erstellen zuerst die Primfaktorzerlegungen von den beiden Zahlen:

35
= 5 ⋅ 7

42
= 2 ⋅ 21
= 2 ⋅ 3 ⋅ 7

Jetzt gehen wir jeden Primteiler, der in einer den beiden Zerlegungen vorkommt, durch und stecken diesen in seiner maximalen Potenz (also so oft, wie er höchstens in einer Zahl vorkommt) in unsere neue Zahl:

2(die 2 kommt in 42 insgesamt 1 mal vor)

2 ⋅ 3(die 3 kommt in 42 insgesamt 1 mal vor)

2 ⋅ 3 ⋅ 5(die 5 kommt in 35 insgesamt 1 mal vor)

2 ⋅ 3 ⋅ 5 ⋅ 7(die 7 kommt in 35 insgesamt 1 mal vor)

In 2 ⋅ 3 ⋅ 5 ⋅ 7 = 210 sind nun alle Primteiler von 35 und alle Primteiler von 42 enthalten. Also ist 210 ein Vielfaches von 35 und 42. Es muss auch das kleinste sein, denn bei einer noch kleineren Zahl würde mindestens ein Primfaktor von 35 oder 42 fehlen.

Das kleinste gemeinsame Vielfache von 35 und 42 ist somit :
kgV(35,42) = 210

ggT mit Primfaktoren

Beispiel:

Bestimme den größten gemeinsamen Teiler von 132 und 120.

Lösung einblenden

Wir erstellen zuerst die Primfaktorzerlegungen von den beiden Zahlen:

132
= 2 ⋅ 66
= 2 ⋅ 2 ⋅ 33
= 2 ⋅ 2 ⋅ 3 ⋅ 11

120
= 2 ⋅ 60
= 2 ⋅ 2 ⋅ 30
= 2 ⋅ 2 ⋅ 2 ⋅ 15
= 2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 5

Jetzt gehen wir alle Primteiler, die in beiden Zerlegungen vorkommen, durch und stecken diese in ihrer gemeinsamen Potenz (also so oft, wie sie höchstens in beiden Zahlen vorkommen) in unsere neue Zahl:

2 ⋅ 2(die 2 kommt sowohl in 132 als auch 120 insgesamt 2 mal vor)

2 ⋅ 2 ⋅ 3(die 3 kommt sowohl in 132 als auch 120 insgesamt 1 mal vor)

Da 2 ⋅ 2 ⋅ 3 = 12 in beiden Primfaktorzerlegungen vorkommt, muss 12 auf jeden Fall ein Teiler von beiden Zahlen sein. Andererseits kann es keinen größeren gemeinsamen Teiler geben, denn sonst müsste ja in diesem größeren gemeinsamen Teiler noch ein weiterer gemeinsamer Primfaktor sein.

Unser größter gemeinsamer Teiler von 132 und 120 ist somit :
ggT(132,120) = 12

ggT mit Euklid' schem Algor.

Beispiel:

Berechne mit Hilfe des Euklid'schen Algorithmus den größten gemeinsamen Teiler von 72 und 9.

Lösung einblenden

Berechnung des größten gemeinsamen Teilers von 72 und 9

=>72 = 8⋅9 + 0

also gilt: ggt(72,9)=9