Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Dezimal aus Binär
Beispiel:
Gib die Zahl (11.1000)2 im Dezimalsystem an.
Als Dezimalzahl
Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:
(11.1000)2 = 0⋅1 + 0⋅2 + 0⋅4 + 1⋅8 + 1⋅16 + 1⋅32= 56
Somit ergibt sich die Dezimaldarstellung von (11.1000)2 = 56
Binär aus Dezimal
Beispiel:
Gib die Zahl 41 im Binärsystem an.
Zuerst versuchen wir Schritt für Schritt die Zahl 41 als Summe von 2er-Potenzen (siehe rechts) zu schreiben:
41 = 32 + 9 = 32 + 8 + 1
= 1⋅32 + 0⋅16 + 1⋅8 + 0⋅4 + 0⋅2 + 1⋅1
Somit ergibt sich die Binärdarstellung von 41 = (10.1001)2
Binäres Addieren
Beispiel:
Berechne ohne die Binärzahlen in Dezimalzahlen umzuwandeln:
( | 1 | . | 0 | 0 | 1 | 0 | . | 1 | 0 | 0 | 1 | )2 | + | ( | 1 | 1 | 0 | . | 1 | 1 | 0 | 1 | )2 |
Wir schreiben die beiden Binärzahlen untereinander und gehen wie beim schriftlichen Addieren von Dezimalzahlen vor:
( | 1 | . | 0 | 0 | 1 | 0 | . | 1 | 0 | 0 | 1 | )2 | + | ( | 1 | 1 | 0 | . | 1 | 1 | 0 | 1 | )2 | ||||
1 | 1 | 1 | 1 | ||||||||||||||||||||||||
( | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | )2 |
negative Binärzahlen
Beispiel:
Gegeben ist die 8-Bit-Binärzahl (0110.0001)2 = 97.
Bestimme -97 als 8-Bit-Binärzahl (in der Zweierkomplement-Darstellung):
Wir invertieren im ersten Schritt unsere Binärzahl (d.h. aus jeder 0 wird eine 1 und aus jeder 1 wird eine 0).
so wird (0110.0001)2
zu (1001.1110)2
Jetzt müssen wir nur noch die binäre 1 auf diese invertierte Zahl draufaddieren:
( | 1 | 0 | 0 | 1 | . | 1 | 1 | 1 | 0 | )2 | + | ( | 0 | 0 | 0 | 0 | . | 0 | 0 | 0 | 1 | )2 | |||||
( | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | )2 |
Binäres Subtrahieren
Beispiel:
Berechne ohne die Binärzahlen in Dezimalzahlen umzuwandeln:
( | 0 | 1 | 1 | 0 | . | 0 | 0 | 0 | 0 | )2 | - | ( | 0 | 1 | 0 | 0 | . | 1 | 0 | 0 | 0 | )2 |
Wir wandeln erst den Subtrahend b, also die untere Zahl, die angezogen wird, in ihre negative Zahl um, so dass wir dann einfach die beiden Zahlen addieren können (a-b = a+(-b).
Wir invertieren im ersten Schritt unsere Binärzahl (d.h. aus jeder 0 wird eine 1 und aus jeder 1 wird eine 0).
so wird (0100.1000)2
zu (1011.0111)2
Jetzt müssen wir nur noch die binäre 1 auf diese invertierte Zahl draufaddieren:
( | 1 | 0 | 1 | 1 | . | 0 | 1 | 1 | 1 | )2 | + | ( | 0 | 0 | 0 | 0 | . | 0 | 0 | 0 | 1 | )2 | |||||
1 | 1 | 1 | |||||||||||||||||||||||||
( | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | )2 |
Jetzt können wir einfach a=(0110.0000)2 und -b = (1011.1000)2 addieren:
( | 0 | 1 | 1 | 0 | . | 0 | 0 | 0 | 0 | )2 | + | ( | 1 | 0 | 1 | 1 | . | 1 | 0 | 0 | 0 | )2 | |||||
1 | 1 | 1 | |||||||||||||||||||||||||
( | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | )2 |
Da wir ja aber nur 8-Bit Speicherplatz haben "verpufft der Overflow" und als Ergebnis stehen nur die 8 rechten Bit:
(0001.1000)2
Binäres Multiplizieren
Beispiel:
Berechne ohne die Binärzahlen in Dezimalzahlen umzuwandeln:
(110.1100)2 ⋅ (1001)2 =
Der zweite Faktor (1001)2 lässt sich als Summe von reinen 2-er-Potenzen schreiben:
( | 1 | )2 | + | ( | 1 | 0 | 0 | 0 | )2 | ||||||||||||||||||
( | 1 | 0 | 0 | 1 | )2 |
somit gilt:
(110.1100)2 ⋅ (1001)2 = 110.1100 ⋅ (1000 + 1)
Das Multiplizieren mit einer 2-er-Potenz bedeutet aber ja, dass man einfach die entsprechende Anzahl an Nullen hintenanhängt, somit gilt:
(110.1100)2 ⋅ (1001)2 = (11.0110.0000)2 + (110.1100)2
Diese 2 Summanden können wir nun schrittweise addieren:
( | 1 | 1 | 0 | . | 1 | 1 | 0 | 0 | )2 | + | ( | 1 | 1 | . | 0 | 1 | 1 | 0 | . | 0 | 0 | 0 | 0 | )2 | |||
1 | 1 | ||||||||||||||||||||||||||
( | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | )2 |
Das Ergebnis ist somit: (11.1100.1100)2
(Zum Vergleich in Dezimalzahlen: 108 ⋅ 9 = 972)
Binäres Dividieren
Beispiel:
Berechne ohne die Binärzahlen in Dezimalzahlen umzuwandeln:
(1110.1010)2 : (1001)2 =
1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | : | 1 | 0 | 0 | 1 | = | 1 | 1 | 0 | 1 | 0 |
- | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 1 |
- | 1 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 |
- | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 |
- | 1 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 |
- | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 |
- Die obige Differenz (1110)2 - (1001)2 = (101)2 kann man entweder mit binärer Subtraktion berechnen oder - oft schneller - durch Umrechnen in Dezimalzahlen: 14 - 9 = 5
- Die obige Differenz (01011)2 - (1001)2 = (10)2 kann man entweder mit binärer Subtraktion berechnen oder - oft schneller - durch Umrechnen in Dezimalzahlen: 11 - 9 = 2
- Die obige Differenz (01001)2 - (1001)2 = (0)2 kann man entweder mit binärer Subtraktion berechnen oder - oft schneller - durch Umrechnen in Dezimalzahlen: 9 - 9 = 0
(Zum Vergleich in Dezimalzahlen: 234 : 9 = 26)
Binär und Hexdezimal aus Dezimal
Beispiel:
Gib die Zahl 164 sowohl im Binär- als auch im Hexdezimalsystem an.
Zuerst versuchen wir Schritt für Schritt die Zahl 164 als Summe von 2er-Potenzen (siehe rechts) zu schreiben:
164 = 128 + 36 = 128 + 32 + 4
= 1⋅128 + 0⋅64 + 1⋅32 + 0⋅16 + 0⋅8 + 1⋅4 + 0⋅2 + 0⋅1
Somit ergibt sich die Binärdarstellung von 164 = (1010.0100)2
Um die Zahl 164 als Hexadzimalzahl auszugeben, gibt es zwei Möglichkeiten:
Theoretisch könnte man 164 wieder als Summe von 16er-Potenzen zerlegen und so die Koeffizienten vor den 16er-Potenzen als Hexadezimalzahl erhalten.
Wenn man bereits die Binärzahl hat, gibt es aber einen schnelleren Weg;
Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:
(1010)2 = 1⋅8 + 0⋅4 + 1⋅2 + 0⋅1 = 10 = (A)16
(0100)2 = 0⋅8 + 1⋅4 + 0⋅2 + 0⋅1 = 4 = (4)16
Somit ergibt sich die Hexadezimaldarstellung von (1010.0100)2 = (A4)16
Dezimal und Hexdezimal aus Binär
Beispiel:
Gib die Zahl (100.1101)2 sowohl im Dezimal- als auch im Hexdezimalsystem an.
Als Dezimalzahl
Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:
(100.1101)2 = 1⋅1 + 0⋅2 + 1⋅4 + 1⋅8 + 0⋅16 + 0⋅32 + 1⋅64= 77
Somit ergibt sich die Dezimaldarstellung von (100.1101)2 = 77
Als Hexadezimalzahl
Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:
(100)2 = 1⋅4 + 0⋅2 + 0⋅1 = 4 = (4)16
(1101)2 = 1⋅8 + 1⋅4 + 0⋅2 + 1⋅1 = 13 = (D)16
Somit ergibt sich die Hexadezimaldarstellung von (100.1101)2 = (4D)16
Binär und Dezimal aus Hexdezimal
Beispiel:
Gib die Zahl (70)16 sowohl im Dezimal- als auch im Binärsystem an.
Als Binärzahl
Jede Ziffer im Hexadezimalsystem kann in einen 4-er-Block im Binärsystem umgewandelt werden. Dazu zerlegen wir den Wert einfach als Summe der 2-er-Potenzen 8,4,2 und 1:
(7)16 = 7 = 4 + 2 + 1 = 1⋅4 + 1⋅2 + 1⋅1 = (111)2
(0)16 = 0 = 0 = 0⋅8 + 0⋅4 + 0⋅2 + 0⋅1 = (0000)2
Diese binären 4-er-Blöcke können dann einfach hintereinander gesetzt werden.
Somit ergibt sich die Binärdarstellung von (70)16 = (111.0000)2
Als Dezimalzahl
Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:
(111.0000)2 = 0⋅1 + 0⋅2 + 0⋅4 + 0⋅8 + 1⋅16 + 1⋅32 + 1⋅64= 112
Somit ergibt sich die Dezimaldarstellung von (111.0000)2 = 112
Binär und Hexdezimal aus Dezimal
Beispiel:
Gib die Zahl 77 sowohl im Binär- als auch im Hexdezimalsystem an.
Zuerst versuchen wir Schritt für Schritt die Zahl 77 als Summe von 2er-Potenzen (siehe rechts) zu schreiben:
77 = 64 + 13 = 64 + 8 + 5 = 64 + 8 + 4 + 1
= 1⋅64 + 0⋅32 + 0⋅16 + 1⋅8 + 1⋅4 + 0⋅2 + 1⋅1
Somit ergibt sich die Binärdarstellung von 77 = (100.1101)2
Um die Zahl 77 als Hexadzimalzahl auszugeben, gibt es zwei Möglichkeiten:
Theoretisch könnte man 77 wieder als Summe von 16er-Potenzen zerlegen und so die Koeffizienten vor den 16er-Potenzen als Hexadezimalzahl erhalten.
Wenn man bereits die Binärzahl hat, gibt es aber einen schnelleren Weg;
Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:
(100)2 = 1⋅4 + 0⋅2 + 0⋅1 = 4 = (4)16
(1101)2 = 1⋅8 + 1⋅4 + 0⋅2 + 1⋅1 = 13 = (D)16
Somit ergibt sich die Hexadezimaldarstellung von (100.1101)2 = (4D)16
alle Teiler einer Zahl
Beispiel:
Gib alle Teiler von 77 an:
Wir suchen alle Teiler von 77. Dabei beginnen wir mit der 1 und testen die weiteren Zahlen.
Wenn eine Zahl ein Teiler von 77 ist, teilen wir 77 durch diese Zahl und erhalten so automatisch einen weiteren Teiler. Wir erhalten so also immer Teiler-Paare mit einem größerem und einem kleineren Teiler (die multipliziert wieder 77 ergeben).
Somit genügt es, nur die kleineren Teiler zu finden, weil wir ja so die Größeren automatisch mit erhalten.
1 ist Teiler von 77, denn 77 = 1 ⋅ 77, also ist auch 77 ein Teiler.
2 ist kein Teiler von 77, denn 77 = 2 ⋅ 38 + 1.
3 ist kein Teiler von 77, denn 77 = 3 ⋅ 25 + 2.
4 ist kein Teiler von 77, denn 77 = 4 ⋅ 19 + 1.
5 ist kein Teiler von 77, denn 77 = 5 ⋅ 15 + 2.
6 ist kein Teiler von 77, denn 77 = 6 ⋅ 12 + 5.
7 ist Teiler von 77, denn 77 = 7 ⋅ 11, also ist auch 11 ein Teiler.
8 ist kein Teiler von 77, denn 77 = 8 ⋅ 9 + 5.
Jetzt können wir das Ausprobieren beenden, weil ja 9 kein kleinerer, sondern nur ein größerer Teiler sein könnte
- schließlich ist 9 ⋅ 9
= 81 > 77, aber die größeren Teiler haben wir ja bereits alle bei den kleineren mit erhalten.
Richtig sortiert ergibt sich also für die Teilermenge von 77:
1, 7, 11, 77
Teilbarkeitsregeln rückwärts
Beispiel:
Bestimme eine Ziffer, die man für das Kästchen ⬜ einsetzen kann, damit 11⬜6 sowohl durch 3 als auch durch 4 teilbar ist.
Wir schauen zuerst, welche Ziffern möglich sind, dass die Zahl durch 4 teilbar ist.
Dazu müssen wir ja nur die letzten beiden Stellen betrachten, also ⬜6.
Da an der letzten Stelle eine 6 steht, muss an der vorletzten Stelle eine ungerade Zahl (also 1, 3, 5, 7 oder 9) stehen, damit sie durch 4 teilbar ist (weil eben nur 16, 36, 56, 76, 96 durch 4 teilbar sind).
Diese verbleibenden Möglichkeiten überprüfen wir nun noch auf Teilbarkeit durch 3.
1: Dann wäre die Zahl 1116, für die Quersumme gilt dann: 1 + 1 + 1 + 6 = 9, also durch 3 teilbar.
3: Dann wäre die Zahl 1136, für die Quersumme gilt dann: 1 + 1 + 3 + 6 = 11, also nicht durch 3 teilbar.
5: Dann wäre die Zahl 1156, für die Quersumme gilt dann: 1 + 1 + 5 + 6 = 13, also nicht durch 3 teilbar.
7: Dann wäre die Zahl 1176, für die Quersumme gilt dann: 1 + 1 + 7 + 6 = 15, also durch 3 teilbar.
9: Dann wäre die Zahl 1196, für die Quersumme gilt dann: 1 + 1 + 9 + 6 = 17, also nicht durch 3 teilbar.
Die möglichen Ziffern sind also 1 und 7.
Summe von Primzahlen
Beispiel:
Schreibe 24 als Summe von zwei Primzahlen:
Wir testen der Reihe nach alle Primzahlen, ob sie mit einer weiteren Primzahl die Summe von 24 bilden:
2 + 22 = 24, dabei ist 22 aber keine Primzahl
3 + 21 = 24, dabei ist 21 aber keine Primzahl
5 + 19 = 24, dabei ist 19 auch eine Primzahl
5 und 19 wären also zwei Primzahlen mit 5 + 19 = 24
Primfaktorzerlegung
Beispiel:
Bestimme die Primfaktorzerlegung von 84 :
Wir testen der Reihe nach alle Primzahlen, ob sie Teiler von 84 sind und zerlegen dann immer die Zahl in die Primzahl und den anderen Faktor:
84
= 2 ⋅ 42
= 2 ⋅ 2 ⋅ 21
= 2 ⋅ 2 ⋅ 3 ⋅ 7
kgV mit Primfaktoren
Beispiel:
Bestimme das kleinste gemeinsame Vielfache von 55 und 40.
Wir erstellen zuerst die Primfaktorzerlegungen von den beiden Zahlen:
55
= 5 ⋅ 11
40
= 2 ⋅ 20
= 2 ⋅ 2 ⋅ 10
= 2 ⋅ 2 ⋅ 2 ⋅ 5
Jetzt gehen wir jeden Primteiler, der in einer den beiden Zerlegungen vorkommt, durch und stecken diesen in seiner maximalen Potenz (also so oft, wie er höchstens in einer Zahl vorkommt) in unsere neue Zahl:
2 ⋅ 2 ⋅ 2(die 2 kommt in 40 insgesamt 3 mal vor)
2 ⋅ 2 ⋅ 2 ⋅ 5(die 5 kommt in 55 insgesamt 1 mal vor)
2 ⋅ 2 ⋅ 2 ⋅ 5 ⋅ 11(die 11 kommt in 55 insgesamt 1 mal vor)
In 2 ⋅ 2 ⋅ 2 ⋅ 5 ⋅ 11 = 440 sind nun alle Primteiler von 55 und alle Primteiler von 40 enthalten. Also ist 440 ein Vielfaches von 55 und 40. Es muss auch das kleinste sein, denn bei einer noch kleineren Zahl würde mindestens ein Primfaktor von 55 oder 40 fehlen.
Das kleinste gemeinsame Vielfache von 55 und 40 ist somit :
kgV(55,40) = 440
ggT mit Primfaktoren
Beispiel:
Bestimme den größten gemeinsamen Teiler von 84 und 40.
Wir erstellen zuerst die Primfaktorzerlegungen von den beiden Zahlen:
84
= 2 ⋅ 42
= 2 ⋅ 2 ⋅ 21
= 2 ⋅ 2 ⋅ 3 ⋅ 7
40
= 2 ⋅ 20
= 2 ⋅ 2 ⋅ 10
= 2 ⋅ 2 ⋅ 2 ⋅ 5
Jetzt gehen wir alle Primteiler, die in beiden Zerlegungen vorkommen, durch und stecken diese in ihrer gemeinsamen Potenz (also so oft, wie sie höchstens in beiden Zahlen vorkommen) in unsere neue Zahl:
2 ⋅ 2(die 2 kommt sowohl in 84 als auch 40 insgesamt 2 mal vor)
Da 2 ⋅ 2 = 4 in beiden Primfaktorzerlegungen vorkommt, muss 4 auf jeden Fall ein Teiler von beiden Zahlen sein. Andererseits kann es keinen größeren gemeinsamen Teiler geben, denn sonst müsste ja in diesem größeren gemeinsamen Teiler noch ein weiterer gemeinsamer Primfaktor sein.
Unser größter gemeinsamer Teiler von 84 und 40 ist somit :
ggT(84,40) = 4
ggT mit Euklid' schem Algor.
Beispiel:
Berechne mit Hilfe des Euklid'schen Algorithmus den größten gemeinsamen Teiler von 125 und 180.
Berechnung des größten gemeinsamen Teilers von 125 und 180
=>125 | = 0⋅180 + 125 |
=>180 | = 1⋅125 + 55 |
=>125 | = 2⋅55 + 15 |
=>55 | = 3⋅15 + 10 |
=>15 | = 1⋅10 + 5 |
=>10 | = 2⋅5 + 0 |
also gilt: ggt(125,180)=5