Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
einfache Modulo Aufgabe
Beispiel:
Bestimme (die kleinste natürliche Zahl für die gilt:) 31 mod 7.
Das nächst kleinere Vielfache von 7 ist 28, weil ja 4 ⋅ 7 = 28 ist.
Also bleibt als Rest eben noch 31 - 28 = 3.
Somit gilt: 31 mod 7 ≡ 3.
Modulo in einem Intervall
Beispiel:
Bestimme eine Zahl n zwischen 60 und 69 für die gilt n ≡ 83 mod 6.
Das nächst kleinere Vielfache von 6 ist 78, weil ja 13 ⋅ 6 = 78 ist.
Also bleibt als Rest eben noch 83 - 78 = 5.
Somit gilt: 83 mod 6 ≡ 5.
Wir suchen also eine Zahl zwischen 60 und 69 für die gilt: n ≡ 5 mod 6.
Dazu suchen wir erstmal ein Vielfaches von 6 in der Nähe von 60, z.B. 60 = 10 ⋅ 6
Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 6 , sondern ≡ 5 mod 6 sein, also addieren wir noch 5 auf die 60 und erhalten so 65.
Somit gilt: 65 ≡ 83 ≡ 5 mod 6.
Modulo addieren
Beispiel:
Berechne ohne WTR: (1005 - 1496) mod 5.
Um längere Rechnungen zu vermeiden, rechnen wir:
(1005 - 1496) mod 5 ≡ (1005 mod 5 - 1496 mod 5) mod 5.
1005 mod 5 ≡ 0 mod 5 kann man relativ leicht bestimmen, weil ja 1005
= 1000
1496 mod 5 ≡ 1 mod 5 kann man relativ leicht bestimmen, weil ja 1496
= 1400
Somit gilt:
(1005 - 1496) mod 5 ≡ (0 - 1) mod 5 ≡ -1 mod 5 ≡ 4 mod 5.
Modulo multiplizieren
Beispiel:
Berechne ohne WTR: (79 ⋅ 46) mod 4.
Um längere Rechnungen zu vermeiden, rechnen wir:
(79 ⋅ 46) mod 4 ≡ (79 mod 4 ⋅ 46 mod 4) mod 4.
79 mod 4 ≡ 3 mod 4 kann man relativ leicht bestimmen, weil ja 79 = 76 + 3 = 19 ⋅ 4 + 3 ist.
46 mod 4 ≡ 2 mod 4 kann man relativ leicht bestimmen, weil ja 46 = 44 + 2 = 11 ⋅ 4 + 2 ist.
Somit gilt:
(79 ⋅ 46) mod 4 ≡ (3 ⋅ 2) mod 4 ≡ 6 mod 4 ≡ 2 mod 4.
gemeinsame Modulos finden
Beispiel:
Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
8 mod m = 12 mod m.
1. (etwas umständliche) Möglichkeit:
Wir probieren einfach alle natürliche Zahlen m<= 8 aus, ob zufällig 8 mod m = 12 mod m gilt:
m=2: 8 mod 2 = 0 = 0 = 12 mod 2
m=3: 8 mod 3 = 2 ≠ 0 = 12 mod 3
m=4: 8 mod 4 = 0 = 0 = 12 mod 4
m=5: 8 mod 5 = 3 ≠ 2 = 12 mod 5
m=6: 8 mod 6 = 2 ≠ 0 = 12 mod 6
m=7: 8 mod 7 = 1 ≠ 5 = 12 mod 7
m=8: 8 mod 8 = 0 ≠ 4 = 12 mod 8
2. (deutlich schnellere) Möglichkeit:
Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.
Somit müssen wir nur die Teiler von (12 - 8) = 4 bestimmen:
die gesuchten Zahlen sind somit:
2; 4
