nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 44 mod 10.

Lösung einblenden

Das nächst kleinere Vielfache von 10 ist 40, weil ja 4 ⋅ 10 = 40 ist.

Also bleibt als Rest eben noch 44 - 40 = 4.

Somit gilt: 44 mod 10 ≡ 4.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 40 und 50 für die gilt n ≡ 26 mod 10.

Lösung einblenden

Das nächst kleinere Vielfache von 10 ist 20, weil ja 2 ⋅ 10 = 20 ist.

Also bleibt als Rest eben noch 26 - 20 = 6.

Somit gilt: 26 mod 10 ≡ 6.

Wir suchen also eine Zahl zwischen 40 und 50 für die gilt: n ≡ 6 mod 10.

Dazu suchen wir erstmal ein Vielfaches von 10 in der Nähe von 40, z.B. 40 = 4 ⋅ 10

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 10 , sondern ≡ 6 mod 10 sein, also addieren wir noch 6 auf die 40 und erhalten so 46.

Somit gilt: 46 ≡ 26 ≡ 6 mod 10.

Modulo addieren

Beispiel:

Berechne ohne WTR: (52 - 15004) mod 5.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(52 - 15004) mod 5 ≡ (52 mod 5 - 15004 mod 5) mod 5.

52 mod 5 ≡ 2 mod 5 kann man relativ leicht bestimmen, weil ja 52 = 50+2 = 5 ⋅ 10 +2.

15004 mod 5 ≡ 4 mod 5 kann man relativ leicht bestimmen, weil ja 15004 = 15000+4 = 5 ⋅ 3000 +4.

Somit gilt:

(52 - 15004) mod 5 ≡ (2 - 4) mod 5 ≡ -2 mod 5 ≡ 3 mod 5.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (94 ⋅ 69) mod 5.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(94 ⋅ 69) mod 5 ≡ (94 mod 5 ⋅ 69 mod 5) mod 5.

94 mod 5 ≡ 4 mod 5 kann man relativ leicht bestimmen, weil ja 94 = 90 + 4 = 18 ⋅ 5 + 4 ist.

69 mod 5 ≡ 4 mod 5 kann man relativ leicht bestimmen, weil ja 69 = 65 + 4 = 13 ⋅ 5 + 4 ist.

Somit gilt:

(94 ⋅ 69) mod 5 ≡ (4 ⋅ 4) mod 5 ≡ 16 mod 5 ≡ 1 mod 5.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
57 mod m = 75 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 57 aus, ob zufällig 57 mod m = 75 mod m gilt:

m=2: 57 mod 2 = 1 = 1 = 75 mod 2

m=3: 57 mod 3 = 0 = 0 = 75 mod 3

m=4: 57 mod 4 = 1 ≠ 3 = 75 mod 4

m=5: 57 mod 5 = 2 ≠ 0 = 75 mod 5

m=6: 57 mod 6 = 3 = 3 = 75 mod 6

m=7: 57 mod 7 = 1 ≠ 5 = 75 mod 7

m=8: 57 mod 8 = 1 ≠ 3 = 75 mod 8

m=9: 57 mod 9 = 3 = 3 = 75 mod 9

m=10: 57 mod 10 = 7 ≠ 5 = 75 mod 10

m=11: 57 mod 11 = 2 ≠ 9 = 75 mod 11

m=12: 57 mod 12 = 9 ≠ 3 = 75 mod 12

m=13: 57 mod 13 = 5 ≠ 10 = 75 mod 13

m=14: 57 mod 14 = 1 ≠ 5 = 75 mod 14

m=15: 57 mod 15 = 12 ≠ 0 = 75 mod 15

m=16: 57 mod 16 = 9 ≠ 11 = 75 mod 16

m=17: 57 mod 17 = 6 ≠ 7 = 75 mod 17

m=18: 57 mod 18 = 3 = 3 = 75 mod 18

m=19: 57 mod 19 = 0 ≠ 18 = 75 mod 19

m=20: 57 mod 20 = 17 ≠ 15 = 75 mod 20

m=21: 57 mod 21 = 15 ≠ 12 = 75 mod 21

m=22: 57 mod 22 = 13 ≠ 9 = 75 mod 22

m=23: 57 mod 23 = 11 ≠ 6 = 75 mod 23

m=24: 57 mod 24 = 9 ≠ 3 = 75 mod 24

m=25: 57 mod 25 = 7 ≠ 0 = 75 mod 25

m=26: 57 mod 26 = 5 ≠ 23 = 75 mod 26

m=27: 57 mod 27 = 3 ≠ 21 = 75 mod 27

m=28: 57 mod 28 = 1 ≠ 19 = 75 mod 28

m=29: 57 mod 29 = 28 ≠ 17 = 75 mod 29

m=30: 57 mod 30 = 27 ≠ 15 = 75 mod 30

m=31: 57 mod 31 = 26 ≠ 13 = 75 mod 31

m=32: 57 mod 32 = 25 ≠ 11 = 75 mod 32

m=33: 57 mod 33 = 24 ≠ 9 = 75 mod 33

m=34: 57 mod 34 = 23 ≠ 7 = 75 mod 34

m=35: 57 mod 35 = 22 ≠ 5 = 75 mod 35

m=36: 57 mod 36 = 21 ≠ 3 = 75 mod 36

m=37: 57 mod 37 = 20 ≠ 1 = 75 mod 37

m=38: 57 mod 38 = 19 ≠ 37 = 75 mod 38

m=39: 57 mod 39 = 18 ≠ 36 = 75 mod 39

m=40: 57 mod 40 = 17 ≠ 35 = 75 mod 40

m=41: 57 mod 41 = 16 ≠ 34 = 75 mod 41

m=42: 57 mod 42 = 15 ≠ 33 = 75 mod 42

m=43: 57 mod 43 = 14 ≠ 32 = 75 mod 43

m=44: 57 mod 44 = 13 ≠ 31 = 75 mod 44

m=45: 57 mod 45 = 12 ≠ 30 = 75 mod 45

m=46: 57 mod 46 = 11 ≠ 29 = 75 mod 46

m=47: 57 mod 47 = 10 ≠ 28 = 75 mod 47

m=48: 57 mod 48 = 9 ≠ 27 = 75 mod 48

m=49: 57 mod 49 = 8 ≠ 26 = 75 mod 49

m=50: 57 mod 50 = 7 ≠ 25 = 75 mod 50

m=51: 57 mod 51 = 6 ≠ 24 = 75 mod 51

m=52: 57 mod 52 = 5 ≠ 23 = 75 mod 52

m=53: 57 mod 53 = 4 ≠ 22 = 75 mod 53

m=54: 57 mod 54 = 3 ≠ 21 = 75 mod 54

m=55: 57 mod 55 = 2 ≠ 20 = 75 mod 55

m=56: 57 mod 56 = 1 ≠ 19 = 75 mod 56

m=57: 57 mod 57 = 0 ≠ 18 = 75 mod 57

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (75 - 57) = 18 bestimmen:

die gesuchten Zahlen sind somit:

2; 3; 6; 9; 18