Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
einfache Modulo Aufgabe
Beispiel:
Bestimme (die kleinste natürliche Zahl für die gilt:) 38 mod 10.
Das nächst kleinere Vielfache von 10 ist 30, weil ja 3 ⋅ 10 = 30 ist.
Also bleibt als Rest eben noch 38 - 30 = 8.
Somit gilt: 38 mod 10 ≡ 8.
Modulo in einem Intervall
Beispiel:
Bestimme eine Zahl n zwischen 30 und 41 für die gilt n ≡ 47 mod 11.
Das nächst kleinere Vielfache von 11 ist 44, weil ja 4 ⋅ 11 = 44 ist.
Also bleibt als Rest eben noch 47 - 44 = 3.
Somit gilt: 47 mod 11 ≡ 3.
Wir suchen also eine Zahl zwischen 30 und 41 für die gilt: n ≡ 3 mod 11.
Dazu suchen wir erstmal ein Vielfaches von 11 in der Nähe von 30, z.B. 33 = 3 ⋅ 11
Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 11 , sondern ≡ 3 mod 11 sein, also addieren wir noch 3 auf die 33 und erhalten so 36.
Somit gilt: 36 ≡ 47 ≡ 3 mod 11.
Modulo addieren
Beispiel:
Berechne ohne WTR: (199 - 162) mod 4.
Um längere Rechnungen zu vermeiden, rechnen wir:
(199 - 162) mod 4 ≡ (199 mod 4 - 162 mod 4) mod 4.
199 mod 4 ≡ 3 mod 4 kann man relativ leicht bestimmen, weil ja 199
= 200
162 mod 4 ≡ 2 mod 4 kann man relativ leicht bestimmen, weil ja 162
= 160
Somit gilt:
(199 - 162) mod 4 ≡ (3 - 2) mod 4 ≡ 1 mod 4.
Modulo multiplizieren
Beispiel:
Berechne ohne WTR: (57 ⋅ 59) mod 5.
Um längere Rechnungen zu vermeiden, rechnen wir:
(57 ⋅ 59) mod 5 ≡ (57 mod 5 ⋅ 59 mod 5) mod 5.
57 mod 5 ≡ 2 mod 5 kann man relativ leicht bestimmen, weil ja 57 = 55 + 2 = 11 ⋅ 5 + 2 ist.
59 mod 5 ≡ 4 mod 5 kann man relativ leicht bestimmen, weil ja 59 = 55 + 4 = 11 ⋅ 5 + 4 ist.
Somit gilt:
(57 ⋅ 59) mod 5 ≡ (2 ⋅ 4) mod 5 ≡ 8 mod 5 ≡ 3 mod 5.
gemeinsame Modulos finden
Beispiel:
Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
47 mod m = 67 mod m.
1. (etwas umständliche) Möglichkeit:
Wir probieren einfach alle natürliche Zahlen m<= 47 aus, ob zufällig 47 mod m = 67 mod m gilt:
m=2: 47 mod 2 = 1 = 1 = 67 mod 2
m=3: 47 mod 3 = 2 ≠ 1 = 67 mod 3
m=4: 47 mod 4 = 3 = 3 = 67 mod 4
m=5: 47 mod 5 = 2 = 2 = 67 mod 5
m=6: 47 mod 6 = 5 ≠ 1 = 67 mod 6
m=7: 47 mod 7 = 5 ≠ 4 = 67 mod 7
m=8: 47 mod 8 = 7 ≠ 3 = 67 mod 8
m=9: 47 mod 9 = 2 ≠ 4 = 67 mod 9
m=10: 47 mod 10 = 7 = 7 = 67 mod 10
m=11: 47 mod 11 = 3 ≠ 1 = 67 mod 11
m=12: 47 mod 12 = 11 ≠ 7 = 67 mod 12
m=13: 47 mod 13 = 8 ≠ 2 = 67 mod 13
m=14: 47 mod 14 = 5 ≠ 11 = 67 mod 14
m=15: 47 mod 15 = 2 ≠ 7 = 67 mod 15
m=16: 47 mod 16 = 15 ≠ 3 = 67 mod 16
m=17: 47 mod 17 = 13 ≠ 16 = 67 mod 17
m=18: 47 mod 18 = 11 ≠ 13 = 67 mod 18
m=19: 47 mod 19 = 9 ≠ 10 = 67 mod 19
m=20: 47 mod 20 = 7 = 7 = 67 mod 20
m=21: 47 mod 21 = 5 ≠ 4 = 67 mod 21
m=22: 47 mod 22 = 3 ≠ 1 = 67 mod 22
m=23: 47 mod 23 = 1 ≠ 21 = 67 mod 23
m=24: 47 mod 24 = 23 ≠ 19 = 67 mod 24
m=25: 47 mod 25 = 22 ≠ 17 = 67 mod 25
m=26: 47 mod 26 = 21 ≠ 15 = 67 mod 26
m=27: 47 mod 27 = 20 ≠ 13 = 67 mod 27
m=28: 47 mod 28 = 19 ≠ 11 = 67 mod 28
m=29: 47 mod 29 = 18 ≠ 9 = 67 mod 29
m=30: 47 mod 30 = 17 ≠ 7 = 67 mod 30
m=31: 47 mod 31 = 16 ≠ 5 = 67 mod 31
m=32: 47 mod 32 = 15 ≠ 3 = 67 mod 32
m=33: 47 mod 33 = 14 ≠ 1 = 67 mod 33
m=34: 47 mod 34 = 13 ≠ 33 = 67 mod 34
m=35: 47 mod 35 = 12 ≠ 32 = 67 mod 35
m=36: 47 mod 36 = 11 ≠ 31 = 67 mod 36
m=37: 47 mod 37 = 10 ≠ 30 = 67 mod 37
m=38: 47 mod 38 = 9 ≠ 29 = 67 mod 38
m=39: 47 mod 39 = 8 ≠ 28 = 67 mod 39
m=40: 47 mod 40 = 7 ≠ 27 = 67 mod 40
m=41: 47 mod 41 = 6 ≠ 26 = 67 mod 41
m=42: 47 mod 42 = 5 ≠ 25 = 67 mod 42
m=43: 47 mod 43 = 4 ≠ 24 = 67 mod 43
m=44: 47 mod 44 = 3 ≠ 23 = 67 mod 44
m=45: 47 mod 45 = 2 ≠ 22 = 67 mod 45
m=46: 47 mod 46 = 1 ≠ 21 = 67 mod 46
m=47: 47 mod 47 = 0 ≠ 20 = 67 mod 47
2. (deutlich schnellere) Möglichkeit:
Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.
Somit müssen wir nur die Teiler von (67 - 47) = 20 bestimmen:
die gesuchten Zahlen sind somit:
2; 4; 5; 10; 20
