nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 37 mod 4.

Lösung einblenden

Das nächst kleinere Vielfache von 4 ist 36, weil ja 9 ⋅ 4 = 36 ist.

Also bleibt als Rest eben noch 37 - 36 = 1.

Somit gilt: 37 mod 4 ≡ 1.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 10 und 21 für die gilt n ≡ 81 mod 11.

Lösung einblenden

Das nächst kleinere Vielfache von 11 ist 77, weil ja 7 ⋅ 11 = 77 ist.

Also bleibt als Rest eben noch 81 - 77 = 4.

Somit gilt: 81 mod 11 ≡ 4.

Wir suchen also eine Zahl zwischen 10 und 21 für die gilt: n ≡ 4 mod 11.

Dazu suchen wir erstmal ein Vielfaches von 11 in der Nähe von 10, z.B. 11 = 1 ⋅ 11

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 11 , sondern ≡ 4 mod 11 sein, also addieren wir noch 4 auf die 11 und erhalten so 15.

Somit gilt: 15 ≡ 81 ≡ 4 mod 11.

Modulo addieren

Beispiel:

Berechne ohne WTR: (907 - 36003) mod 9.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(907 - 36003) mod 9 ≡ (907 mod 9 - 36003 mod 9) mod 9.

907 mod 9 ≡ 7 mod 9 kann man relativ leicht bestimmen, weil ja 907 = 900+7 = 9 ⋅ 100 +7.

36003 mod 9 ≡ 3 mod 9 kann man relativ leicht bestimmen, weil ja 36003 = 36000+3 = 9 ⋅ 4000 +3.

Somit gilt:

(907 - 36003) mod 9 ≡ (7 - 3) mod 9 ≡ 4 mod 9.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (26 ⋅ 67) mod 5.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(26 ⋅ 67) mod 5 ≡ (26 mod 5 ⋅ 67 mod 5) mod 5.

26 mod 5 ≡ 1 mod 5 kann man relativ leicht bestimmen, weil ja 26 = 25 + 1 = 5 ⋅ 5 + 1 ist.

67 mod 5 ≡ 2 mod 5 kann man relativ leicht bestimmen, weil ja 67 = 65 + 2 = 13 ⋅ 5 + 2 ist.

Somit gilt:

(26 ⋅ 67) mod 5 ≡ (1 ⋅ 2) mod 5 ≡ 2 mod 5.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
27 mod m = 39 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 27 aus, ob zufällig 27 mod m = 39 mod m gilt:

m=2: 27 mod 2 = 1 = 1 = 39 mod 2

m=3: 27 mod 3 = 0 = 0 = 39 mod 3

m=4: 27 mod 4 = 3 = 3 = 39 mod 4

m=5: 27 mod 5 = 2 ≠ 4 = 39 mod 5

m=6: 27 mod 6 = 3 = 3 = 39 mod 6

m=7: 27 mod 7 = 6 ≠ 4 = 39 mod 7

m=8: 27 mod 8 = 3 ≠ 7 = 39 mod 8

m=9: 27 mod 9 = 0 ≠ 3 = 39 mod 9

m=10: 27 mod 10 = 7 ≠ 9 = 39 mod 10

m=11: 27 mod 11 = 5 ≠ 6 = 39 mod 11

m=12: 27 mod 12 = 3 = 3 = 39 mod 12

m=13: 27 mod 13 = 1 ≠ 0 = 39 mod 13

m=14: 27 mod 14 = 13 ≠ 11 = 39 mod 14

m=15: 27 mod 15 = 12 ≠ 9 = 39 mod 15

m=16: 27 mod 16 = 11 ≠ 7 = 39 mod 16

m=17: 27 mod 17 = 10 ≠ 5 = 39 mod 17

m=18: 27 mod 18 = 9 ≠ 3 = 39 mod 18

m=19: 27 mod 19 = 8 ≠ 1 = 39 mod 19

m=20: 27 mod 20 = 7 ≠ 19 = 39 mod 20

m=21: 27 mod 21 = 6 ≠ 18 = 39 mod 21

m=22: 27 mod 22 = 5 ≠ 17 = 39 mod 22

m=23: 27 mod 23 = 4 ≠ 16 = 39 mod 23

m=24: 27 mod 24 = 3 ≠ 15 = 39 mod 24

m=25: 27 mod 25 = 2 ≠ 14 = 39 mod 25

m=26: 27 mod 26 = 1 ≠ 13 = 39 mod 26

m=27: 27 mod 27 = 0 ≠ 12 = 39 mod 27

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (39 - 27) = 12 bestimmen:

die gesuchten Zahlen sind somit:

2; 3; 4; 6; 12