Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
einfache Modulo Aufgabe
Beispiel:
Bestimme (die kleinste natürliche Zahl für die gilt:) 96 mod 9.
Das nächst kleinere Vielfache von 9 ist 90, weil ja 10 ⋅ 9 = 90 ist.
Also bleibt als Rest eben noch 96 - 90 = 6.
Somit gilt: 96 mod 9 ≡ 6.
Modulo in einem Intervall
Beispiel:
Bestimme eine Zahl n zwischen 10 und 19 für die gilt n ≡ 61 mod 3.
Das nächst kleinere Vielfache von 3 ist 60, weil ja 20 ⋅ 3 = 60 ist.
Also bleibt als Rest eben noch 61 - 60 = 1.
Somit gilt: 61 mod 3 ≡ 1.
Wir suchen also eine Zahl zwischen 10 und 19 für die gilt: n ≡ 1 mod 3.
Dazu suchen wir erstmal ein Vielfaches von 3 in der Nähe von 10, z.B. 9 = 3 ⋅ 3
Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 3 , sondern ≡ 1 mod 3 sein, also addieren wir noch 1 auf die 9 und erhalten so 10.
Somit gilt: 10 ≡ 61 ≡ 1 mod 3.
Modulo addieren
Beispiel:
Berechne ohne WTR: (19998 - 798) mod 4.
Um längere Rechnungen zu vermeiden, rechnen wir:
(19998 - 798) mod 4 ≡ (19998 mod 4 - 798 mod 4) mod 4.
19998 mod 4 ≡ 2 mod 4 kann man relativ leicht bestimmen, weil ja 19998
= 19000
798 mod 4 ≡ 2 mod 4 kann man relativ leicht bestimmen, weil ja 798
= 700
Somit gilt:
(19998 - 798) mod 4 ≡ (2 - 2) mod 4 ≡ 0 mod 4.
Modulo multiplizieren
Beispiel:
Berechne ohne WTR: (55 ⋅ 81) mod 9.
Um längere Rechnungen zu vermeiden, rechnen wir:
(55 ⋅ 81) mod 9 ≡ (55 mod 9 ⋅ 81 mod 9) mod 9.
55 mod 9 ≡ 1 mod 9 kann man relativ leicht bestimmen, weil ja 55 = 54 + 1 = 6 ⋅ 9 + 1 ist.
81 mod 9 ≡ 0 mod 9 kann man relativ leicht bestimmen, weil ja 81 = 81 + 0 = 9 ⋅ 9 + 0 ist.
Somit gilt:
(55 ⋅ 81) mod 9 ≡ (1 ⋅ 0) mod 9 ≡ 0 mod 9.
gemeinsame Modulos finden
Beispiel:
Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
77 mod m = 107 mod m.
1. (etwas umständliche) Möglichkeit:
Wir probieren einfach alle natürliche Zahlen m<= 77 aus, ob zufällig 77 mod m = 107 mod m gilt:
m=2: 77 mod 2 = 1 = 1 = 107 mod 2
m=3: 77 mod 3 = 2 = 2 = 107 mod 3
m=4: 77 mod 4 = 1 ≠ 3 = 107 mod 4
m=5: 77 mod 5 = 2 = 2 = 107 mod 5
m=6: 77 mod 6 = 5 = 5 = 107 mod 6
m=7: 77 mod 7 = 0 ≠ 2 = 107 mod 7
m=8: 77 mod 8 = 5 ≠ 3 = 107 mod 8
m=9: 77 mod 9 = 5 ≠ 8 = 107 mod 9
m=10: 77 mod 10 = 7 = 7 = 107 mod 10
m=11: 77 mod 11 = 0 ≠ 8 = 107 mod 11
m=12: 77 mod 12 = 5 ≠ 11 = 107 mod 12
m=13: 77 mod 13 = 12 ≠ 3 = 107 mod 13
m=14: 77 mod 14 = 7 ≠ 9 = 107 mod 14
m=15: 77 mod 15 = 2 = 2 = 107 mod 15
m=16: 77 mod 16 = 13 ≠ 11 = 107 mod 16
m=17: 77 mod 17 = 9 ≠ 5 = 107 mod 17
m=18: 77 mod 18 = 5 ≠ 17 = 107 mod 18
m=19: 77 mod 19 = 1 ≠ 12 = 107 mod 19
m=20: 77 mod 20 = 17 ≠ 7 = 107 mod 20
m=21: 77 mod 21 = 14 ≠ 2 = 107 mod 21
m=22: 77 mod 22 = 11 ≠ 19 = 107 mod 22
m=23: 77 mod 23 = 8 ≠ 15 = 107 mod 23
m=24: 77 mod 24 = 5 ≠ 11 = 107 mod 24
m=25: 77 mod 25 = 2 ≠ 7 = 107 mod 25
m=26: 77 mod 26 = 25 ≠ 3 = 107 mod 26
m=27: 77 mod 27 = 23 ≠ 26 = 107 mod 27
m=28: 77 mod 28 = 21 ≠ 23 = 107 mod 28
m=29: 77 mod 29 = 19 ≠ 20 = 107 mod 29
m=30: 77 mod 30 = 17 = 17 = 107 mod 30
m=31: 77 mod 31 = 15 ≠ 14 = 107 mod 31
m=32: 77 mod 32 = 13 ≠ 11 = 107 mod 32
m=33: 77 mod 33 = 11 ≠ 8 = 107 mod 33
m=34: 77 mod 34 = 9 ≠ 5 = 107 mod 34
m=35: 77 mod 35 = 7 ≠ 2 = 107 mod 35
m=36: 77 mod 36 = 5 ≠ 35 = 107 mod 36
m=37: 77 mod 37 = 3 ≠ 33 = 107 mod 37
m=38: 77 mod 38 = 1 ≠ 31 = 107 mod 38
m=39: 77 mod 39 = 38 ≠ 29 = 107 mod 39
m=40: 77 mod 40 = 37 ≠ 27 = 107 mod 40
m=41: 77 mod 41 = 36 ≠ 25 = 107 mod 41
m=42: 77 mod 42 = 35 ≠ 23 = 107 mod 42
m=43: 77 mod 43 = 34 ≠ 21 = 107 mod 43
m=44: 77 mod 44 = 33 ≠ 19 = 107 mod 44
m=45: 77 mod 45 = 32 ≠ 17 = 107 mod 45
m=46: 77 mod 46 = 31 ≠ 15 = 107 mod 46
m=47: 77 mod 47 = 30 ≠ 13 = 107 mod 47
m=48: 77 mod 48 = 29 ≠ 11 = 107 mod 48
m=49: 77 mod 49 = 28 ≠ 9 = 107 mod 49
m=50: 77 mod 50 = 27 ≠ 7 = 107 mod 50
m=51: 77 mod 51 = 26 ≠ 5 = 107 mod 51
m=52: 77 mod 52 = 25 ≠ 3 = 107 mod 52
m=53: 77 mod 53 = 24 ≠ 1 = 107 mod 53
m=54: 77 mod 54 = 23 ≠ 53 = 107 mod 54
m=55: 77 mod 55 = 22 ≠ 52 = 107 mod 55
m=56: 77 mod 56 = 21 ≠ 51 = 107 mod 56
m=57: 77 mod 57 = 20 ≠ 50 = 107 mod 57
m=58: 77 mod 58 = 19 ≠ 49 = 107 mod 58
m=59: 77 mod 59 = 18 ≠ 48 = 107 mod 59
m=60: 77 mod 60 = 17 ≠ 47 = 107 mod 60
m=61: 77 mod 61 = 16 ≠ 46 = 107 mod 61
m=62: 77 mod 62 = 15 ≠ 45 = 107 mod 62
m=63: 77 mod 63 = 14 ≠ 44 = 107 mod 63
m=64: 77 mod 64 = 13 ≠ 43 = 107 mod 64
m=65: 77 mod 65 = 12 ≠ 42 = 107 mod 65
m=66: 77 mod 66 = 11 ≠ 41 = 107 mod 66
m=67: 77 mod 67 = 10 ≠ 40 = 107 mod 67
m=68: 77 mod 68 = 9 ≠ 39 = 107 mod 68
m=69: 77 mod 69 = 8 ≠ 38 = 107 mod 69
m=70: 77 mod 70 = 7 ≠ 37 = 107 mod 70
m=71: 77 mod 71 = 6 ≠ 36 = 107 mod 71
m=72: 77 mod 72 = 5 ≠ 35 = 107 mod 72
m=73: 77 mod 73 = 4 ≠ 34 = 107 mod 73
m=74: 77 mod 74 = 3 ≠ 33 = 107 mod 74
m=75: 77 mod 75 = 2 ≠ 32 = 107 mod 75
m=76: 77 mod 76 = 1 ≠ 31 = 107 mod 76
m=77: 77 mod 77 = 0 ≠ 30 = 107 mod 77
2. (deutlich schnellere) Möglichkeit:
Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.
Somit müssen wir nur die Teiler von (107 - 77) = 30 bestimmen:
die gesuchten Zahlen sind somit:
2; 3; 5; 6; 10; 15; 30
