nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 42 mod 7.

Lösung einblenden

Das nächst kleinere Vielfache von 7 ist 42, weil ja 6 ⋅ 7 = 42 ist.

Also bleibt als Rest eben noch 42 - 42 = 0.

Somit gilt: 42 mod 7 ≡ 0.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 50 und 59 für die gilt n ≡ 48 mod 5.

Lösung einblenden

Das nächst kleinere Vielfache von 5 ist 45, weil ja 9 ⋅ 5 = 45 ist.

Also bleibt als Rest eben noch 48 - 45 = 3.

Somit gilt: 48 mod 5 ≡ 3.

Wir suchen also eine Zahl zwischen 50 und 59 für die gilt: n ≡ 3 mod 5.

Dazu suchen wir erstmal ein Vielfaches von 5 in der Nähe von 50, z.B. 50 = 10 ⋅ 5

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 5 , sondern ≡ 3 mod 5 sein, also addieren wir noch 3 auf die 50 und erhalten so 53.

Somit gilt: 53 ≡ 48 ≡ 3 mod 5.

Modulo addieren

Beispiel:

Berechne ohne WTR: (7002 - 14003) mod 7.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(7002 - 14003) mod 7 ≡ (7002 mod 7 - 14003 mod 7) mod 7.

7002 mod 7 ≡ 2 mod 7 kann man relativ leicht bestimmen, weil ja 7002 = 7000+2 = 7 ⋅ 1000 +2.

14003 mod 7 ≡ 3 mod 7 kann man relativ leicht bestimmen, weil ja 14003 = 14000+3 = 7 ⋅ 2000 +3.

Somit gilt:

(7002 - 14003) mod 7 ≡ (2 - 3) mod 7 ≡ -1 mod 7 ≡ 6 mod 7.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (15 ⋅ 38) mod 10.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(15 ⋅ 38) mod 10 ≡ (15 mod 10 ⋅ 38 mod 10) mod 10.

15 mod 10 ≡ 5 mod 10 kann man relativ leicht bestimmen, weil ja 15 = 10 + 5 = 1 ⋅ 10 + 5 ist.

38 mod 10 ≡ 8 mod 10 kann man relativ leicht bestimmen, weil ja 38 = 30 + 8 = 3 ⋅ 10 + 8 ist.

Somit gilt:

(15 ⋅ 38) mod 10 ≡ (5 ⋅ 8) mod 10 ≡ 40 mod 10 ≡ 0 mod 10.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
73 mod m = 103 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 73 aus, ob zufällig 73 mod m = 103 mod m gilt:

m=2: 73 mod 2 = 1 = 1 = 103 mod 2

m=3: 73 mod 3 = 1 = 1 = 103 mod 3

m=4: 73 mod 4 = 1 ≠ 3 = 103 mod 4

m=5: 73 mod 5 = 3 = 3 = 103 mod 5

m=6: 73 mod 6 = 1 = 1 = 103 mod 6

m=7: 73 mod 7 = 3 ≠ 5 = 103 mod 7

m=8: 73 mod 8 = 1 ≠ 7 = 103 mod 8

m=9: 73 mod 9 = 1 ≠ 4 = 103 mod 9

m=10: 73 mod 10 = 3 = 3 = 103 mod 10

m=11: 73 mod 11 = 7 ≠ 4 = 103 mod 11

m=12: 73 mod 12 = 1 ≠ 7 = 103 mod 12

m=13: 73 mod 13 = 8 ≠ 12 = 103 mod 13

m=14: 73 mod 14 = 3 ≠ 5 = 103 mod 14

m=15: 73 mod 15 = 13 = 13 = 103 mod 15

m=16: 73 mod 16 = 9 ≠ 7 = 103 mod 16

m=17: 73 mod 17 = 5 ≠ 1 = 103 mod 17

m=18: 73 mod 18 = 1 ≠ 13 = 103 mod 18

m=19: 73 mod 19 = 16 ≠ 8 = 103 mod 19

m=20: 73 mod 20 = 13 ≠ 3 = 103 mod 20

m=21: 73 mod 21 = 10 ≠ 19 = 103 mod 21

m=22: 73 mod 22 = 7 ≠ 15 = 103 mod 22

m=23: 73 mod 23 = 4 ≠ 11 = 103 mod 23

m=24: 73 mod 24 = 1 ≠ 7 = 103 mod 24

m=25: 73 mod 25 = 23 ≠ 3 = 103 mod 25

m=26: 73 mod 26 = 21 ≠ 25 = 103 mod 26

m=27: 73 mod 27 = 19 ≠ 22 = 103 mod 27

m=28: 73 mod 28 = 17 ≠ 19 = 103 mod 28

m=29: 73 mod 29 = 15 ≠ 16 = 103 mod 29

m=30: 73 mod 30 = 13 = 13 = 103 mod 30

m=31: 73 mod 31 = 11 ≠ 10 = 103 mod 31

m=32: 73 mod 32 = 9 ≠ 7 = 103 mod 32

m=33: 73 mod 33 = 7 ≠ 4 = 103 mod 33

m=34: 73 mod 34 = 5 ≠ 1 = 103 mod 34

m=35: 73 mod 35 = 3 ≠ 33 = 103 mod 35

m=36: 73 mod 36 = 1 ≠ 31 = 103 mod 36

m=37: 73 mod 37 = 36 ≠ 29 = 103 mod 37

m=38: 73 mod 38 = 35 ≠ 27 = 103 mod 38

m=39: 73 mod 39 = 34 ≠ 25 = 103 mod 39

m=40: 73 mod 40 = 33 ≠ 23 = 103 mod 40

m=41: 73 mod 41 = 32 ≠ 21 = 103 mod 41

m=42: 73 mod 42 = 31 ≠ 19 = 103 mod 42

m=43: 73 mod 43 = 30 ≠ 17 = 103 mod 43

m=44: 73 mod 44 = 29 ≠ 15 = 103 mod 44

m=45: 73 mod 45 = 28 ≠ 13 = 103 mod 45

m=46: 73 mod 46 = 27 ≠ 11 = 103 mod 46

m=47: 73 mod 47 = 26 ≠ 9 = 103 mod 47

m=48: 73 mod 48 = 25 ≠ 7 = 103 mod 48

m=49: 73 mod 49 = 24 ≠ 5 = 103 mod 49

m=50: 73 mod 50 = 23 ≠ 3 = 103 mod 50

m=51: 73 mod 51 = 22 ≠ 1 = 103 mod 51

m=52: 73 mod 52 = 21 ≠ 51 = 103 mod 52

m=53: 73 mod 53 = 20 ≠ 50 = 103 mod 53

m=54: 73 mod 54 = 19 ≠ 49 = 103 mod 54

m=55: 73 mod 55 = 18 ≠ 48 = 103 mod 55

m=56: 73 mod 56 = 17 ≠ 47 = 103 mod 56

m=57: 73 mod 57 = 16 ≠ 46 = 103 mod 57

m=58: 73 mod 58 = 15 ≠ 45 = 103 mod 58

m=59: 73 mod 59 = 14 ≠ 44 = 103 mod 59

m=60: 73 mod 60 = 13 ≠ 43 = 103 mod 60

m=61: 73 mod 61 = 12 ≠ 42 = 103 mod 61

m=62: 73 mod 62 = 11 ≠ 41 = 103 mod 62

m=63: 73 mod 63 = 10 ≠ 40 = 103 mod 63

m=64: 73 mod 64 = 9 ≠ 39 = 103 mod 64

m=65: 73 mod 65 = 8 ≠ 38 = 103 mod 65

m=66: 73 mod 66 = 7 ≠ 37 = 103 mod 66

m=67: 73 mod 67 = 6 ≠ 36 = 103 mod 67

m=68: 73 mod 68 = 5 ≠ 35 = 103 mod 68

m=69: 73 mod 69 = 4 ≠ 34 = 103 mod 69

m=70: 73 mod 70 = 3 ≠ 33 = 103 mod 70

m=71: 73 mod 71 = 2 ≠ 32 = 103 mod 71

m=72: 73 mod 72 = 1 ≠ 31 = 103 mod 72

m=73: 73 mod 73 = 0 ≠ 30 = 103 mod 73

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (103 - 73) = 30 bestimmen:

die gesuchten Zahlen sind somit:

2; 3; 5; 6; 10; 15; 30