nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 89 mod 8.

Lösung einblenden

Das nächst kleinere Vielfache von 8 ist 88, weil ja 11 ⋅ 8 = 88 ist.

Also bleibt als Rest eben noch 89 - 88 = 1.

Somit gilt: 89 mod 8 ≡ 1.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 80 und 89 für die gilt n ≡ 51 mod 5.

Lösung einblenden

Das nächst kleinere Vielfache von 5 ist 50, weil ja 10 ⋅ 5 = 50 ist.

Also bleibt als Rest eben noch 51 - 50 = 1.

Somit gilt: 51 mod 5 ≡ 1.

Wir suchen also eine Zahl zwischen 80 und 89 für die gilt: n ≡ 1 mod 5.

Dazu suchen wir erstmal ein Vielfaches von 5 in der Nähe von 80, z.B. 80 = 16 ⋅ 5

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 5 , sondern ≡ 1 mod 5 sein, also addieren wir noch 1 auf die 80 und erhalten so 81.

Somit gilt: 81 ≡ 51 ≡ 1 mod 5.

Modulo addieren

Beispiel:

Berechne ohne WTR: (116 + 800) mod 4.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(116 + 800) mod 4 ≡ (116 mod 4 + 800 mod 4) mod 4.

116 mod 4 ≡ 0 mod 4 kann man relativ leicht bestimmen, weil ja 116 = 120-4 = 4 ⋅ 30 -4 = 4 ⋅ 30 - 4 + 0.

800 mod 4 ≡ 0 mod 4 kann man relativ leicht bestimmen, weil ja 800 = 800+0 = 4 ⋅ 200 +0.

Somit gilt:

(116 + 800) mod 4 ≡ (0 + 0) mod 4 ≡ 0 mod 4.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (34 ⋅ 81) mod 5.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(34 ⋅ 81) mod 5 ≡ (34 mod 5 ⋅ 81 mod 5) mod 5.

34 mod 5 ≡ 4 mod 5 kann man relativ leicht bestimmen, weil ja 34 = 30 + 4 = 6 ⋅ 5 + 4 ist.

81 mod 5 ≡ 1 mod 5 kann man relativ leicht bestimmen, weil ja 81 = 80 + 1 = 16 ⋅ 5 + 1 ist.

Somit gilt:

(34 ⋅ 81) mod 5 ≡ (4 ⋅ 1) mod 5 ≡ 4 mod 5.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
9 mod m = 13 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 9 aus, ob zufällig 9 mod m = 13 mod m gilt:

m=2: 9 mod 2 = 1 = 1 = 13 mod 2

m=3: 9 mod 3 = 0 ≠ 1 = 13 mod 3

m=4: 9 mod 4 = 1 = 1 = 13 mod 4

m=5: 9 mod 5 = 4 ≠ 3 = 13 mod 5

m=6: 9 mod 6 = 3 ≠ 1 = 13 mod 6

m=7: 9 mod 7 = 2 ≠ 6 = 13 mod 7

m=8: 9 mod 8 = 1 ≠ 5 = 13 mod 8

m=9: 9 mod 9 = 0 ≠ 4 = 13 mod 9

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (13 - 9) = 4 bestimmen:

die gesuchten Zahlen sind somit:

2; 4