nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 24 mod 10.

Lösung einblenden

Das nächst kleinere Vielfache von 10 ist 20, weil ja 2 ⋅ 10 = 20 ist.

Also bleibt als Rest eben noch 24 - 20 = 4.

Somit gilt: 24 mod 10 ≡ 4.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 80 und 89 für die gilt n ≡ 93 mod 7.

Lösung einblenden

Das nächst kleinere Vielfache von 7 ist 91, weil ja 13 ⋅ 7 = 91 ist.

Also bleibt als Rest eben noch 93 - 91 = 2.

Somit gilt: 93 mod 7 ≡ 2.

Wir suchen also eine Zahl zwischen 80 und 89 für die gilt: n ≡ 2 mod 7.

Dazu suchen wir erstmal ein Vielfaches von 7 in der Nähe von 80, z.B. 84 = 12 ⋅ 7

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 7 , sondern ≡ 2 mod 7 sein, also addieren wir noch 2 auf die 84 und erhalten so 86.

Somit gilt: 86 ≡ 93 ≡ 2 mod 7.

Modulo addieren

Beispiel:

Berechne ohne WTR: (12003 - 14998) mod 3.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(12003 - 14998) mod 3 ≡ (12003 mod 3 - 14998 mod 3) mod 3.

12003 mod 3 ≡ 0 mod 3 kann man relativ leicht bestimmen, weil ja 12003 = 12000+3 = 3 ⋅ 4000 +3.

14998 mod 3 ≡ 1 mod 3 kann man relativ leicht bestimmen, weil ja 14998 = 15000-2 = 3 ⋅ 5000 -2 = 3 ⋅ 5000 - 3 + 1.

Somit gilt:

(12003 - 14998) mod 3 ≡ (0 - 1) mod 3 ≡ -1 mod 3 ≡ 2 mod 3.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (54 ⋅ 36) mod 8.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(54 ⋅ 36) mod 8 ≡ (54 mod 8 ⋅ 36 mod 8) mod 8.

54 mod 8 ≡ 6 mod 8 kann man relativ leicht bestimmen, weil ja 54 = 48 + 6 = 6 ⋅ 8 + 6 ist.

36 mod 8 ≡ 4 mod 8 kann man relativ leicht bestimmen, weil ja 36 = 32 + 4 = 4 ⋅ 8 + 4 ist.

Somit gilt:

(54 ⋅ 36) mod 8 ≡ (6 ⋅ 4) mod 8 ≡ 24 mod 8 ≡ 0 mod 8.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
18 mod m = 24 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 18 aus, ob zufällig 18 mod m = 24 mod m gilt:

m=2: 18 mod 2 = 0 = 0 = 24 mod 2

m=3: 18 mod 3 = 0 = 0 = 24 mod 3

m=4: 18 mod 4 = 2 ≠ 0 = 24 mod 4

m=5: 18 mod 5 = 3 ≠ 4 = 24 mod 5

m=6: 18 mod 6 = 0 = 0 = 24 mod 6

m=7: 18 mod 7 = 4 ≠ 3 = 24 mod 7

m=8: 18 mod 8 = 2 ≠ 0 = 24 mod 8

m=9: 18 mod 9 = 0 ≠ 6 = 24 mod 9

m=10: 18 mod 10 = 8 ≠ 4 = 24 mod 10

m=11: 18 mod 11 = 7 ≠ 2 = 24 mod 11

m=12: 18 mod 12 = 6 ≠ 0 = 24 mod 12

m=13: 18 mod 13 = 5 ≠ 11 = 24 mod 13

m=14: 18 mod 14 = 4 ≠ 10 = 24 mod 14

m=15: 18 mod 15 = 3 ≠ 9 = 24 mod 15

m=16: 18 mod 16 = 2 ≠ 8 = 24 mod 16

m=17: 18 mod 17 = 1 ≠ 7 = 24 mod 17

m=18: 18 mod 18 = 0 ≠ 6 = 24 mod 18

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (24 - 18) = 6 bestimmen:

die gesuchten Zahlen sind somit:

2; 3; 6