nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 68 mod 5.

Lösung einblenden

Das nächst kleinere Vielfache von 5 ist 65, weil ja 13 ⋅ 5 = 65 ist.

Also bleibt als Rest eben noch 68 - 65 = 3.

Somit gilt: 68 mod 5 ≡ 3.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 40 und 49 für die gilt n ≡ 57 mod 5.

Lösung einblenden

Das nächst kleinere Vielfache von 5 ist 55, weil ja 11 ⋅ 5 = 55 ist.

Also bleibt als Rest eben noch 57 - 55 = 2.

Somit gilt: 57 mod 5 ≡ 2.

Wir suchen also eine Zahl zwischen 40 und 49 für die gilt: n ≡ 2 mod 5.

Dazu suchen wir erstmal ein Vielfaches von 5 in der Nähe von 40, z.B. 40 = 8 ⋅ 5

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 5 , sondern ≡ 2 mod 5 sein, also addieren wir noch 2 auf die 40 und erhalten so 42.

Somit gilt: 42 ≡ 57 ≡ 2 mod 5.

Modulo addieren

Beispiel:

Berechne ohne WTR: (81 - 121) mod 4.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(81 - 121) mod 4 ≡ (81 mod 4 - 121 mod 4) mod 4.

81 mod 4 ≡ 1 mod 4 kann man relativ leicht bestimmen, weil ja 81 = 80+1 = 4 ⋅ 20 +1.

121 mod 4 ≡ 1 mod 4 kann man relativ leicht bestimmen, weil ja 121 = 120+1 = 4 ⋅ 30 +1.

Somit gilt:

(81 - 121) mod 4 ≡ (1 - 1) mod 4 ≡ 0 mod 4.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (27 ⋅ 51) mod 11.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(27 ⋅ 51) mod 11 ≡ (27 mod 11 ⋅ 51 mod 11) mod 11.

27 mod 11 ≡ 5 mod 11 kann man relativ leicht bestimmen, weil ja 27 = 22 + 5 = 2 ⋅ 11 + 5 ist.

51 mod 11 ≡ 7 mod 11 kann man relativ leicht bestimmen, weil ja 51 = 44 + 7 = 4 ⋅ 11 + 7 ist.

Somit gilt:

(27 ⋅ 51) mod 11 ≡ (5 ⋅ 7) mod 11 ≡ 35 mod 11 ≡ 2 mod 11.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
19 mod m = 28 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 19 aus, ob zufällig 19 mod m = 28 mod m gilt:

m=2: 19 mod 2 = 1 ≠ 0 = 28 mod 2

m=3: 19 mod 3 = 1 = 1 = 28 mod 3

m=4: 19 mod 4 = 3 ≠ 0 = 28 mod 4

m=5: 19 mod 5 = 4 ≠ 3 = 28 mod 5

m=6: 19 mod 6 = 1 ≠ 4 = 28 mod 6

m=7: 19 mod 7 = 5 ≠ 0 = 28 mod 7

m=8: 19 mod 8 = 3 ≠ 4 = 28 mod 8

m=9: 19 mod 9 = 1 = 1 = 28 mod 9

m=10: 19 mod 10 = 9 ≠ 8 = 28 mod 10

m=11: 19 mod 11 = 8 ≠ 6 = 28 mod 11

m=12: 19 mod 12 = 7 ≠ 4 = 28 mod 12

m=13: 19 mod 13 = 6 ≠ 2 = 28 mod 13

m=14: 19 mod 14 = 5 ≠ 0 = 28 mod 14

m=15: 19 mod 15 = 4 ≠ 13 = 28 mod 15

m=16: 19 mod 16 = 3 ≠ 12 = 28 mod 16

m=17: 19 mod 17 = 2 ≠ 11 = 28 mod 17

m=18: 19 mod 18 = 1 ≠ 10 = 28 mod 18

m=19: 19 mod 19 = 0 ≠ 9 = 28 mod 19

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (28 - 19) = 9 bestimmen:

die gesuchten Zahlen sind somit:

3; 9