nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Gegenkathete berechnen (Sinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von b.

Lösung einblenden

Nach der Definition des Sinus gilt sin(β)= Gegenkathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: sin(60°)= b 6cm

Multipliziert man nun mit 6cm, so folgt: b=sin(60°)*6cm

Also gilt b=5.2

Hypotenuse berechnen (Sinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von c.

Lösung einblenden

Nach der Definition des Sinus gilt sin(β)= Gegenkathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: sin(48°)= 5.1cm c

Multipliziert man nun mit c und teilt durch sin(48°),

so folgt: c= 5.1cm sin(48°)

Also gilt c=6.86

Winkel berechnen (Sinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Winkelweite β.

Lösung einblenden

Nach der Definition des Sinus gilt sin(β)= Gegenkathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: sin(β)= 4.6cm 6.3cm =0.73

Daraus ergibt sich β=46.9°

Ankathete berechnen (Kosinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von a.

Lösung einblenden

Nach der Definition des Kosinus gilt cos(β)= Ankathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: cos(27°)= a 6.8cm

Multipliziert man nun mit 6.8cm, so folgt: a=cos(27°)*6.8cm

Also gilt a=6.06

Hypotenuse berechnen (Kosinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von c.

Lösung einblenden

Nach der Definition des Kosinus gilt cos(α)= Ankathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: cos(41°)= 5.2cm c

Multipliziert man nun mit c und teilt durch cos(41°),

so folgt: c= 5.2cm cos(41°)

Also gilt c=6.89

Winkel berechnen (Kosinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Winkelweite β.

Lösung einblenden

Nach der Definition des Kosinus gilt cos(β)= Ankathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: cos(β)= 3.6cm 6cm =0.6

Daraus ergibt sich β = 53.13°

Gegenkathete berechnen (Tangens)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von a.

Lösung einblenden

Nach der Definition des Tangens gilt tan(α) = Gegenkathete Ankathete

Setzt man die gegebenen Werte ein, so folgt: tan(56°) = a 3.8cm

Multipliziert man nun mit 3.8cm, so folgt:

a = tan(56°)*3.8cm

Also gilt a = 5.63cm

Ankathete berechnen (Tangens)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von a.

Lösung einblenden

Nach der Definition des Tangens gilt tan(β) = Gegenkathete Ankathete

Setzt man die gegebenen Werte ein, so folgt: tan(53°) = 5.8cm a

Multipliziert man nun mit 5.8cm und teilt durch tan(53°), so folgt:

a = 5.8cm tan(53°)

Also gilt a = 4.37cm

Winkel berechnen (Tangens)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Winkelweite α.

Lösung einblenden

Nach der Definition des Tangens gilt tan(α) = Gegenkathete Ankathete

Setzt man die gegebenen Werte ein, so folgt: tan(α) = 4.2cm 6.6cm =0.636

Daraus folgt: α = 32.47°

Ankathete berechnen (Tangens)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von a.

Lösung einblenden

Nach der Definition des Tangens gilt tan(β) = Gegenkathete Ankathete

Setzt man die gegebenen Werte ein, so folgt: tan(59°) = 6.5cm a

Multipliziert man nun mit 6.5cm und teilt durch tan(59°), so folgt:

a = 6.5cm tan(59°)

Also gilt a = 3.91cm