nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
f(x)= x 2 -9x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach f(x) = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 -9x = 0
x ( x -9 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -9 = 0 | +9
x2 = 9

L={0; 9 }

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
f(x)= x 2 -6x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach f(x) = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 -6x = 0
x ( x -6 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -6 = 0 | +6
x2 = 6

L={0; 6 }

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen 0+6 2 = 3 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(3|f(3)) mit f(3) = 3 2 -63 = 9 -18 = -9.

Als Ergebnisse erhalten wir also: Nullstellen: x1=0 und x2=6 , Scheitel: S(3|-9).

x²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit f(x)= x 2 -10x -3 .

Lösung einblenden

1. Weg

f(x)= x 2 -10x -3

Man erweitert die ersten beiden Summanden ( x 2 -10x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -10x durch 2x und quadriert diese Ergebnis -5 zu 25. Diese 25 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 25, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 -10x +25 -25 -3

= ( x -5 ) 2 -25 -3

= ( x -5 ) 2 -28

Jetzt kann man den Scheitel leicht ablesen: S(5|-28).


2. Weg

Wir betrachten nun nur x 2 -10x . Deren Parabel sieht ja genau gleich aus wie x 2 -10x -3 nur um -3 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von x 2 -10x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 -10x = 0
x ( x -10 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -10 = 0 | +10
x2 = 10

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(5|f(5)).

f(5) = 5 2 -105 -3 = 25 -50 -3 = -28

also: S(5|-28).


ax²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit f(x)= 2 x 2 -12x -3 .

Lösung einblenden

1. Weg

f(x)= 2 x 2 -12x -3

= 2( x 2 -6x ) -3

Man erweitert die ersten beiden Summanden ( x 2 -6x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -6x durch 2x und quadriert diese Ergebnis -3 zu 9. Diese 9 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 9, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= 2( x 2 -6x +9 -9 ) -3

= 2( x 2 -6x +9 ) + 2 · ( -9 ) -3

= 2 ( x -3 ) 2 -18 -3

= 2 ( x -3 ) 2 -21

Jetzt kann man den Scheitel leicht ablesen: S(3|-21).


2. Weg

Wir betrachten nun nur 2 x 2 -12x . Deren Parabel sieht ja genau gleich aus wie 2 x 2 -12x -3 nur um -3 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von 2 x 2 -12x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

2 x 2 -12x = 0
2 x ( x -6 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -6 = 0 | +6
x2 = 6

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(3|f(3)).

f(3) = 2 3 2 -123 -3 = 18 -36 -3 = -21

also: S(3|-21).


Extremwertaufgaben (Anwend.)

Beispiel:

Die Summe zweier Zahlen ist 30 . Wie groß muss man die erste Zahl wählen, damit das Produkt der beiden Zahlen größtmöglich wird? Wie groß ist dann dieses Produkt.

Lösung einblenden

1. Weg

f(x)= - x 2 +30x

= -( x 2 -30x )

Man erweitert die ersten beiden Summanden ( x 2 -30x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -30x durch 2x und quadriert diese Ergebnis -15 zu 225. Diese 225 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 225, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= -( x 2 -30x +225 -225 )

= -( x 2 -30x +225 ) -1 · ( -225 )

= - ( x -15 ) 2 +225

= - ( x -15 ) 2 +225

Jetzt kann man den Scheitel leicht ablesen: S(15|225).


2. Weg

Von - x 2 +30x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

- x 2 +30x = 0
x ( -x +30 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

-x +30 = 0 | -30
-x = -30 |:(-1 )
x2 = 30

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(15|f(15)).

f(15) = - 15 2 +3015 = -225 +450 = 225

also: S(15|225).


Für x=15 bekommen wir also mit 225 einen extremalen Wert von - x 2 +30x