Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Nullstellen mit Nullprodukt
Beispiel:
Bestimme die Nullstellen der quadratischen Funktion f mit
Um die Nullstellen zu berechnen, setzen wir einfach f(x) = 0.
Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden
= | |||
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
x1 | = |
2. Fall:
= | | | ||
= | |: | ||
x2 | = | = -4.5 |
L={
;
Nullstellen und Scheitel (Nullprodukt)
Beispiel:
Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
Um die Nullstellen zu berechnen, setzen wir einfach f(x) = 0.
Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden
= | |||
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
x1 | = |
2. Fall:
= | | | ||
x2 | = |
L={
Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen = 2 und erhalten so den x-Wert des Scheitels.
Der Scheitel hat also die Koordinaten S(2|f(2)) mit f(2) = = = -4.
Als Ergebnisse erhalten wir also: Nullstellen: x1=0 und x2=4 , Scheitel: S(2|-4).
x²+bx+c -> Scheitelform
Beispiel:
Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit .
1. Weg
Man erweitert die ersten beiden Summanden ( ) zu einem 'binomischen Formel'-Term. Dazu teilt man die durch 2x und quadriert diese Ergebnis 1 zu 1. Diese 1 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 1, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.
=
=
=
Jetzt kann man den Scheitel leicht ablesen: S(-1|-4).
2. Weg
Wir betrachten nun nur . Deren Parabel sieht ja genau gleich aus wie nur um nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.
Von können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.
= | |||
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
x1 | = |
2. Fall:
= | | | ||
x2 | = |
Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(-1|f(-1)).
f(-1) = = = -4
also: S(-1|-4).
ax²+bx+c -> Scheitelform
Beispiel:
Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit .
1. Weg
=
Man erweitert die ersten beiden Summanden ( ) zu einem 'binomischen Formel'-Term. Dazu teilt man die durch 2x und quadriert diese Ergebnis 2 zu 4. Diese 4 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 4, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.
=
=
=
=
Jetzt kann man den Scheitel leicht ablesen: S(-2|-13).
2. Weg
Wir betrachten nun nur . Deren Parabel sieht ja genau gleich aus wie nur um nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.
Von können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.
= | |||
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
x1 | = |
2. Fall:
= | | | ||
x2 | = |
Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(-2|f(-2)).
f(-2) = = = -13
also: S(-2|-13).
Extremwertaufgaben (Anwend.)
Beispiel:
Die Summe zweier Zahlen ist . Wie groß muss man die erste Zahl wählen, damit das Produkt der beiden Zahlen größtmöglich wird? Wie groß ist dann dieses Produkt.
1. Weg
=
Man erweitert die ersten beiden Summanden ( ) zu einem 'binomischen Formel'-Term. Dazu teilt man die durch 2x und quadriert diese Ergebnis -75 zu 5625. Diese 5625 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 5625, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.
=
=
=
=
Jetzt kann man den Scheitel leicht ablesen: S(75|5625).
2. Weg
Von können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.
= | |||
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
x1 | = |
2. Fall:
= | | | ||
= | |:() | ||
x2 | = |
Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(75|f(75)).
f(75) = = = 5625
also: S(75|5625).
Für x=75 bekommen wir also mit 5625 einen extremalen Wert von