Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Berechnung von Volumen
Beispiel:
Berechne das Volumen des zusammengesetzten Körpers.
Der gezeichnete Körper besteht aus zwei Teilen: einem Zylinder und einer halben Kugel, die auf dem Zylinder liegt.
Das Volumen des Zylinder kann man ja relativ einfach mit der Formel
VZ = G ⋅ h = π ⋅ r² ⋅ h berechnen.
V1 = π ⋅ r² ⋅ h = π⋅(2 cm)² ⋅ 4 cm = 16π cm³ ≈ 50,27 cm³
Bei der draufliegenden Halbkugel lässt sich das Volumen einfach als halbes Kugelvolumen berechnen:
V2 = ⋅ π⋅r³ = ⋅ π
⋅(2 cm)³ = π cm³ ≈
16,76 cm³
Für das gesuchte Volumen ergibt sich somit: V = V1 + V2 ≈ 50,27 cm² + 16,76 cm² ≈ 67 cm²
Berechnung von Oberflächeninhalt
Beispiel:
Berechne die Oberfläche des zusammengesetzten Körpers.
Der gezeichnete Körper besteht aus zwei Teilen: einem Quader und einem halben Zylinder, der auf dem Quader liegt.
Normalerweise hätte der Quader 6 Flächen: je zwei mit dem Flächeninhalt a⋅b (Boden un Decke), zwei mit a⋅c (vorne, hinten) und zwei mit b⋅c (Seitenwände). Weil ja hier aber die Deckfläche nicht frei ist, sondern von dem halben Zylinder belegt ist, gilt hier für die sichtbare Oberfläche des Quaders:
O1 = a⋅b + 2⋅a⋅c + 2⋅b⋅c
= 5 mm⋅4 mm +
2⋅5 mm⋅7 mm + 2⋅4 mm⋅7 mm
=
20 mm² + 70 mm² + 56 mm²
146 mm²
Bei dem draufliegenden Halbzylinder sehen wir vorne und hinten jeweils einen halben Kreis mit Radius 2,5 mm,
also 2⋅πr² = π⋅2,5² mm²
≈ 19,63 mm²
Außerdem haben wir noch den halben Zylindermantel: Dieser hat (abgerollt)
die Form eines Rechtecks, bei dem eine Seite eben die Tiefe nach hinten b=4 mm ist und die andere Seite ein halber Kreisumfang mit Radius
r==2.5 mm, also U = π⋅r = 2.5π mm.
Somit gilt für die sichtbare Oberfläche des Halbylinders:
O2 = πr² + π⋅r⋅b = 2.5²π mm
+ π⋅2.5⋅4 mm = 16.25⋅π mm² ≈
51,05 mm².
Für die gesuchte Oberfläche ergibt sich somit: O = O1 + O2 ≈ 146 mm² + 51,05 mm² ≈ 197,05 mm²
