nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Berechnung von Volumen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Berechne das Volumen des zusammengesetzten Körpers.

Lösung einblenden

Der gezeichnete Körper besteht aus zwei Teilen: einem Quader und einem halben Zylinder, der auf dem Quader liegt.

Das Volumen des Quaders lässt sich ja recht einfachmit der Formel V = a⋅b⋅c berechnen:

V1 = a⋅b⋅c
= 6 mm⋅8 mm⋅7 mm
= 336 mm³

Den draufliegenden Halbzylinder berechnen wir mit der (halben) Zylinderformel V = G ⋅ h = 1 2 ⋅ π ⋅ r² ⋅ h

Mit r = a 2 = 3 mm und h = b = 8 mm gilt dann :
V2 = 1 2 ⋅ π ( a 2 )² ⋅ b
= 1 2 ⋅ π 9 mm² ⋅ 8 mm
= 113,1 mm³

Für das gesuchte Volumen ergibt sich somit:V = V1 + V2 ≈ 336 mm³ + 113,1 mm³ ≈ 449,1 mm³

Berechnung von Oberflächeninhalt

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Berechne die Oberfläche des zusammengesetzten Körpers.

Lösung einblenden

Der gezeichnete Körper besteht aus zwei Teilen: einem Quader und einer geraden quadratischen Pyramide, die auf dem Quader liegt.

Normalerweise hätte der Quader 6 Flächen: je zwei mit dem Flächeninhalt a⋅b (Boden un Decke), zwei mit a⋅c (vorne, hinten) und zwei mit b⋅c (Seitenwände). Weil ja hier aber die Deckfläche nicht frei ist, sondern von der Pyramide bedeckt ist, gilt hier für die sichtbare Oberfläche des Quaders:

O1 = a⋅b + 2⋅a⋅c + 2⋅b⋅c
= 4 mm⋅4 mm + 2⋅4 mm⋅4 mm + 2⋅4 mm⋅4 mm
= 16 mm² + 32 mm² + 32 mm²
80 mm²

Bei der draufliegenden Pyramide besteht die sichtbare Oberfläche nur aus den 4 gleichen Seitenflächen. Um deren Flächeninhalt zu berechnen, brauchen wir außer der Grundseitenlänge a = 4 mm auch noch die Höhe eines Seitendreicks. Diese können wir als Hypothenuse in einem rechtwinkligen Dreieck mit den Katheten a 2 = 2 mm und h = 4 mm berechnen, da ja der Fuß der Höhe genau in der Mitte der Grundfläche liegt. Es gilt also:
ha² = ( a 2 )² + h², oder eben ha = ( a 2 )² + h² = 4 + 9 = 13 ≈ 3,61 mm

Damit können wir den Mantel der Pyramide berechnen: O2 = 4 ⋅ 1 2 ⋅a⋅ha = 2⋅a⋅ha ≈ = 2⋅4 mm⋅3,61 mm ≈ 28,84 mm²

Für die gesuchte Oberfläche ergibt sich somit: O = O1 + O2 ≈ 80 mm² + 28,84 mm² ≈ 108,84 mm²