Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Berechnung von Volumen
Beispiel:
Berechne das Volumen des zusammengesetzten Körpers.
Der gezeichnete Körper besteht aus zwei Teilen: einem Quader und einer geraden quadratischen Pyramide, die auf dem Quader liegt.
Das Volumen des Quaders lässt sich ja recht einfach mit der Formel V = a⋅b⋅c berechnen:
V1 = a⋅b⋅c
= 7 cm⋅7 cm⋅5 cm
=
245 cm³
Die draufliegende Pyramide berechnen wir mit der Formel V = G ⋅ h = ⋅ a² ⋅ h
Somit gilt: V2 = ⋅ 49 cm² ⋅ 3 cm
=
49 cm³
Für das gesuchte Volumen ergibt sich somit:V = V1 + V2 ≈ 245 cm³ + 49 cm³ ≈ 294 cm³
Berechnung von Oberflächeninhalt
Beispiel:
Berechne die Oberfläche des zusammengesetzten Körpers.
Der gezeichnete Körper besteht aus zwei Teilen: einem Quader und einer geraden quadratischen Pyramide, die auf dem Quader liegt.
Normalerweise hätte der Quader 6 Flächen: je zwei mit dem Flächeninhalt a⋅b (Boden un Decke), zwei mit a⋅c (vorne, hinten) und zwei mit b⋅c (Seitenwände). Weil ja hier aber die Deckfläche nicht frei ist, sondern von der Pyramide bedeckt ist, gilt hier für die sichtbare Oberfläche des Quaders:
O1 = a⋅b + 2⋅a⋅c + 2⋅b⋅c
= 6 cm⋅6 cm +
2⋅6 cm⋅5 cm + 2⋅6 cm⋅5 cm
=
36 cm² + 60 cm² + 60 cm²
156 cm²
Bei der draufliegenden Pyramide besteht die sichtbare Oberfläche nur aus den 4 gleichen Seitenflächen. Um deren Flächeninhalt zu berechnen, brauchen wir
außer der Grundseitenlänge a = 6 cm auch noch die Höhe eines Seitendreicks. Diese können wir als Hypothenuse in einem rechtwinkligen
Dreieck mit den Katheten = 3 cm und h = 5 cm berechnen, da ja der Fuß der Höhe
genau in der Mitte der Grundfläche liegt. Es gilt also:
ha² = ()² + h², oder eben ha
=
=
Damit können wir den Mantel der Pyramide berechnen: O2 = 4 ⋅
Für die gesuchte Oberfläche ergibt sich somit: O = O1 + O2 ≈ 156 cm² + 60 cm² ≈ 216 cm²