nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Verschiebung am Graph erkennen (Potenzfktn)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild sieht man den Graph von f(x)= x 5 in schwarzer Farbe.
Bestimme den Funktionsterm der Funktion g, deren Graph in rot eingezeichnet ist.

Lösung einblenden

Man erkennt schnell, dass der rote Graph in x-Richtung verschoben wurde, und zwar um 2 nach rechts. Der gesuchte Funktionsterm ist also g(x)= ( x -2 ) 5

Verschiebung am Graph erkennen II

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild sieht man den Graph von f(x)= x 3 in schwarzer Farbe.
Bestimme den Funktionsterm der Funktion g, deren Graph in rot eingezeichnet ist.

Hinweis: Die beiden Graphen sind deckungsgleich.

Lösung einblenden

Man erkennt sofort, dass der rote Graph an der x-Achse gespiegelt (oder eben mit dem Streckfaktor -1 in y-Richtung gestreckt) wurde. Vor dem gesuchten Term muss also ein '-' stehen.

Außerdem erkennt man eine Verschiebung um 2 nach rechts, was bedeutet dass statt den Funktionswerten von x die von (x - 2) berechnet werden, also das man im Funktionsterm x durch (x-2) ersetzt.

Somit erhält man für den gesuchten Funktionsterm g(x)= - ( x -2 ) 3 .

Verschiebung am Term erkennen (Potenzfktn)

Beispiel:

Beschreibe, wie der Graph von g mit g(x)= - 1 4 ( x -4 ) 4 aus dem Graph von f mit f(x)= x 4 entsteht.

Lösung einblenden

Man erkennt sofort, dass das 'x' in g(x) in f(x) durch (x -4) ersetzt wurde. Das bedeutet, dass in g die Funktionswerte von f von den um 4 kleineren x-Werten genommen werden. (Also sind bei gleichen Funktionswerten die x-Werte bei g um 4 größer als bei f) Für den Graph bedeutet das, dass er um 4 nach rechts in x-Richtung verschoben wird.

Die - 1 4 als Koeffizient vor der Potenz bewirkt, dass die Funktionswerte mit dem Faktor - 1 4 multipliziert werden. Dadurch wird der Graph um - 1 4 gestreckt. (das negative Vorzeichen von - 1 4 ändert das Vorzeichen der Funktionswerte und bewirkt somit noch zusätzlich eine Spiegelung an der x-Achse.)

Term aus Versc/Streck. bestimmen (Potenzfktn)

Beispiel:

Der Graph von f mit f(x)= x 2 wird um den Faktor 1 2 in y-Richtung gestreckt und an der x-Achse gespiegelt und um 3 nach unten verschoben.

Bestimme den Funktionsterm g(x) des neuen Graphen.

Lösung einblenden

Bei der Verschiebung um 3 nach unten, bzw. -3 nach oben wird zu jedem Funktionswert noch -3 dazu addiert, also ein -3 an den Funktionsterm hinten angehängt.

Die Streckung um den Faktor 1 2 in y-Richtung erreicht man durch den Koeffizienten 1 2 vor der Potenz.

Die Spiegelung an der x-Achse bekommt man durch ein negatives Vorzeichen bei dem Koeffizienten vor der Potenz, also - 1 2 .

Der gesuchte Funktionsterm g(x) ist somit: g(x)= - 1 2 x 2 -3