nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Verschiebung am Graph erkennen (Potenzfktn)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild sieht man den Graph von f(x)= x 4 in schwarzer Farbe.
Bestimme den Funktionsterm der Funktion g, deren Graph in rot eingezeichnet ist.

Lösung einblenden

Man erkennt schnell, dass der rote Graph in x-Richtung verschoben wurde, und zwar um 4 nach links, bzw. -4 nach rechts. Der gesuchte Funktionsterm ist also g(x)= ( x - ( -4 ) ) 4 = ( x +4 ) 4

Verschiebung am Graph erkennen II

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild sieht man den Graph von f(x)= x 2 in schwarzer Farbe.
Bestimme den Funktionsterm der Funktion g, deren Graph in rot eingezeichnet ist.

Hinweis: Die beiden Graphen sind deckungsgleich.

Lösung einblenden

Man erkennt schnell, dass der rote Graph in y-Richtung verschoben wurde, und zwar um 3 nach oben.

Außerdem erkennt man eine Verschiebung um 1 nach rechts, was bedeutet dass statt den Funktionswerten von x die von (x - 1) berechnet werden, also das man im Funktionsterm x durch (x-1) ersetzt.

Somit erhält man für den gesuchten Funktionsterm g(x)= ( x -1 ) 2 +3 .

Verschiebung am Term erkennen (Potenzfktn)

Beispiel:

Beschreibe, wie der Graph von g mit g(x)= - 1 3 x 4 +3 aus dem Graph von f mit f(x)= x 4 entsteht.

Lösung einblenden

Hinter dem Potenzterm steht noch eine 3. Das bedeutet, dass zu jedem Funktionswert noch 3 dazu addiert wird. Also wird der Graph von g um 3 nach oben verschoben.

Die - 1 3 als Koeffizient vor der Potenz bewirkt, dass die Funktionswerte mit dem Faktor - 1 3 multipliziert werden. Dadurch wird der Graph um - 1 3 gestreckt. (das negative Vorzeichen von - 1 3 ändert das Vorzeichen der Funktionswerte und bewirkt somit noch zusätzlich eine Spiegelung an der x-Achse.)

Term aus Versc/Streck. bestimmen (Potenzfktn)

Beispiel:

Der Graph von f mit f(x)= x 5 wird um den Faktor 1 2 in y-Richtung gestreckt und um 2 nach unten verschoben.

Bestimme den Funktionsterm g(x) des neuen Graphen.

Lösung einblenden

Bei der Verschiebung um 2 nach unten, bzw. -2 nach oben wird zu jedem Funktionswert noch -2 dazu addiert, also ein -2 an den Funktionsterm hinten angehängt.

Die Streckung um den Faktor 1 2 in y-Richtung erreicht man durch den Koeffizienten 1 2 vor der Potenz.

Der gesuchte Funktionsterm g(x) ist somit: g(x)= 1 2 x 5 -2