nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Verschiebung am Graph erkennen (Potenzfktn)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild sieht man den Graph von f(x)= x 2 in schwarzer Farbe.
Bestimme den Funktionsterm der Funktion g, deren Graph in rot eingezeichnet ist.

Lösung einblenden

Man erkennt schnell, dass der rote Graph in y-Richtung verschoben wurde, und zwar um 2 nach oben. Der gesuchte Funktionsterm ist also g(x)= x 2 +2

Verschiebung am Graph erkennen II

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild sieht man den Graph von f(x)= x 2 in schwarzer Farbe.
Bestimme den Funktionsterm der Funktion g, deren Graph in rot eingezeichnet ist.

Hinweis: Die beiden Graphen sind deckungsgleich.

Lösung einblenden

Man erkennt schnell, dass der rote Graph in y-Richtung verschoben wurde, und zwar um 3 nach unten, bzw. -3 nach oben.

Somit erhält man für den gesuchten Funktionsterm g(x)= x 2 -3 .

Verschiebung am Term erkennen (Potenzfktn)

Beispiel:

Beschreibe, wie der Graph von g mit g(x)= -4 ( x -5 ) 4 aus dem Graph von f mit f(x)= x 4 entsteht.

Lösung einblenden

Man erkennt sofort, dass das 'x' in g(x) in f(x) durch (x -5) ersetzt wurde. Das bedeutet, dass in g die Funktionswerte von f von den um 5 kleineren x-Werten genommen werden. (Also sind bei gleichen Funktionswerten die x-Werte bei g um 5 größer als bei f) Für den Graph bedeutet das, dass er um 5 nach rechts in x-Richtung verschoben wird.

Die -4 als Koeffizient vor der Potenz bewirkt, dass die Funktionswerte mit dem Faktor -4 multipliziert werden. Dadurch wird der Graph um -4 gestreckt. (das negative Vorzeichen von -4 ändert das Vorzeichen der Funktionswerte und bewirkt somit noch zusätzlich eine Spiegelung an der x-Achse.)

Term aus Versc/Streck. bestimmen (Potenzfktn)

Beispiel:

Der Graph von f mit f(x)= x 5 wird um den Faktor 1 3 in y-Richtung gestreckt und an der x-Achse gespiegelt.

Bestimme den Funktionsterm g(x) des neuen Graphen.

Lösung einblenden

Die Streckung um den Faktor 1 3 in y-Richtung erreicht man durch den Koeffizienten 1 3 vor der Potenz.

Die Spiegelung an der x-Achse bekommt man durch ein negatives Vorzeichen bei dem Koeffizienten vor der Potenz, also - 1 3 .

Der gesuchte Funktionsterm g(x) ist somit: g(x)= - 1 3 x 5