Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Verschiebung am Graph erkennen (Potenzfktn)
Beispiel:
Im Schaubild sieht man den Graph von in schwarzer Farbe.
Bestimme den Funktionsterm der Funktion g, deren Graph in rot eingezeichnet ist.
Man erkennt schnell, dass der rote Graph in x-Richtung verschoben wurde, und zwar um 3 nach links, bzw. -3 nach rechts. Der gesuchte Funktionsterm ist also g(x)= =
Verschiebung am Graph erkennen II
Beispiel:
Im Schaubild sieht man den Graph von in schwarzer Farbe.
Bestimme den Funktionsterm der Funktion g, deren Graph in rot eingezeichnet ist.
Hinweis: Die beiden Graphen sind deckungsgleich.
Man erkennt schnell, dass der rote Graph in x-Richtung verschoben wurde, und zwar um 4 nach links, bzw. -4 nach rechts. Statt den Funktionswerten von x
werden also die von (x -
Außerdem erkennt man eine Verschiebung um 2 nach unten, bzw. -2 nach rechts, was bedeutet dass auf alle Funktionswerte -2 drauf addieet wird.
Somit erhält man für den gesuchten Funktionsterm g(x)= .
Verschiebung am Term erkennen (Potenzfktn)
Beispiel:
Beschreibe, wie der Graph von g mit aus dem Graph von f mit entsteht.
Man erkennt sofort, dass das 'x' in g(x) in f(x) durch (x
Die als Koeffizient vor der Potenz bewirkt, dass die Funktionswerte mit dem Faktor multipliziert werden. Dadurch wird der Graph um gestreckt. (das negative Vorzeichen von ändert das Vorzeichen der Funktionswerte und bewirkt somit noch zusätzlich eine Spiegelung an der x-Achse.)
Term aus Versc/Streck. bestimmen (Potenzfktn)
Beispiel:
Der Graph von f mit wird um den Faktor in y-Richtung gestreckt und um 4 nach rechts verschoben.
Bestimme den Funktionsterm g(x) des neuen Graphen.
Bei der Verschiebung um 4 nach rechts wird jedes 'x' durch (x
Die Streckung um den Faktor in y-Richtung erreicht man durch den Koeffizienten vor der Potenz.
Der gesuchte Funktionsterm g(x) ist somit:
