nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache Bruchgl. (quadr.)

Beispiel:

Löse die folgende Gleichung:

8 x +3 = 2x

Lösung einblenden

D=R\{ -3 }

Wir multiplizieren den Nenner x +3 weg!

8 x +3 = 2x |⋅( x +3 )
8 x +3 · ( x +3 ) = 2x · ( x +3 )
8 = 2 x ( x +3 )
8 = 2 x 2 +6x
8 = 2 x 2 +6x | -2 x 2 -6x
-2 x 2 -6x +8 = 0 |:2

- x 2 -3x +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · ( -1 ) · 4 2( -1 )

x1,2 = +3 ± 9 +16 -2

x1,2 = +3 ± 25 -2

x1 = 3 + 25 -2 = 3 +5 -2 = 8 -2 = -4

x2 = 3 - 25 -2 = 3 -5 -2 = -2 -2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -3x +4 = 0 |: -1

x 2 +3x -4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -4 ) = 9 4 + 4 = 9 4 + 16 4 = 25 4

x1,2 = - 3 2 ± 25 4

x1 = - 3 2 - 5 2 = - 8 2 = -4

x2 = - 3 2 + 5 2 = 2 2 = 1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -4 ; 1 }

Bruchgleichung (quadr.) 1

Beispiel:

Löse die folgende Gleichung:

3x -2 x +4 = 2x

Lösung einblenden

D=R\{ -4 }

Wir multiplizieren den Nenner x +4 weg!

3x -2 x +4 = 2x |⋅( x +4 )
3x -2 x +4 · ( x +4 ) = 2x · ( x +4 )
3x -2 = 2 x ( x +4 )
3x -2 = 2 x 2 +8x
3x -2 = 2 x 2 +8x | -2 x 2 -8x

-2 x 2 -5x -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +5 ± ( -5 ) 2 -4 · ( -2 ) · ( -2 ) 2( -2 )

x1,2 = +5 ± 25 -16 -4

x1,2 = +5 ± 9 -4

x1 = 5 + 9 -4 = 5 +3 -4 = 8 -4 = -2

x2 = 5 - 9 -4 = 5 -3 -4 = 2 -4 = -0,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-2 " teilen:

-2 x 2 -5x -2 = 0 |: -2

x 2 + 5 2 x +1 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 4 ) 2 - 1 = 25 16 - 1 = 25 16 - 16 16 = 9 16

x1,2 = - 5 4 ± 9 16

x1 = - 5 4 - 3 4 = - 8 4 = -2

x2 = - 5 4 + 3 4 = - 2 4 = -0.5

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -2 ; -0,5 }

Bruchgleichung (quadr.) 2

Beispiel:

Löse die folgende Gleichung:

-7 2x -1 = -x -2

Lösung einblenden

D=R\{ 1 2 }

Wir multiplizieren den Nenner 2x -1 weg!

- 7 2x -1 = -x -2 |⋅( 2x -1 )
- 7 2x -1 · ( 2x -1 ) = -x · ( 2x -1 ) -2 · ( 2x -1 )
-7 = - x ( 2x -1 ) -4x +2
-7 = -2 x 2 -3x +2
-7 = -2 x 2 -3x +2 | +2 x 2 +3x -2

2 x 2 +3x -9 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -3 ± 3 2 -4 · 2 · ( -9 ) 22

x1,2 = -3 ± 9 +72 4

x1,2 = -3 ± 81 4

x1 = -3 + 81 4 = -3 +9 4 = 6 4 = 1,5

x2 = -3 - 81 4 = -3 -9 4 = -12 4 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 +3x -9 = 0 |: 2

x 2 + 3 2 x - 9 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 4 ) 2 - ( - 9 2 ) = 9 16 + 9 2 = 9 16 + 72 16 = 81 16

x1,2 = - 3 4 ± 81 16

x1 = - 3 4 - 9 4 = - 12 4 = -3

x2 = - 3 4 + 9 4 = 6 4 = 1.5

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -3 ; 1,5 }

Bruchgl. mit x-Potenzen

Beispiel:

Löse die folgende Gleichung:

- 1 x 2 = 5x +4 x 4

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 4 weg!

- 1 x 2 = 5x +4 x 4 |⋅( x 4 )
- 1 x 2 · x 4 = 5x +4 x 4 · x 4
- x 2 = 5x +4
- x 2 = 5x +4 | -5x -4

- x 2 -5x -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +5 ± ( -5 ) 2 -4 · ( -1 ) · ( -4 ) 2( -1 )

x1,2 = +5 ± 25 -16 -2

x1,2 = +5 ± 9 -2

x1 = 5 + 9 -2 = 5 +3 -2 = 8 -2 = -4

x2 = 5 - 9 -2 = 5 -3 -2 = 2 -2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -5x -4 = 0 |: -1

x 2 +5x +4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = - 5 2 ± 9 4

x1 = - 5 2 - 3 2 = - 8 2 = -4

x2 = - 5 2 + 3 2 = - 2 2 = -1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -4 ; -1 }

doppelte Bruchgl. (quadr.)

Beispiel:

Löse die folgende Gleichung:

0,2 x +1 + x = - x 5x +5

Lösung einblenden

D=R\{ -1 }

0,2 x +1 + x = -x 5x +5
0,2 x +1 + x = -x 5( x +1 ) |(Nenner faktorisiert)

Wir multiplizieren den Nenner 5( x +1 ) weg!

0,2 x +1 + x = -x 5( x +1 ) |⋅( 5( x +1 ) )
0,2 x +1 · ( 5( x +1 ) ) + x · ( 5( x +1 ) ) = -x 5( x +1 ) · ( 5( x +1 ) )
1 +5 x ( x +1 ) = -x
1 + ( 5 x 2 +5x ) = -x
5 x 2 +5x +1 = -x
5 x 2 +5x +1 = -x | + x

5 x 2 +6x +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · 5 · 1 25

x1,2 = -6 ± 36 -20 10

x1,2 = -6 ± 16 10

x1 = -6 + 16 10 = -6 +4 10 = -2 10 = -0,2

x2 = -6 - 16 10 = -6 -4 10 = -10 10 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "5 " teilen:

5 x 2 +6x +1 = 0 |: 5

x 2 + 6 5 x + 1 5 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 5 ) 2 - ( 1 5 ) = 9 25 - 1 5 = 9 25 - 5 25 = 4 25

x1,2 = - 3 5 ± 4 25

x1 = - 3 5 - 2 5 = - 5 5 = -1

x2 = - 3 5 + 2 5 = - 1 5 = -0.2

Lösung x= -1 ist nicht in der Definitionsmenge!

L={ -0,2 }

Bruchgleichung mit Parameter

Beispiel:

Für x ≠ 0 und a ∈ Z\{0} ist die folgende Gleichung gegeben:

a + 12 x = -x

Bestimme a so, dass die Gleichung zwei (verschiedene) ganzzahlige Lösungen besitzt.

Lösung einblenden

D=R\{0}

a + 12 x = -x

Wir multiplizieren den Nenner x weg:

a + 12 x = -x |⋅x
a · x + 12 x · x = -x · x
a x +12 = - x 2
a x +12 + x 2 = 0
x 2 + a x +12 = 0

Um jetzt ein a zu finden, für das die quadratische Gleichung zwei ganzzahlige Lösungen hat, bezeichnen wir die beiden Lösungen einfach mal mit p und q und schreiben einen faktorisierten Term mit diesen Lösungen auf:

(x-p)⋅(x-q)

Wenn wir jetzt den faktorisierten Term ausmultiplizieren, erkennen wir, dass auch hier die 1 der Koeffizient vor dem x² ist.

= x² - px - qx + pq
= x² - (p+q)x + pq

Es muss somit gelten:

x 2 + a x +12 = x² - (p+q)x + pq

Wir müssen jetzt also nur noch zwei ganze Zahlen finden, deren Produkt 12 ist, also z.B.:

Mit p = 2 und q = 6 würde es funktionieren, denn 2 · 6 = 12

Genauso muss dann auch a = -(p+q) gelten, also a = -( 2 +6 ) = -8

Zur Probe können wir ja noch mit a = -8 die quadratische Gleichung lösen, um zu überprüfen, ob die Lösungen wirklich ganzzahlig sind:

x 2 -8x +12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +8 ± ( -8 ) 2 -4 · 1 · 12 21

x1,2 = +8 ± 64 -48 2

x1,2 = +8 ± 16 2

x1 = 8 + 16 2 = 8 +4 2 = 12 2 = 6

x2 = 8 - 16 2 = 8 -4 2 = 4 2 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -4 ) 2 - 12 = 16 - 12 = 4

x1,2 = 4 ± 4

x1 = 4 - 2 = 2

x2 = 4 + 2 = 6

L={ 2 ; 6 }