Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Polynomgleichungen (Substitution)
Beispiel:
Löse die folgende Gleichung:
=
= |
Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!
Setze u =
Draus ergibt sich die quadratische Gleichung:
= 0
Lösen mit der a-b-c-Formel (Mitternachtsformel):
eingesetzt in x1,2 = ergibt:
u1,2 =
u1,2 =
u1,2 =
u1 =
= =
u2 =
Lösen mit der p-q-Formel (x² + px + q = 0):
vor dem Einsetzen in x1,2 =
berechnen wir zuerst die Diskriminante D =
D =
x1,2 =
x1 =
x2 =
Rücksubstitution:
u1:
|
= | |
|
|
x1 | = |
|
=
|
x2 | = |
|
=
|
u2:
|
= | |
|
|
x3 | = |
|
=
|
x4 | = |
|
=
|
L={
Exponentialgl. Substitution BF
Beispiel:
Löse die folgende Gleichung:
|
= |
Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!
Setze u =
Draus ergibt sich die quadratische Gleichung:
Lösen mit der a-b-c-Formel (Mitternachtsformel):
eingesetzt in x1,2 =
u1,2 =
u1,2 =
u1,2 =
u1 =
u2 =
Lösen mit der p-q-Formel (x² + px + q = 0):
vor dem Einsetzen in x1,2 =
berechnen wir zuerst die Diskriminante D =
D =
x1,2 =
x1 =
x2 =
Rücksubstitution:
u1:
|
= | |ln(⋅) | |
x1 | = |
|
≈ 1.9459 |
u2:
|
= | |ln(⋅) | |
x2 | = |
|
≈ 1.7918 |
L={
trigon. Gleichung (mit Substitution)
Beispiel:
Bestimme alle Lösungen im Intervall [0;
|
= |
Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!
Setze u =
Draus ergibt sich die quadratische Gleichung:
Lösen mit der a-b-c-Formel (Mitternachtsformel):
eingesetzt in x1,2 =
u1,2 =
u1,2 =
u1,2 =
u1 =
u2 =
Lösen mit der p-q-Formel (x² + px + q = 0):
vor dem Einsetzen in x1,2 =
berechnen wir zuerst die Diskriminante D =
D =
x1,2 =
x1 =
x2 =
Rücksubstitution:
u1:
|
= | |cos-1(⋅) |
Am Einheitskreis erkennt man sofort:
x1 | = |
u2:
|
= |
Diese Gleichung hat keine Lösung!
L={