nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 -10 x 2 +9 = 0

Lösung einblenden
x 4 -10 x 2 +9 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -10u +9 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +10 ± ( -10 ) 2 -4 · 1 · 9 21

u1,2 = +10 ± 100 -36 2

u1,2 = +10 ± 64 2

u1 = 10 + 64 2 = 10 +8 2 = 18 2 = 9

u2 = 10 - 64 2 = 10 -8 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -5 ) 2 - 9 = 25 - 9 = 16

x1,2 = 5 ± 16

x1 = 5 - 4 = 1

x2 = 5 + 4 = 9

Rücksubstitution:

u1: x 2 = 9

x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

u2: x 2 = 1

x 2 = 1 | 2
x3 = - 1 = -1
x4 = 1 = 1

L={ -3 ; -1 ; 1 ; 3 }

Exponentialgl. Substitution

Beispiel:

Löse die folgende Gleichung:

e x +3 -28 e -x = 0

Lösung einblenden
e x +3 -28 e -x = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

e x -28 e -x +3 = 0 |⋅ e x
e 2x +3 e x -28 = 0

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 +3u -28 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 1 · ( -28 ) 21

u1,2 = -3 ± 9 +112 2

u1,2 = -3 ± 121 2

u1 = -3 + 121 2 = -3 +11 2 = 8 2 = 4

u2 = -3 - 121 2 = -3 -11 2 = -14 2 = -7

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -28 ) = 9 4 + 28 = 9 4 + 112 4 = 121 4

x1,2 = - 3 2 ± 121 4

x1 = - 3 2 - 11 2 = - 14 2 = -7

x2 = - 3 2 + 11 2 = 8 2 = 4

Rücksubstitution:

u1: e x = 4

e x = 4 |ln(⋅)
x1 = ln( 4 ) ≈ 1.3863
x1 = 2 ln( 2 )

u2: e x = -7

e x = -7

Diese Gleichung hat keine Lösung!

L={ 2 ln( 2 ) }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 4 -2 ( sin( x ) ) 2 -3 = 0

Lösung einblenden
( sin( x ) ) 4 -2 ( sin( x ) ) 2 -3 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = ( sin( x ) ) 2

Draus ergibt sich die quadratische Gleichung:

u 2 -2u -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -3 ) 21

u1,2 = +2 ± 4 +12 2

u1,2 = +2 ± 16 2

u1 = 2 + 16 2 = 2 +4 2 = 6 2 = 3

u2 = 2 - 16 2 = 2 -4 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -3 ) = 1+ 3 = 4

x1,2 = 1 ± 4

x1 = 1 - 2 = -1

x2 = 1 + 2 = 3

Rücksubstitution:

u1: ( sin( x ) ) 2 = 3

( sin( x ) ) 2 = 3 | 2

1. Fall

sin( x ) = - 3 -1,732
sin( x ) = -1,732

Diese Gleichung hat keine Lösung!

2. Fall

sin( x ) = 3 1,732
sin( x ) = 1,732

Diese Gleichung hat keine Lösung!

u2: ( sin( x ) ) 2 = -1

( sin( x ) ) 2 = -1 | 2

Diese Gleichung hat keine (reele) Lösung!

L={}