nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 +3 x 2 -28 = 0

Lösung einblenden
x 4 +3 x 2 -28 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 +3u -28 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 1 · ( -28 ) 21

u1,2 = -3 ± 9 +112 2

u1,2 = -3 ± 121 2

u1 = -3 + 121 2 = -3 +11 2 = 8 2 = 4

u2 = -3 - 121 2 = -3 -11 2 = -14 2 = -7

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -28 ) = 9 4 + 28 = 9 4 + 112 4 = 121 4

x1,2 = - 3 2 ± 121 4

x1 = - 3 2 - 11 2 = - 14 2 = -7

x2 = - 3 2 + 11 2 = 8 2 = 4

Rücksubstitution:

u1: x 2 = 4

x 2 = 4 | 2
x1 = - 4 = -2
x2 = 4 = 2

u2: x 2 = -7

x 2 = -7 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -2 ; 2 }

Exponentialgl. Substitution

Beispiel:

Löse die folgende Gleichung:

e 3x + e x -6 e -x = 0

Lösung einblenden
e 3x + e x -6 e -x = 0
( e 4x + e 2x -6 ) e -x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 4x + e 2x -6 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e 2x

Draus ergibt sich die quadratische Gleichung:

u 2 + u -6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -1 ± 1 2 -4 · 1 · ( -6 ) 21

u1,2 = -1 ± 1 +24 2

u1,2 = -1 ± 25 2

u1 = -1 + 25 2 = -1 +5 2 = 4 2 = 2

u2 = -1 - 25 2 = -1 -5 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -6 ) = 1 4 + 6 = 1 4 + 24 4 = 25 4

x1,2 = - 1 2 ± 25 4

x1 = - 1 2 - 5 2 = - 6 2 = -3

x2 = - 1 2 + 5 2 = 4 2 = 2

Rücksubstitution:

u1: e 2x = 2

e 2x = 2 |ln(⋅)
2x = ln( 2 ) |:2
x1 = 1 2 ln( 2 ) ≈ 0.3466

u2: e 2x = -3

e 2x = -3

Diese Gleichung hat keine Lösung!


2. Fall:

e -x = 0

Diese Gleichung hat keine Lösung!

L={ 1 2 ln( 2 ) }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 +5 cos( x ) +4 = 0

Lösung einblenden
( cos( x ) ) 2 +5 cos( x ) +4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +5u +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -5 ± 5 2 -4 · 1 · 4 21

u1,2 = -5 ± 25 -16 2

u1,2 = -5 ± 9 2

u1 = -5 + 9 2 = -5 +3 2 = -2 2 = -1

u2 = -5 - 9 2 = -5 -3 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = - 5 2 ± 9 4

x1 = - 5 2 - 3 2 = - 8 2 = -4

x2 = - 5 2 + 3 2 = - 2 2 = -1

Rücksubstitution:

u1: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

u2: cos( x ) = -4

cos( x ) = -4

Diese Gleichung hat keine Lösung!

L={ π }