nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 -5 x 2 -36 = 0

Lösung einblenden
x 4 -5 x 2 -36 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -5u -36 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +5 ± ( -5 ) 2 -4 · 1 · ( -36 ) 21

u1,2 = +5 ± 25 +144 2

u1,2 = +5 ± 169 2

u1 = 5 + 169 2 = 5 +13 2 = 18 2 = 9

u2 = 5 - 169 2 = 5 -13 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 2 ) 2 - ( -36 ) = 25 4 + 36 = 25 4 + 144 4 = 169 4

x1,2 = 5 2 ± 169 4

x1 = 5 2 - 13 2 = - 8 2 = -4

x2 = 5 2 + 13 2 = 18 2 = 9

Rücksubstitution:

u1: x 2 = 9

x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

u2: x 2 = -4

x 2 = -4 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -3 ; 3 }

Exponentialgl. Substitution

Beispiel:

Löse die folgende Gleichung:

e 5x -10 e 3x +21 e x = 0

Lösung einblenden
e 5x -10 e 3x +21 e x = 0
( e 4x -10 e 2x +21 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 4x -10 e 2x +21 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e 2x

Draus ergibt sich die quadratische Gleichung:

u 2 -10u +21 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +10 ± ( -10 ) 2 -4 · 1 · 21 21

u1,2 = +10 ± 100 -84 2

u1,2 = +10 ± 16 2

u1 = 10 + 16 2 = 10 +4 2 = 14 2 = 7

u2 = 10 - 16 2 = 10 -4 2 = 6 2 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -5 ) 2 - 21 = 25 - 21 = 4

x1,2 = 5 ± 4

x1 = 5 - 2 = 3

x2 = 5 + 2 = 7

Rücksubstitution:

u1: e 2x = 7

e 2x = 7 |ln(⋅)
2x = ln( 7 ) |:2
x1 = 1 2 ln( 7 ) ≈ 0.973

u2: e 2x = 3

e 2x = 3 |ln(⋅)
2x = ln( 3 ) |:2
x2 = 1 2 ln( 3 ) ≈ 0.5493

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

L={ 1 2 ln( 3 ) ; 1 2 ln( 7 ) }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 +5 cos( x ) +4 = 0

Lösung einblenden
( cos( x ) ) 2 +5 cos( x ) +4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +5u +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -5 ± 5 2 -4 · 1 · 4 21

u1,2 = -5 ± 25 -16 2

u1,2 = -5 ± 9 2

u1 = -5 + 9 2 = -5 +3 2 = -2 2 = -1

u2 = -5 - 9 2 = -5 -3 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = - 5 2 ± 9 4

x1 = - 5 2 - 3 2 = - 8 2 = -4

x2 = - 5 2 + 3 2 = - 2 2 = -1

Rücksubstitution:

u1: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

u2: cos( x ) = -4

cos( x ) = -4

Diese Gleichung hat keine Lösung!

L={ π }