nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 +2 x 2 -3 = 0

Lösung einblenden
x 4 +2 x 2 -3 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 +2u -3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

u1,2 = -2 ± 4 +12 2

u1,2 = -2 ± 16 2

u1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

u2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Rücksubstitution:

u1: x 2 = 1

x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

u2: x 2 = -3

x 2 = -3 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -1 ; 1 }

Exponentialgl. Substitution BF

Beispiel:

Löse die folgende Gleichung:

e 2x -7 e x +12 = 0

Lösung einblenden
e 2x -7 e x +12 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -7u +12 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +7 ± ( -7 ) 2 -4 · 1 · 12 21

u1,2 = +7 ± 49 -48 2

u1,2 = +7 ± 1 2

u1 = 7 + 1 2 = 7 +1 2 = 8 2 = 4

u2 = 7 - 1 2 = 7 -1 2 = 6 2 = 3

Rücksubstitution:

u1: e x = 4

e x = 4 |ln(⋅)
x1 = ln( 4 ) ≈ 1.3863
x1 = 2 ln( 2 )

u2: e x = 3

e x = 3 |ln(⋅)
x2 = ln( 3 ) ≈ 1.0986

L={ ln( 3 ) ; 2 ln( 2 ) }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 4 +5 ( sin( x ) ) 2 +4 = 0

Lösung einblenden
( sin( x ) ) 4 +5 ( sin( x ) ) 2 +4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = ( sin( x ) ) 2

Draus ergibt sich die quadratische Gleichung:

u 2 +5u +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -5 ± 5 2 -4 · 1 · 4 21

u1,2 = -5 ± 25 -16 2

u1,2 = -5 ± 9 2

u1 = -5 + 9 2 = -5 +3 2 = -2 2 = -1

u2 = -5 - 9 2 = -5 -3 2 = -8 2 = -4

Rücksubstitution:

u1: ( sin( x ) ) 2 = -1

( sin( x ) ) 2 = -1 | 2

Diese Gleichung hat keine (reele) Lösung!

u2: ( sin( x ) ) 2 = -4

( sin( x ) ) 2 = -4 | 2

Diese Gleichung hat keine (reele) Lösung!

L={}