nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Hoch- und Tiefpunkte in f (mit F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f ''. Bestimme jeweils Typ und den x-Wert aller Extrempunkte des Graphen von f ' im abgebildeten Bereich.

Lösung einblenden

Da Extrempunkte immer eine waagrechte Tangente haben, gilt die notwendige Bedingung f ''= 0, wir suchen also die Nullstellen der 2.Ableitungsfunktion f ''.

Um beurteilen zu können, ob es sich um einen Hochpunkt des Graphen von f ', um eine Tiefpunkt oder keines von beidem (Sattelpunkt) handelt, kann man jeweils den Vorzeichenwechsel (VZW) der Funktion f '' anschauen (hinreichende Bedingung).

Wir untersuchen also alle Nullstellen der abgebildeten 2.Ableitungsfunktion f ''.

Wir erkennen bei x = 3 einen VZW in der Funktion f '' von + nach -. Also muss der Graph der Ableitungsfunktion f ' bei x = 3 einen Hochpunkt haben.

Wendepunkte in f (mit F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist der Graph von f. Bestimme alle Wendestellen von F (F ist eine Stammfunktion der Funktion f) im abgebildeten Bereich.
(die gesuchten x-Werte sind alle ganzzahlig)

Lösung einblenden

Da Wendestellen immer Extremstellen der Ableitung sind, müssen wir in der Abbildung nur nach den Extremstellen von f suchen.

Diese erkennen wir leicht bei x = 2.

Monotonie (mit F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist der Graph von f ''. Bestimme möglichst große Intervalle, auf denen f ' monoton steigend, bzw. monoton fallend ist .

Lösung einblenden

Nach dem Monotoniesatz genügt es die Intervalle zu finden, in denen die Ableitungsfunktion von f ', also die 2. Ableitungsfunktion f '', positiv bzw. negativ ist.

Wir erkennen: Im Intervall [-6;4] gilt: f ''(x) ≤ 0, also ist f ' monoton fallend.

Wir erkennen: Im Intervall [4;6] gilt: f ''(x) ≥ 0, also ist f ' monoton steigend.

Punkt mit paralleler Tangente (mit F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f ', also der Ableitungsfunktion einer Funktion f.
Bestimme eine Stelle x, an der die Tangente an den Graph von f parallel zur Geraden g: y= -5 verläuft.

Lösung einblenden

Die Steigung der Tangente an den Graph von f, kurz die Tangentensteigung von f, ist f ', die Ableitung von f.

Da die Gerade g die Steigung 0 hat, muss die parallele Tangente auch die Steigung m = 0 haben. Es muss also f '(x) = 0 gelten.

Am Schaubild kann man f '(2) = 0 ablesen.

Die gesuchte Stelle ist also x = 2.

Summe f(x) und f'(x) (mit F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(-1) + f '(-1).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der Tangente eingezeichneten Tangente f '(-1) = 0 entnehmen.

Außerdem können wir natürlich f(-1) = -4 am Schaubild ablesen:

Also gilt: f(-1) + f '(-1) = -4 + 0 = -4.

Verkettung von f und f' (mit F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(-1)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(-1) = -2 entnehmen.

Wir suchen also f(f '(-1)) = f(-2).

f(-2) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(-1)) = f(-2) = 3 .

Integral von f' ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f.
Bestimme 0 1 f '(x) x .
(Das Ergebnis ist ganzzahlig)

Lösung einblenden

Nach dem Hauptsatz der Integralrechnung gilt:

a b f(x) x = F(b)- F(a) oder a b f'(x) x = f(b)- f(a)

Wir können im Schaubild f(0) = -3 und f(1) = 0 ablesen.

Also gilt 0 1 f '(x) x = f(1)- f(0) = 0 - ( - 3 ) = 3.

Differenz Funktionswerte

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (F ist eine Stammfunktion von f).
Bestimme F(1) - F(-1).

Lösung einblenden

Nach dem Hauptsatz der Integralrechnung gilt:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

a b f(x) x = F(b)- F(a)

Wir können also F(1)- F(-1) durch den Wert des Integrals -1 1 f(x) x aus dem Schaubild ablesen. Es entspricht dem orientierten Flächeninhalt der Fläche, die der Graph von f mit der x-Achse im Intervall [-1;1] einschließt.

Dazu betrachten wir die beiden Dreiecksflächen:

I1 = 1 2 ( - 1 )⋅0.5 = -0.25 (links)

I2 = 1 2 3⋅1.5 = 2.25 (rechts)

Wir erhalten also I=I1+I2 = 2 als orientierten Flächeninhalt.

Somit gilt: F(1)-F(-1) = 2

Größenvergleich in f (mit F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f. An welcher Stelle ist der Funktionswert einer Stammfunktion F am größten? Sortiere von klein nach groß F(-3.9), F(-1.25), F(2.1).

Lösung einblenden

Nach dem Hauptsatz der Integralrechnung gilt:

a b f(x) x = F(b)- F(a)

Oder anders ausgedrückt F(b) ist gerade um den Wert des Integrals größer als F(a).

Wir erkennen, dass zwischen x = -3.9 und x = -1.25 die Werte von f alle positiv sind, die Stammfunktion F ist hier also monton steigend. Also muss F(-1.25) > F(-3.9) sein.

Zwischen x=-1.25 und x=2.1 sind die Werte von f dagegen alle negativ, die Stammfunktion F muss hier also monton fallend sein. Folglich ist F(2.1) < F(-1.25).

Damit ist jetzt bereits klar, dass der Wert in der Mitte F(-1.25) der größte der drei Werte ist.

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Um nun noch herauszufinden. ob F(-3.9)>F(2.1) oder F(2.1)>F(-3.9) gilt, schauen wir uns jeweils die Flächen unter der Kurve an, deren Inhalt sich ja mit dem entsprechenden Integral berechnen lässt.

Hierbei erkennt man klar:

| -3.9 -1.25 f(x) x | < | -1.25 2.1 f(x) x |

Das bedeutet, dass der Zuwachs im linken Interval zwischen -3.9 und -1.25 kleiner ist als die Abnahme im rechten Interval zwischen -1.25 und 2.1.

Also muss F(-3.9) größer als F(2.1) sein. Insgesamt gilt:

F(2.1) < F(-3.9) < F(-1.25)

Wert einer Stammfunktion bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist der Graph einer Funktion f.
F ist eine Stammfunktion der Funktion f mit F(-3) = 0.
Entscheide dich für einen Wert von F(-1).

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Den Zuwachs von F(-3) zu F(-1), also F(-1) - F(-3) = -3 -1 f(x) x kann man als orientierten Flächeninhalt zwischen dem Graph von f und der x-Achse ablesen.

Dabei heben sich negative und positive Teilflächen gegenseitig auf.

Anhand der Kästchen kann man diesen Flächeninhalt grob abschätzen:
-3 -1 f(x) x ≈ 0

Wegen -3 -1 f(x) x = F(-1) - F(-3) ≈ 0 gilt dann
F(-1) = -3 -1 f(x) x + F(-3) ≈ 0 + 0 = 0

Nullstellenanzahl bei Integralfunktion

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist der Graph einer Funktion f.
Bestimme die Anzahl der Nullstellen der Integralfunktion J-3 = -3 x f(t) t im abgebildeten Bereich -6 ≤ x ≤ 6 .

Lösung einblenden
  1. Eine Nullstelle hat natürlich jede Integralfunktion, nämlich die untere Intergralgrenze, da ja c c f(t) t = 0 für alle c gilt. Somit ist x = -3 eine Nullstelle von J-3.
  2. Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Man kann aber keine Integralflächen über und unterhalb der x-Achse finden, die sich gegenseitig kann aufheben könnten.

Somit hat die Integralfunktion J-3(x) = -3 x f(t) t im abgebildeten Bereich 1 Nullstelle.

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(-1).

Lösung einblenden

Wir können der Zeichnung rechts f(-1) = 2 entnehmen.

Also gilt h(-1) = g(f(-1)) = g(2)

g(2) können wir auch wieder am (blauen) Graph ablesen:
h(-1) = g(f(-1)) = g(2) = -2.