nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Hoch- und Tiefpunkte in f (mit F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f '. Bestimme jeweils Typ und den x-Wert aller Extrempunkte des Graphen von f im abgebildeten Bereich.

Lösung einblenden

Da Extrempunkte immer eine waagrechte Tangente haben, gilt die notwendige Bedingung f '= 0, wir suchen also die Nullstellen der Ableitungsfunktion f '.

Um beurteilen zu können, ob es sich um einen Hochpunkt des Graphen von f, um eine Tiefpunkt oder keines von beidem (Sattelpunkt) handelt, kann man jeweils den Vorzeichenwechsel (VZW) der Funktion f ' anschauen (hinreichende Bedingung).

Wir untersuchen also alle Nullstellen der abgebildeten Ableitungsfunktion f '.

Wir erkennen bei x = -2 einen VZW in der Funktion f ' von + nach -. Also muss der Graph der Originalfunktion f bei x = -2 einen Hochpunkt haben.

Wir erkennen bei x = 4 einen VZW in der Funktion f ' von - nach +. Also muss der Graph der Originalfunktion f bei x = 4 einen Tiefpunkt haben.

Wendepunkte in f (mit F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist der Graph von f. Bestimme alle Wendestellen von F (F ist eine Stammfunktion der Funktion f) im abgebildeten Bereich.
(die gesuchten x-Werte sind alle ganzzahlig)

Lösung einblenden

Da Wendestellen immer Extremstellen der Ableitung sind, müssen wir in der Abbildung nur nach den Extremstellen von f suchen.

Diese erkennen wir leicht bei x = 0 und x = 2.

Monotonie (mit F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist der Graph von f '. Bestimme möglichst große Intervalle, auf denen f monoton steigend, bzw. monoton fallend ist .

Lösung einblenden

Nach dem Monotoniesatz genügt es die Intervalle zu finden, in denen die Ableitungsfunktion f ', positiv bzw. negativ ist.

Wir erkennen: Im Intervall [-6;-4] gilt: f '(x) ≥ 0, also ist f monoton steigend.

Wir erkennen: Im Intervall [-4;1] gilt: f '(x) ≤ 0, also ist f monoton fallend.

Wir erkennen: Im Intervall [1;6] gilt: f '(x) ≥ 0, also ist f monoton steigend.

Punkt mit paralleler Tangente (mit F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f ', also der Ableitungsfunktion einer Funktion f.
Bestimme eine Stelle x, an der die Tangente an den Graph von f parallel zur Geraden g: y= -x verläuft.

Lösung einblenden

Die Steigung der Tangente an den Graph von f, kurz die Tangentensteigung von f, ist f ', die Ableitung von f.

Da die Gerade g die Steigung -1 hat, muss die parallele Tangente auch die Steigung m = -1 haben. Es muss also f '(x) = -1 gelten.

Am Schaubild kann man f '(0) = -1 und f '(2) = -1 ablesen.

Die gesuchten Stellen sind also x1 = 0 und x2 = 2.

Summe f(x) und f'(x) (mit F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(-1) + f '(-1).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der Tangente eingezeichneten Tangente f '(-1) = 0 entnehmen.

Außerdem können wir natürlich f(-1) = 0 am Schaubild ablesen:

Also gilt: f(-1) + f '(-1) = 0 + 0 = 0.

Verkettung von f und f' (mit F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von F (rote Kurve). (F ist eine Stammfunktion einer Funktion f)
Bestimme F(f(1)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f(1) = 0 entnehmen, weil ja f die Ableitungsfunktion von F ist und somit die Tangentensteigung von F angibt.

Wir suchen also F(f(1)) = F(0).

F(0) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

F(f(1)) = F(0) = -2 .

Integral von f' ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f.
Bestimme -2 1 f '(x) x .
(Das Ergebnis ist ganzzahlig)

Lösung einblenden

Nach dem Hauptsatz der Integralrechnung gilt:

a b f(x) x = F(b)- F(a) oder a b f'(x) x = f(b)- f(a)

Wir können im Schaubild f(-2) = 2 und f(1) = 2 ablesen.

Also gilt -2 1 f '(x) x = f(1)- f(-2) = 2 - 2 = 0.

Differenz Funktionswerte

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (F ist eine Stammfunktion von f).
Bestimme F(0) - F(-2).

Lösung einblenden

Nach dem Hauptsatz der Integralrechnung gilt:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

a b f(x) x = F(b)- F(a)

Wir können also F(0)- F(-2) durch den Wert des Integrals -2 0 f(x) x aus dem Schaubild ablesen. Es entspricht dem orientierten Flächeninhalt der Fläche, die der Graph von f mit der x-Achse im Intervall [-2;0] einschließt.

Dazu zerlegen wir die Fläche in eine Rechtecks- und eine Dreiecksfläche:

I1 = 1⋅2 = 2 (Rechteck)

I2 = 1 2 1⋅2 = 1 (Dreieck)

Wir erhalten also I=I1+I2 = 3 als orientierten Flächeninhalt.

Somit gilt: F(0)-F(-2) = 3

Größenvergleich in f (mit F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f. An welcher Stelle ist der Funktionswert einer Stammfunktion F am größten? Sortiere von klein nach groß F(-1.8), F(-1.3), F(0.1).

Lösung einblenden

Nach dem Hauptsatz der Integralrechnung gilt:

a b f(x) x = F(b)- F(a)

Oder anders ausgedrückt F(b) ist gerade um den Wert des Integrals größer als F(a).

Wir erkennen, dass zwischen x = -1.8 und x = -1.3 die Werte von f alle negativ sind, die Stammfunktion F ist hier also monton fallend. Also muss F(-1.3) < F(-1.8) sein.

Zwischen x=-1.3 und x=0.1 sind die Werte von f dagegen alle positiv, die Stammfunktion F muss hier also monton steigend sein. Folglich ist F(0.1) > F(-1.3).

Damit ist jetzt bereits klar, dass der Wert in der Mitte F(-1.3) der kleinste der drei Werte ist.

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Um nun noch herauszufinden. ob F(-1.8)>F(0.1) oder F(0.1)>F(-1.8) gilt, schauen wir uns jeweils die Flächen unter der Kurve an, deren Inhalt sich ja mit dem entsprechenden Integral berechnen lässt.

Hierbei erkennt man klar:

| -1.8 -1.3 f(x) x | < | -1.3 0.1 f(x) x |

Das bedeutet, dass die Abnahme im linken Interval zwischen -1.8 und -1.3 kleiner ist als der Zuwachs im rechten Interval zwischen -1.3 und 0.1.

Also muss F(-1.8) kleiner als F(0.1) sein. Insgesamt gilt:

F(-1.3) < F(-1.8) < F(0.1)

Wert einer Stammfunktion bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist der Graph einer Funktion f.
F ist eine Stammfunktion der Funktion f mit F(-1) = -3,4.
Entscheide dich für einen Wert von F(5).

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Den Zuwachs von F(-1) zu F(5), also F(5) - F(-1) = -1 5 f(x) x kann man als orientierten Flächeninhalt zwischen dem Graph von f und der x-Achse ablesen.

Dabei heben sich negative und positive Teilflächen gegenseitig auf.

Anhand der Kästchen kann man diesen Flächeninhalt grob abschätzen:
-1 5 f(x) x ≈ 6.8

Wegen -1 5 f(x) x = F(5) - F(-1) ≈ 6.8 gilt dann
F(5) = -1 5 f(x) x + F(-1) ≈ 6.8 + ( - 3.4 ) = 3.4

Nullstellenanzahl bei Integralfunktion

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist der Graph einer Funktion f.
Bestimme die Anzahl der Nullstellen der Integralfunktion J-1 = -1 x f(t) t im abgebildeten Bereich -6 ≤ x ≤ 6 .

Lösung einblenden
  1. Eine Nullstelle hat natürlich jede Integralfunktion, nämlich die untere Intergralgrenze, da ja c c f(t) t = 0 für alle c gilt. Somit ist x = -1 eine Nullstelle von J-1.
  2. Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
  3. Eine weitere Nullstelle können wir ca. bei x = 1.9 erkennen, weil man am Graph beim Integral -1 1.9 f(t) t zwei gleichgroße Flächen je über und unter der x-Achse erkennen kann, so dass sich dabei die negative und positive Teilfläche gegenseitig aufheben. Somit gilt -1 1.9 f(t) t =0 und J-1(1.9) = 0, J-1 hat also bei x = 1.9 eine Nullstelle.
  4. Eine weitere Nullstelle können wir ca. bei x = 4.7 erkennen, weil man am Graph beim Integral 1.9 4.7 f(t) t zwei gleichgroße Flächen je über und unter der x-Achse erkennen kann, so dass sich dabei die negative und positive Teilfläche gegenseitig aufheben. Somit gilt 1.9 4.7 f(t) t =0 und J-1(4.7) = -1 4.7 f(t) t = -1 1.9 f(t) t + 1.9 4.7 f(t) t = 0 + 0 = 0, J-1 hat also bei x = 4.7 eine Nullstelle.
  5. Eine weitere Nullstelle können wir ca. bei x=-3.9 erkennen, weil man am Graph beim Integral -3.9 -1 f(t) t zwei gleichgroße Flächen je über und unter der x-Achse erkennen kann, so dass sich dabei die negative und positive Teilfläche gegenseitig aufheben. Somit gilt -3.9 -1 f(t) t = 0 und J-1(-3.9) = -1 -3.9 f(t) t = - -3.9 -1 f(t) t = 0, J-1 hat also bei x = -3.9 eine Nullstelle.

An den Rändern kann man erkennen, dass es keine weiteren Teilflächen gibt, die sich aufheben könnten.

Somit hat die Integralfunktion J-1(x) = -1 x f(t) t im abgebildeten Bereich 4 Nullstellen.

Wert einer Stammfunktion bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist der Graph einer Funktion f.
F ist eine Stammfunktion der Funktion f mit F(-3) = 0,4.
Entscheide dich für einen Wert von F(1).

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Den Zuwachs von F(-3) zu F(1), also F(1) - F(-3) = -3 1 f(x) x kann man als orientierten Flächeninhalt zwischen dem Graph von f und der x-Achse ablesen.

Dabei heben sich negative und positive Teilflächen gegenseitig auf.

Anhand der Kästchen kann man diesen Flächeninhalt grob abschätzen:
-3 1 f(x) x ≈ -0.4

Wegen -3 1 f(x) x = F(1) - F(-3) ≈ -0.4 gilt dann
F(1) = -3 1 f(x) x + F(-3) ≈ -0.4 + 0.4 = 0