nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Nullprodukt (mit 2 Linearfaktoren)

Beispiel:

Löse die folgende Gleichung:

4 ( x -1 ) · ( x -7 ) = 0

Lösung einblenden
4 ( x -1 ) ( x -7 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -1 = 0 | +1
x1 = 1

2. Fall:

x -7 = 0 | +7
x2 = 7

L={ 1 ; 7 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- 3 2 cos( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- 3 2 cos( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 sin( x ) -3 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) -3 = 0 | +3
2 sin( x ) = 3 |:2
sin( x ) = 1,5

Diese Gleichung hat keine Lösung!


2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x2 = 3 2 π

L={ 1 2 π ; 3 2 π }