nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
- cos( x - 3 2 π) = -1

Lösung einblenden
- cos( x - 3 2 π) = -1 |:-1
canvas
cos( x - 3 2 π) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x - 3 2 π = 0 |⋅ 2
2( x - 3 2 π) = 0
2x -3π = 0 | +3π
2x = 3π |:2
x = 3 2 π

L={ 3 2 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
sin( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
sin( x ) + sin( x ) · cos( x ) = 0
( cos( x ) +1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) +1 = 0 | -1 canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x3 = π

L={0; π }

π ist 2-fache Lösung!

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ).
-2 cos( 3x + π) -1 = -0,8

Lösung einblenden
-2 cos( 3x + π) -1 = -0,8 | +1
-2 cos( 3x + π) = 0,2 |:-2
canvas
cos( 3x + π) = -0,1 |cos-1(⋅)

Der WTR liefert nun als Wert 1.6709637479565

1. Fall:

3x + π = 1,671

oder

3x + π = 1,671 +2π | - π
3x = 1,671 + π
3x = 4,8126 |:3
x1 = 1,6042

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x + π) = -0,1 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.1 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,671
bzw. bei - 1,671 +2π= 4,612 liegen muss.

2. Fall:

3x + π = 4,612 | - π
3x = 4,612 - π
3x = 1,4704 |:3
x2 = 0,4901

L={ 0,4901 ; 1,6042 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - cos( x ) = 0

Lösung einblenden
( cos( x ) ) 2 - cos( x ) = 0
( cos( x ) -1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) -1 = 0 | +1 canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={0; 1 2 π ; 3 2 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2 3 π ):
( x 2 - x ) · 3 cos( 3x - π) = 0

Lösung einblenden
( x 2 - x ) · 3 cos( 3x - π) = 0
3 ( x 2 - x ) · cos( 3x - π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 - x = 0
x ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

2. Fall:

canvas
cos( 3x - π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x - π = 1 2 π | + π
3x = 3 2 π |:3
x3 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x - π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

3x - π = 3 2 π

oder

3x - π = 3 2 π-2π
3x - π = - 1 2 π | + π
3x = 1 2 π |:3
x4 = 1 6 π

L={0; 1 6 π ; 1 ; 1 2 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 4 +5 ( sin( x ) ) 2 +4 = 0

Lösung einblenden
( sin( x ) ) 4 +5 ( sin( x ) ) 2 +4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = ( sin( x ) ) 2

Draus ergibt sich die quadratische Gleichung:

u 2 +5u +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -5 ± 5 2 -4 · 1 · 4 21

u1,2 = -5 ± 25 -16 2

u1,2 = -5 ± 9 2

u1 = -5 + 9 2 = -5 +3 2 = -2 2 = -1

u2 = -5 - 9 2 = -5 -3 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = - 5 2 ± 9 4

x1 = - 5 2 - 3 2 = - 8 2 = -4

x2 = - 5 2 + 3 2 = - 2 2 = -1

Rücksubstitution:

u1: ( sin( x ) ) 2 = -1

( sin( x ) ) 2 = -1 | 2

Diese Gleichung hat keine (reele) Lösung!

u2: ( sin( x ) ) 2 = -4

( sin( x ) ) 2 = -4 | 2

Diese Gleichung hat keine (reele) Lösung!

L={}