nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
-3 cos( 3x + π) -1 = -4

Lösung einblenden
-3 cos( 3x + π) -1 = -4 | +1
-3 cos( 3x + π) = -3 |:-3
canvas
cos( 3x + π) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

3x + π = 0

oder

3x + π = 0+2π
3x + π = 2π | - π
3x = π |:3
x = 1 3 π

L={ 1 3 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 - 1 2 sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 - 1 2 sin( x ) = 0
1 2 ( 2 sin( x ) -1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) -1 = 0 | +1
2 sin( x ) = 1 |:2
canvas
sin( x ) = 0,5 |sin-1(⋅)

Der WTR liefert nun als Wert 0.5235987755983

1. Fall:

x1 = 5 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,5 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5 6 π = 1 6 π liegen muss.

2. Fall:

x2 = 1 6 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x4 = π

L={0; 1 6 π ; 5 6 π ; π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ).
- cos( 3x + 1 2 π) +1 = 0,25

Lösung einblenden
- cos( 3x + 1 2 π) +1 = 0,25 | -1
- cos( 3x + 1 2 π) = -0,75 |:-1
canvas
cos( 3x + 1 2 π) = 0,75 |cos-1(⋅)

Der WTR liefert nun als Wert 0.72273424781342

1. Fall:

3x + 1 2 π = 0,723

oder

3x + 1 2 π = 0,723 +2π |⋅ 2
6x + π = 1,446 +4π | - π
6x = 1,446 +3π
6x = 10,8708 |:6
x1 = 1,8118

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x + 1 2 π) = 0,75 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.75 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 0,723
bzw. bei - 0,723 +2π= 5,56 liegen muss.

2. Fall:

3x + 1 2 π = 5,56 |⋅ 2
2( 3x + 1 2 π) = 11,12
6x + π = 11,12 | - π
6x = 11,12 - π
6x = 7,9784 |:6
x2 = 1,3297

L={ 1,3297 ; 1,8118 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
-3 cos( x - 3 2 π) · sin( x ) = 0

Lösung einblenden
-3 cos( x - 3 2 π) · sin( x ) = 0
-3 cos( x - 3 2 π) · sin( x ) = 0
-3 sin( x ) · cos( x - 3 2 π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x2 = π

2. Fall:

canvas
cos( x - 3 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x - 3 2 π = 1 2 π

oder

x - 3 2 π = 1 2 π-2π
x - 3 2 π = - 3 2 π |⋅ 2
2( x - 3 2 π) = -3π
2x -3π = -3π | +3π
2x = 0 |:2
x3 = 0

Am Einheitskreis erkennen wir, dass die Gleichung cos( x - 3 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x - 3 2 π = 3 2 π

oder

x - 3 2 π = 3 2 π-2π
x - 3 2 π = - 1 2 π |⋅ 2
2( x - 3 2 π) = -π
2x -3π = -π | +3π
2x = 2π |:2
x4 = π

L={0; π }

0 ist 2-fache Lösung! π ist 2-fache Lösung!

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( -3 cos( 3x - π) -3 ) · sin( x ) = 0

Lösung einblenden
( -3 cos( 3x - π) -3 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

-3 cos( 3x - π) -3 = 0 | +3
-3 cos( 3x - π) = 3 |:-3
canvas
cos( 3x - π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

3x - π = π

oder

3x - π = π-2π
3x - π = -π | + π
3x = 0 |:3
x1 = 0

Da -3 cos( 3x - π) -3 die Periode 2 3 π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x2 = 0 + 1⋅ 2 3 π = 2 3 π
x3 = 0 + 2⋅ 2 3 π = 4 3 π


2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x4 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x5 = π

L={0; 2 3 π ; π ; 4 3 π }

0 ist 2-fache Lösung!

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 +2 cos( x ) -3 = 0

Lösung einblenden
( cos( x ) ) 2 +2 cos( x ) -3 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +2u -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

u1,2 = -2 ± 4 +12 2

u1,2 = -2 ± 16 2

u1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

u2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -3 ) = 1+ 3 = 4

x1,2 = -1 ± 4

x1 = -1 - 2 = -3

x2 = -1 + 2 = 1

Rücksubstitution:

u1: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

u2: cos( x ) = -3

cos( x ) = -3

Diese Gleichung hat keine Lösung!

L={0}