nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
3 cos( 3x - 3 2 π) = -3

Lösung einblenden
3 cos( 3x - 3 2 π) = -3 |:3
canvas
cos( 3x - 3 2 π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

3x - 3 2 π = π

oder

3x - 3 2 π = π-2π
3x - 3 2 π = -π |⋅ 2
2( 3x - 3 2 π) = -2π
6x -3π = -2π | +3π
6x = π |:6
x = 1 6 π

L={ 1 6 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
cos( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
cos( x ) + sin( x ) · cos( x ) = 0
( sin( x ) +1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) +1 = 0 | -1 canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={ 1 2 π ; 3 2 π }

3 2 π ist 2-fache Lösung!

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
cos( x + 1 2 π) +1 = 1,6

Lösung einblenden
cos( x + 1 2 π) +1 = 1,6 | -1 canvas
cos( x + 1 2 π) = 0,6 |cos-1(⋅)

Der WTR liefert nun als Wert 0.92729521800161

1. Fall:

x + 1 2 π = 0,927

oder

x + 1 2 π = 0,927 +2π |⋅ 2
2x + π = 1,854 +4π | - π
2x = 1,854 +3π
2x = 11,2788 |:2
x1 = 5,6394

Am Einheitskreis erkennen wir, dass die Gleichung cos( x + 1 2 π) = 0,6 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.6 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 0,927
bzw. bei - 0,927 +2π= 5,356 liegen muss.

2. Fall:

x + 1 2 π = 5,356 |⋅ 2
2( x + 1 2 π) = 10,712
2x + π = 10,712 | - π
2x = 10,712 - π
2x = 7,5704 |:2
x2 = 3,7852

L={ 3,7852 ; 5,6394 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; π ):
( x -3 ) · ( -3 sin( 2x + 3 2 π) -3 ) = 0

Lösung einblenden
( x -3 ) ( -3 sin( 2x + 3 2 π) -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -3 = 0 | +3
x1 = 3

2. Fall:

-3 sin( 2x + 3 2 π) -3 = 0 | +3
-3 sin( 2x + 3 2 π) = 3 |:-3
canvas
sin( 2x + 3 2 π) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

2x + 3 2 π = 3 2 π |⋅ 2
2( 2x + 3 2 π) = 3π
4x +3π = 3π | -3π
4x = 0 |:4
x2 = 0

L={0; 3 }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
-3 cos( 3x + 3 2 π) · ( cos( x ) -1 ) = 0

Lösung einblenden
-3 cos( 3x + 3 2 π) · ( cos( x ) -1 ) = 0
-3 cos( 3x + 3 2 π) ( cos( x ) -1 ) = 0
-3 ( cos( x ) -1 ) · cos( 3x + 3 2 π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) -1 = 0 | +1 canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

2. Fall:

canvas
cos( 3x + 3 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x + 3 2 π = 1 2 π

oder

3x + 3 2 π = 1 2 π+2π
3x + 3 2 π = 5 2 π |⋅ 2
2( 3x + 3 2 π) = 5π
6x +3π = 5π | -3π
6x = 2π |:6
x2 = 1 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x + 3 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

3x + 3 2 π = 3 2 π |⋅ 2
2( 3x + 3 2 π) = 3π
6x +3π = 3π | -3π
6x = 0 |:6
x3 = 0

Da cos( 3x + 3 2 π) die Periode 2 3 π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x4 = 1 3 π + 1⋅ 2 3 π = π , x5 = 0 + 1⋅ 2 3 π = 2 3 π
x6 = 1 3 π + 2⋅ 2 3 π = 5 3 π , x7 = 0 + 2⋅ 2 3 π = 4 3 π

L={0; 1 3 π ; 2 3 π ; π ; 4 3 π ; 5 3 π }

0 ist 2-fache Lösung!

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 + sin( x ) -2 = 0

Lösung einblenden
( sin( x ) ) 2 + sin( x ) -2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 + u -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -1 ± 1 2 -4 · 1 · ( -2 ) 21

u1,2 = -1 ± 1 +8 2

u1,2 = -1 ± 9 2

u1 = -1 + 9 2 = -1 +3 2 = 2 2 = 1

u2 = -1 - 9 2 = -1 -3 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = - 1 2 ± 9 4

x1 = - 1 2 - 3 2 = - 4 2 = -2

x2 = - 1 2 + 3 2 = 2 2 = 1

Rücksubstitution:

u1: sin( x ) = 1

canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

u2: sin( x ) = -2

sin( x ) = -2

Diese Gleichung hat keine Lösung!

L={ 1 2 π }