nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
-3 cos( 3x + π) -1 = 2

Lösung einblenden
-3 cos( 3x + π) -1 = 2 | +1
-3 cos( 3x + π) = 3 |:-3
canvas
cos( 3x + π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

3x + π = π | - π
3x = 0 |:3
x = 0

L={0}

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
cos( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
cos( x ) + sin( x ) · cos( x ) = 0
( sin( x ) +1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) +1 = 0 | -1 canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={ 1 2 π ; 3 2 π }

3 2 π ist 2-fache Lösung!

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ).
3 sin( 2x + 1 2 π) +3 = 4,35

Lösung einblenden
3 sin( 2x + 1 2 π) +3 = 4,35 | -3
3 sin( 2x + 1 2 π) = 1,35 |:3
canvas
sin( 2x + 1 2 π) = 0,45 |sin-1(⋅)

Der WTR liefert nun als Wert 0.4667653390473

1. Fall:

2x + 1 2 π = 0,467

oder

2x + 1 2 π = 0,467 +2π |⋅ 2
4x + π = 0,934 +4π | - π
4x = 0,934 +3π
4x = 10,3588 |:4
x1 = 2,5897

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x + 1 2 π) = 0,45 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.45 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,467 = 2,675 liegen muss.

2. Fall:

2x + 1 2 π = 2,675 |⋅ 2
2( 2x + 1 2 π) = 5,35
4x + π = 5,35 | - π
4x = 5,35 - π
4x = 2,2084 |:4
x2 = 0,5521

L={ 0,5521 ; 2,5897 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( 3 sin( x - 3 2 π) -3 ) · sin( x ) = 0

Lösung einblenden
( 3 sin( x - 3 2 π) -3 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

3 sin( x - 3 2 π) -3 = 0 | +3
3 sin( x - 3 2 π) = 3 |:3
canvas
sin( x - 3 2 π) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x - 3 2 π = 1 2 π

oder

x - 3 2 π = 1 2 π-2π
x - 3 2 π = - 3 2 π |⋅ 2
2( x - 3 2 π) = -3π
2x -3π = -3π | +3π
2x = 0 |:2
x1 = 0

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x3 = π

L={0; π }

0 ist 2-fache Lösung!

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
-2 cos( x + 1 2 π) · ( cos( x ) +1 ) = 0

Lösung einblenden
-2 cos( x + 1 2 π) · ( cos( x ) +1 ) = 0
-2 cos( x + 1 2 π) ( cos( x ) +1 ) = 0
-2 ( cos( x ) +1 ) · cos( x + 1 2 π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) +1 = 0 | -1 canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

2. Fall:

canvas
cos( x + 1 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x + 1 2 π = 1 2 π |⋅ 2
2( x + 1 2 π) = π
2x + π = π | - π
2x = 0 |:2
x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung cos( x + 1 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x + 1 2 π = 3 2 π |⋅ 2
2( x + 1 2 π) = 3π
2x + π = 3π | - π
2x = 2π |:2
x3 = π

L={0; π }

π ist 2-fache Lösung!

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 - 3 2 sin( x ) + 1 2 = 0

Lösung einblenden
( sin( x ) ) 2 - 3 2 sin( x ) + 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 - 3 2 u + 1 2 = 0 |⋅ 2
2( u 2 - 3 2 u + 1 2 ) = 0

2 u 2 -3u +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +3 ± ( -3 ) 2 -4 · 2 · 1 22

u1,2 = +3 ± 9 -8 4

u1,2 = +3 ± 1 4

u1 = 3 + 1 4 = 3 +1 4 = 4 4 = 1

u2 = 3 - 1 4 = 3 -1 4 = 2 4 = 0,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 u 2 -3u +1 = 0 |: 2

u 2 - 3 2 u + 1 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 4 ) 2 - ( 1 2 ) = 9 16 - 1 2 = 9 16 - 8 16 = 1 16

x1,2 = 3 4 ± 1 16

x1 = 3 4 - 1 4 = 2 4 = 0.5

x2 = 3 4 + 1 4 = 4 4 = 1

Rücksubstitution:

u1: sin( x ) = 1

canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

u2: sin( x ) = 0,5

canvas
sin( x ) = 0,5 |sin-1(⋅)

Der WTR liefert nun als Wert 0.5235987755983

1. Fall:

x2 = 5 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,5 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5 6 π = 1 6 π liegen muss.

2. Fall:

x3 = 1 6 π

L={ 1 6 π ; 1 2 π ; 5 6 π }