nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
-2 cos( x - 3 2 π) -3 = -3

Lösung einblenden
-2 cos( x - 3 2 π) -3 = -3 | +3
-2 cos( x - 3 2 π) = 0 |:-2
canvas
cos( x - 3 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x - 3 2 π = 1 2 π

oder

x - 3 2 π = 1 2 π-2π
x - 3 2 π = - 3 2 π |⋅ 2
2( x - 3 2 π) = -3π
2x -3π = -3π | +3π
2x = 0 |:2
x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung cos( x - 3 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x - 3 2 π = 3 2 π

oder

x - 3 2 π = 3 2 π-2π
x - 3 2 π = - 1 2 π |⋅ 2
2( x - 3 2 π) = -π
2x -3π = -π | +3π
2x = 2π |:2
x2 = π

L={0; π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - cos( x ) = 0

Lösung einblenden
( cos( x ) ) 2 - cos( x ) = 0
( cos( x ) -1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) -1 = 0 | +1 canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={0; 1 2 π ; 3 2 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ).
- cos( 3x - π) +1 = 0

Lösung einblenden
- cos( 3x - π) +1 = 0 | -1
- cos( 3x - π) = -1 |:-1
canvas
cos( 3x - π) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

3x - π = 0 | + π
3x = π |:3
x = 1 3 π

L={ 1 3 π }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- sin( x + π) · ( cos( x ) -1 ) = 0

Lösung einblenden
- sin( x + π) · ( cos( x ) -1 ) = 0
- sin( x + π) ( cos( x ) -1 ) = 0
- ( cos( x ) -1 ) · sin( x + π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) -1 = 0 | +1 canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

2. Fall:

canvas
sin( x + π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x + π = 0

oder

x + π = 0+2π
x + π = 2π | - π
x2 = π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x + π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x + π = π | - π
x3 = 0

L={0; π }

0 ist 2-fache Lösung!

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 +2 cos( x ) -3 = 0

Lösung einblenden
( cos( x ) ) 2 +2 cos( x ) -3 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +2u -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

u1,2 = -2 ± 4 +12 2

u1,2 = -2 ± 16 2

u1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

u2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -3 ) = 1+ 3 = 4

x1,2 = -1 ± 4

x1 = -1 - 2 = -3

x2 = -1 + 2 = 1

Rücksubstitution:

u1: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

u2: cos( x ) = -3

cos( x ) = -3

Diese Gleichung hat keine Lösung!

L={0}

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 + 3 2 cos( x ) + 1 2 = 0

Lösung einblenden
( cos( x ) ) 2 + 3 2 cos( x ) + 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 + 3 2 u + 1 2 = 0 |⋅ 2
2( u 2 + 3 2 u + 1 2 ) = 0

2 u 2 +3u +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 2 · 1 22

u1,2 = -3 ± 9 -8 4

u1,2 = -3 ± 1 4

u1 = -3 + 1 4 = -3 +1 4 = -2 4 = -0,5

u2 = -3 - 1 4 = -3 -1 4 = -4 4 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 u 2 +3u +1 = 0 |: 2

u 2 + 3 2 u + 1 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 4 ) 2 - ( 1 2 ) = 9 16 - 1 2 = 9 16 - 8 16 = 1 16

x1,2 = - 3 4 ± 1 16

x1 = - 3 4 - 1 4 = - 4 4 = -1

x2 = - 3 4 + 1 4 = - 2 4 = -0.5

Rücksubstitution:

u1: cos( x ) = -0,5

canvas
cos( x ) = -0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 2.0943951023932

1. Fall:

x1 = 2 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = -0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 2 3 π
bzw. bei - 2 3 π +2π= 4 3 π liegen muss.

2. Fall:

x2 = 4 3 π

u2: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x3 = π

L={ 2 3 π ; π ; 4 3 π }