nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
2 sin( 3x - 1 2 π) -2 = -2

Lösung einblenden
2 sin( 3x - 1 2 π) -2 = -2 | +2
2 sin( 3x - 1 2 π) = 0 |:2
canvas
sin( 3x - 1 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x - 1 2 π = 0 |⋅ 2
2( 3x - 1 2 π) = 0
6x - π = 0 | + π
6x = π |:6
x1 = 1 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 3x - 1 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

3x - 1 2 π = π |⋅ 2
2( 3x - 1 2 π) = 2π
6x - π = 2π | + π
6x = 3π |:6
x2 = 1 2 π

L={ 1 6 π ; 1 2 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- cos( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- cos( x ) + sin( x ) · cos( x ) = 0
( sin( x ) -1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) -1 = 0 | +1 canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={ 1 2 π ; 3 2 π }

1 2 π ist 2-fache Lösung!

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ).
-2 cos( 3x - 1 2 π) = -1,4

Lösung einblenden
-2 cos( 3x - 1 2 π) = -1,4 |:-2
canvas
cos( 3x - 1 2 π) = 0,7 |cos-1(⋅)

Der WTR liefert nun als Wert 0.79539883018414

1. Fall:

3x - 1 2 π = 0,795 |⋅ 2
2( 3x - 1 2 π) = 1,59
6x - π = 1,59 | + π
6x = 1,59 + π
6x = 4,7316 |:6
x1 = 0,7886

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x - 1 2 π) = 0,7 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.7 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 0,795
bzw. bei - 0,795 +2π= 5,488 liegen muss.

2. Fall:

3x - 1 2 π = 5,488

oder

3x - 1 2 π = 5,488 -2π |⋅ 2
6x - π = 10,976 -4π | + π
6x = 10,976 -3π
6x = 1,5512 |:6
x2 = 0,2585

L={ 0,2585 ; 0,7886 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 - sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 - sin( x ) = 0
( sin( x ) -1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) -1 = 0 | +1 canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x3 = π

L={0; 1 2 π ; π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( 3 cos( 2x + 1 2 π) +3 ) · sin( x ) = 0

Lösung einblenden
( 3 cos( 2x + 1 2 π) +3 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

3 cos( 2x + 1 2 π) +3 = 0 | -3
3 cos( 2x + 1 2 π) = -3 |:3
canvas
cos( 2x + 1 2 π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

2x + 1 2 π = π |⋅ 2
2( 2x + 1 2 π) = 2π
4x + π = 2π | - π
4x = π |:4
x1 = 1 4 π

Da 3 cos( 2x + 1 2 π) +3 die Periode π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x2 = 1 4 π + 1⋅ π = 5 4 π


2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x4 = π

L={0; 1 4 π ; π ; 5 4 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 -2 cos( x ) +1 = 0

Lösung einblenden
( cos( x ) ) 2 -2 cos( x ) +1 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 -2u +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · 1 21

u1,2 = +2 ± 4 -4 2

u1,2 = +2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

u = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - 1 = 1 - 1 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 1 ± 0 = 1

Rücksubstitution:

u1: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

u2: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 0

L={0}

0 ist 2-fache Lösung!