nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
- sin( x - 3 2 π) +1 = 2

Lösung einblenden
- sin( x - 3 2 π) +1 = 2 | -1
- sin( x - 3 2 π) = 1 |:-1
canvas
sin( x - 3 2 π) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x - 3 2 π = 3 2 π

oder

x - 3 2 π = 3 2 π-2π
x - 3 2 π = - 1 2 π |⋅ 2
2( x - 3 2 π) = -π
2x -3π = -π | +3π
2x = 2π |:2
x = π

L={ π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- 1 2 sin( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- 1 2 sin( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 cos( x ) -1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( x ) -1 = 0 | +1
2 cos( x ) = 1 |:2
canvas
cos( x ) = 0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 1.0471975511966

1. Fall:

x1 = 1 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 3 π
bzw. bei - 1 3 π +2π= 5 3 π liegen muss.

2. Fall:

x2 = 5 3 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x4 = π

L={0; 1 3 π ; π ; 5 3 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
2 cos( x + 3 2 π) +3 = 3

Lösung einblenden
2 cos( x + 3 2 π) +3 = 3 | -3
2 cos( x + 3 2 π) = 0 |:2
canvas
cos( x + 3 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x + 3 2 π = 1 2 π

oder

x + 3 2 π = 1 2 π+2π
x + 3 2 π = 5 2 π |⋅ 2
2( x + 3 2 π) = 5π
2x +3π = 5π | -3π
2x = 2π |:2
x1 = π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x + 3 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x + 3 2 π = 3 2 π |⋅ 2
2( x + 3 2 π) = 3π
2x +3π = 3π | -3π
2x = 0 |:2
x2 = 0

L={0; π }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2 3 π ):
( 2 sin( 3x - 1 2 π) -2 ) · ( x 2 -2x ) = 0

Lösung einblenden
( 2 sin( 3x - 1 2 π) -2 ) ( x 2 -2x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( 3x - 1 2 π) -2 = 0 | +2
2 sin( 3x - 1 2 π) = 2 |:2
canvas
sin( 3x - 1 2 π) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

3x - 1 2 π = 1 2 π |⋅ 2
2( 3x - 1 2 π) = π
6x - π = π | + π
6x = 2π |:6
x1 = 1 3 π

2. Fall:

x 2 -2x = 0
x ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x2 = 0

2. Fall:

x -2 = 0 | +2
x3 = 2

L={0; 1 3 π ; 2 }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( - cos( 3x - 1 2 π) -1 ) · ( sin( x ) -1 ) = 0

Lösung einblenden
( - cos( 3x - 1 2 π) -1 ) ( sin( x ) -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

- cos( 3x - 1 2 π) -1 = 0 | +1
- cos( 3x - 1 2 π) = 1 |:-1
canvas
cos( 3x - 1 2 π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

3x - 1 2 π = π |⋅ 2
2( 3x - 1 2 π) = 2π
6x - π = 2π | + π
6x = 3π |:6
x1 = 1 2 π

Da - cos( 3x - 1 2 π) -1 die Periode 2 3 π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x2 = 1 2 π + 1⋅ 2 3 π = 7 6 π
x3 = 1 2 π + 2⋅ 2 3 π = 11 6 π


2. Fall:

sin( x ) -1 = 0 | +1 canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x4 = 1 2 π

L={ 1 2 π ; 7 6 π ; 11 6 π }

1 2 π ist 2-fache Lösung!

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - 1 2 cos( x ) - 1 2 = 0

Lösung einblenden
( cos( x ) ) 2 - 1 2 cos( x ) - 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 - 1 2 u - 1 2 = 0 |⋅ 2
2( u 2 - 1 2 u - 1 2 ) = 0

2 u 2 - u -1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +1 ± ( -1 ) 2 -4 · 2 · ( -1 ) 22

u1,2 = +1 ± 1 +8 4

u1,2 = +1 ± 9 4

u1 = 1 + 9 4 = 1 +3 4 = 4 4 = 1

u2 = 1 - 9 4 = 1 -3 4 = -2 4 = -0,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 u 2 - u -1 = 0 |: 2

u 2 - 1 2 u - 1 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 4 ) 2 - ( - 1 2 ) = 1 16 + 1 2 = 1 16 + 8 16 = 9 16

x1,2 = 1 4 ± 9 16

x1 = 1 4 - 3 4 = - 2 4 = -0.5

x2 = 1 4 + 3 4 = 4 4 = 1

Rücksubstitution:

u1: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

u2: cos( x ) = -0,5

canvas
cos( x ) = -0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 2.0943951023932

1. Fall:

x2 = 2 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = -0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 2 3 π
bzw. bei - 2 3 π +2π= 4 3 π liegen muss.

2. Fall:

x3 = 4 3 π

L={0; 2 3 π ; 4 3 π }