nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
3 cos( 3x - 3 2 π) -3 = -3

Lösung einblenden
3 cos( 3x - 3 2 π) -3 = -3 | +3
3 cos( 3x - 3 2 π) = 0 |:3
canvas
cos( 3x - 3 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x - 3 2 π = 1 2 π

oder

3x - 3 2 π = 1 2 π-2π
3x - 3 2 π = - 3 2 π |⋅ 2
2( 3x - 3 2 π) = -3π
6x -3π = -3π | +3π
6x = 0 |:6
x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x - 3 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

3x - 3 2 π = 3 2 π

oder

3x - 3 2 π = 3 2 π-2π
3x - 3 2 π = - 1 2 π |⋅ 2
2( 3x - 3 2 π) = -π
6x -3π = -π | +3π
6x = 2π |:6
x2 = 1 3 π

L={0; 1 3 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 - sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 - sin( x ) = 0
( sin( x ) -1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) -1 = 0 | +1 canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x3 = π

L={0; 1 2 π ; π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
-2 cos( x - 1 2 π) +3 = 3,5

Lösung einblenden
-2 cos( x - 1 2 π) +3 = 3,5 | -3
-2 cos( x - 1 2 π) = 0,5 |:-2
canvas
cos( x - 1 2 π) = -0,25 |cos-1(⋅)

Der WTR liefert nun als Wert 1.823476581937

1. Fall:

x - 1 2 π = 1,823 |⋅ 2
2( x - 1 2 π) = 3,646
2x - π = 3,646 | + π
2x = 3,646 + π
2x = 6,7876 |:2
x1 = 3,3938

Am Einheitskreis erkennen wir, dass die Gleichung cos( x - 1 2 π) = -0,25 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.25 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,823
bzw. bei - 1,823 +2π= 4,46 liegen muss.

2. Fall:

x - 1 2 π = 4,46 |⋅ 2
2( x - 1 2 π) = 8,92
2x - π = 8,92 | + π
2x = 8,92 + π
2x = 12,0616 |:2
x2 = 6,0308

L={ 3,3938 ; 6,0308 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( 3 sin( x - 3 2 π) -3 ) · cos( x ) = 0

Lösung einblenden
( 3 sin( x - 3 2 π) -3 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

3 sin( x - 3 2 π) -3 = 0 | +3
3 sin( x - 3 2 π) = 3 |:3
canvas
sin( x - 3 2 π) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x - 3 2 π = 1 2 π

oder

x - 3 2 π = 1 2 π-2π
x - 3 2 π = - 3 2 π |⋅ 2
2( x - 3 2 π) = -3π
2x -3π = -3π | +3π
2x = 0 |:2
x1 = 0

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={0; 1 2 π ; 3 2 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - cos( x ) = 0

Lösung einblenden
( cos( x ) ) 2 - cos( x ) = 0
( cos( x ) -1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) -1 = 0 | +1 canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={0; 1 2 π ; 3 2 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 +4 cos( x ) +3 = 0

Lösung einblenden
( cos( x ) ) 2 +4 cos( x ) +3 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +4u +3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -4 ± 4 2 -4 · 1 · 3 21

u1,2 = -4 ± 16 -12 2

u1,2 = -4 ± 4 2

u1 = -4 + 4 2 = -4 +2 2 = -2 2 = -1

u2 = -4 - 4 2 = -4 -2 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - 3 = 4 - 3 = 1

x1,2 = -2 ± 1

x1 = -2 - 1 = -3

x2 = -2 + 1 = -1

Rücksubstitution:

u1: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

u2: cos( x ) = -3

cos( x ) = -3

Diese Gleichung hat keine Lösung!

L={ π }