nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
2 sin( x + 3 2 π) = 0

Lösung einblenden
2 sin( x + 3 2 π) = 0 |:2
canvas
sin( x + 3 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x + 3 2 π = 0

oder

x + 3 2 π = 0+2π
x + 3 2 π = 2π |⋅ 2
2( x + 3 2 π) = 4π
2x +3π = 4π | -3π
2x = π |:2
x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x + 3 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x + 3 2 π = π

oder

x + 3 2 π = π+2π
x + 3 2 π = 3π |⋅ 2
2( x + 3 2 π) = 6π
2x +3π = 6π | -3π
2x = 3π |:2
x2 = 3 2 π

L={ 1 2 π ; 3 2 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 - 3 2 sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 - 3 2 sin( x ) = 0
1 2 ( 2 sin( x ) -3 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) -3 = 0 | +3
2 sin( x ) = 3 |:2
sin( x ) = 1,5

Diese Gleichung hat keine Lösung!


2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x2 = π

L={0; π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ).
-3 cos( 3x - 3 2 π) +3 = 1,35

Lösung einblenden
-3 cos( 3x - 3 2 π) +3 = 1,35 | -3
-3 cos( 3x - 3 2 π) = -1,65 |:-3
canvas
cos( 3x - 3 2 π) = 0,55 |cos-1(⋅)

Der WTR liefert nun als Wert 0.98843208892615

1. Fall:

3x - 3 2 π = 0,988 |⋅ 2
2( 3x - 3 2 π) = 1,976
6x -3π = 1,976 | +3π
6x = 1,976 +3π
6x = 11,4008 |:6
x1 = 1,9001

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x - 3 2 π) = 0,55 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.55 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 0,988
bzw. bei - 0,988 +2π= 5,295 liegen muss.

2. Fall:

3x - 3 2 π = 5,295

oder

3x - 3 2 π = 5,295 -2π |⋅ 2
6x -3π = 10,59 -4π | +3π
6x = 10,59 - π
6x = 7,4484 |:6
x2 = 1,2414

L={ 1,2414 ; 1,9001 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 + cos( x ) = 0

Lösung einblenden
( cos( x ) ) 2 + cos( x ) = 0
( cos( x ) +1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) +1 = 0 | -1 canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={ 1 2 π ; π ; 3 2 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- cos( 2x + 1 2 π) · sin( x ) = 0

Lösung einblenden
- cos( 2x + 1 2 π) · sin( x ) = 0
- cos( 2x + 1 2 π) · sin( x ) = 0
- sin( x ) · cos( 2x + 1 2 π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x2 = π

2. Fall:

canvas
cos( 2x + 1 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x + 1 2 π = 1 2 π |⋅ 2
2( 2x + 1 2 π) = π
4x + π = π | - π
4x = 0 |:4
x3 = 0

Am Einheitskreis erkennen wir, dass die Gleichung cos( 2x + 1 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

2x + 1 2 π = 3 2 π |⋅ 2
2( 2x + 1 2 π) = 3π
4x + π = 3π | - π
4x = 2π |:4
x4 = 1 2 π

Da cos( 2x + 1 2 π) die Periode π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x5 = 0 + 1⋅ π = π , x6 = 1 2 π + 1⋅ π = 3 2 π

L={0; 1 2 π ; π ; 3 2 π }

0 ist 2-fache Lösung! π ist 2-fache Lösung!

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - 3 2 cos( x ) + 1 2 = 0

Lösung einblenden
( cos( x ) ) 2 - 3 2 cos( x ) + 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 - 3 2 u + 1 2 = 0 |⋅ 2
2( u 2 - 3 2 u + 1 2 ) = 0

2 u 2 -3u +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +3 ± ( -3 ) 2 -4 · 2 · 1 22

u1,2 = +3 ± 9 -8 4

u1,2 = +3 ± 1 4

u1 = 3 + 1 4 = 3 +1 4 = 4 4 = 1

u2 = 3 - 1 4 = 3 -1 4 = 2 4 = 0,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 u 2 -3u +1 = 0 |: 2

u 2 - 3 2 u + 1 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 4 ) 2 - ( 1 2 ) = 9 16 - 1 2 = 9 16 - 8 16 = 1 16

x1,2 = 3 4 ± 1 16

x1 = 3 4 - 1 4 = 2 4 = 0.5

x2 = 3 4 + 1 4 = 4 4 = 1

Rücksubstitution:

u1: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

u2: cos( x ) = 0,5

canvas
cos( x ) = 0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 1.0471975511966

1. Fall:

x2 = 1 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 3 π
bzw. bei - 1 3 π +2π= 5 3 π liegen muss.

2. Fall:

x3 = 5 3 π

L={0; 1 3 π ; 5 3 π }