nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
-3 sin( x + 1 2 π) +2 = -1

Lösung einblenden
-3 sin( x + 1 2 π) +2 = -1 | -2
-3 sin( x + 1 2 π) = -3 |:-3
canvas
sin( x + 1 2 π) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x + 1 2 π = 1 2 π |⋅ 2
2( x + 1 2 π) = π
2x + π = π | - π
2x = 0 |:2
x = 0

L={0}

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 + 1 2 cos( x ) = 0

Lösung einblenden
( cos( x ) ) 2 + 1 2 cos( x ) = 0
1 2 ( 2 cos( x ) +1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( x ) +1 = 0 | -1
2 cos( x ) = -1 |:2
canvas
cos( x ) = -0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 2.0943951023932

1. Fall:

x1 = 2 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = -0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 2 3 π
bzw. bei - 2 3 π +2π= 4 3 π liegen muss.

2. Fall:

x2 = 4 3 π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x4 = 3 2 π

L={ 1 2 π ; 2 3 π ; 4 3 π ; 3 2 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
-2 sin( x + 3 2 π) +3 = 1,2

Lösung einblenden
-2 sin( x + 3 2 π) +3 = 1,2 | -3
-2 sin( x + 3 2 π) = -1,8 |:-2
canvas
sin( x + 3 2 π) = 0,9 |sin-1(⋅)

Der WTR liefert nun als Wert 1.1197695149986

1. Fall:

x + 3 2 π = 1,12

oder

x + 3 2 π = 1,12 +2π |⋅ 2
2x +3π = 2,24 +4π | -3π
2x = 2,24 + π
2x = 5,3816 |:2
x1 = 2,6908

Am Einheitskreis erkennen wir, dass die Gleichung sin( x + 3 2 π) = 0,9 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.9 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 1,12 = 2,022 liegen muss.

2. Fall:

x + 3 2 π = 2,022

oder

x + 3 2 π = 2,022 +2π |⋅ 2
2x +3π = 4,044 +4π | -3π
2x = 4,044 + π
2x = 7,1856 |:2
x2 = 3,5928

L={ 2,6908 ; 3,5928 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; π ):
( x -1 ) · sin( 2x + 3 2 π) = 0

Lösung einblenden
( x -1 ) · sin( 2x + 3 2 π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -1 = 0 | +1
x1 = 1

2. Fall:

canvas
sin( 2x + 3 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x + 3 2 π = 0

oder

2x + 3 2 π = 0+2π
2x + 3 2 π = 2π |⋅ 2
2( 2x + 3 2 π) = 4π
4x +3π = 4π | -3π
4x = π |:4
x2 = 1 4 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x + 3 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

2x + 3 2 π = π

oder

2x + 3 2 π = π+2π
2x + 3 2 π = 3π |⋅ 2
2( 2x + 3 2 π) = 6π
4x +3π = 6π | -3π
4x = 3π |:4
x3 = 3 4 π

L={ 1 4 π ; 1 ; 3 4 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
-2 sin( x - 3 2 π) · cos( x ) = 0

Lösung einblenden
-2 sin( x - 3 2 π) · cos( x ) = 0
-2 sin( x - 3 2 π) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

canvas
sin( x - 3 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x - 3 2 π = 0 |⋅ 2
2( x - 3 2 π) = 0
2x -3π = 0 | +3π
2x = 3π |:2
x1 = 3 2 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x - 3 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x - 3 2 π = π

oder

x - 3 2 π = π-2π
x - 3 2 π = -π |⋅ 2
2( x - 3 2 π) = -2π
2x -3π = -2π | +3π
2x = π |:2
x2 = 1 2 π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x4 = 3 2 π

L={ 1 2 π ; 3 2 π }

1 2 π ist 2-fache Lösung! 3 2 π ist 2-fache Lösung!

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 4 - ( sin( x ) ) 2 -2 = 0

Lösung einblenden
( sin( x ) ) 4 - ( sin( x ) ) 2 -2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = ( sin( x ) ) 2

Draus ergibt sich die quadratische Gleichung:

u 2 - u -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -2 ) 21

u1,2 = +1 ± 1 +8 2

u1,2 = +1 ± 9 2

u1 = 1 + 9 2 = 1 +3 2 = 4 2 = 2

u2 = 1 - 9 2 = 1 -3 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = 1 2 ± 9 4

x1 = 1 2 - 3 2 = - 2 2 = -1

x2 = 1 2 + 3 2 = 4 2 = 2

Rücksubstitution:

u1: ( sin( x ) ) 2 = 2

( sin( x ) ) 2 = 2 | 2

1. Fall

sin( x ) = - 2 -1,414
sin( x ) = -1,414

Diese Gleichung hat keine Lösung!

2. Fall

sin( x ) = 2 1,414
sin( x ) = 1,414

Diese Gleichung hat keine Lösung!

u2: ( sin( x ) ) 2 = -1

( sin( x ) ) 2 = -1 | 2

Diese Gleichung hat keine (reele) Lösung!

L={}