nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
3 sin( x - 1 2 π) -2 = -2

Lösung einblenden
3 sin( x - 1 2 π) -2 = -2 | +2
3 sin( x - 1 2 π) = 0 |:3
canvas
sin( x - 1 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x - 1 2 π = 0 |⋅ 2
2( x - 1 2 π) = 0
2x - π = 0 | + π
2x = π |:2
x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x - 1 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x - 1 2 π = π |⋅ 2
2( x - 1 2 π) = 2π
2x - π = 2π | + π
2x = 3π |:2
x2 = 3 2 π

L={ 1 2 π ; 3 2 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 - 1 2 sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 - 1 2 sin( x ) = 0
1 2 ( 2 sin( x ) -1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) -1 = 0 | +1
2 sin( x ) = 1 |:2
canvas
sin( x ) = 0,5 |sin-1(⋅)

Der WTR liefert nun als Wert 0.5235987755983

1. Fall:

x1 = 5 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,5 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5 6 π = 1 6 π liegen muss.

2. Fall:

x2 = 1 6 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x4 = π

L={0; 1 6 π ; 5 6 π ; π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
-3 cos( x + 3 2 π) +2 = 5

Lösung einblenden
-3 cos( x + 3 2 π) +2 = 5 | -2
-3 cos( x + 3 2 π) = 3 |:-3
canvas
cos( x + 3 2 π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x + 3 2 π = π

oder

x + 3 2 π = π+2π
x + 3 2 π = 3π |⋅ 2
2( x + 3 2 π) = 6π
2x +3π = 6π | -3π
2x = 3π |:2
x = 3 2 π

L={ 3 2 π }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( - cos( x + 1 2 π) +1 ) · ( sin( x ) -1 ) = 0

Lösung einblenden
( - cos( x + 1 2 π) +1 ) ( sin( x ) -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

- cos( x + 1 2 π) +1 = 0 | -1
- cos( x + 1 2 π) = -1 |:-1
canvas
cos( x + 1 2 π) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x + 1 2 π = 0

oder

x + 1 2 π = 0+2π
x + 1 2 π = 2π |⋅ 2
2( x + 1 2 π) = 4π
2x + π = 4π | - π
2x = 3π |:2
x1 = 3 2 π

2. Fall:

sin( x ) -1 = 0 | +1 canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 1 2 π

L={ 1 2 π ; 3 2 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - cos( x ) -2 = 0

Lösung einblenden
( cos( x ) ) 2 - cos( x ) -2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 - u -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -2 ) 21

u1,2 = +1 ± 1 +8 2

u1,2 = +1 ± 9 2

u1 = 1 + 9 2 = 1 +3 2 = 4 2 = 2

u2 = 1 - 9 2 = 1 -3 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = 1 2 ± 9 4

x1 = 1 2 - 3 2 = - 2 2 = -1

x2 = 1 2 + 3 2 = 4 2 = 2

Rücksubstitution:

u1: cos( x ) = 2

cos( x ) = 2

Diese Gleichung hat keine Lösung!

u2: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

L={ π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 +3 cos( x ) +2 = 0

Lösung einblenden
( cos( x ) ) 2 +3 cos( x ) +2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +3u +2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 1 · 2 21

u1,2 = -3 ± 9 -8 2

u1,2 = -3 ± 1 2

u1 = -3 + 1 2 = -3 +1 2 = -2 2 = -1

u2 = -3 - 1 2 = -3 -1 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - 2 = 9 4 - 2 = 9 4 - 8 4 = 1 4

x1,2 = - 3 2 ± 1 4

x1 = - 3 2 - 1 2 = - 4 2 = -2

x2 = - 3 2 + 1 2 = - 2 2 = -1

Rücksubstitution:

u1: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

u2: cos( x ) = -2

cos( x ) = -2

Diese Gleichung hat keine Lösung!

L={ π }