nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
-3 sin( 2x + 1 2 π) +1 = -2

Lösung einblenden
-3 sin( 2x + 1 2 π) +1 = -2 | -1
-3 sin( 2x + 1 2 π) = -3 |:-3
canvas
sin( 2x + 1 2 π) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

2x + 1 2 π = 1 2 π |⋅ 2
2( 2x + 1 2 π) = π
4x + π = π | - π
4x = 0 |:4
x = 0

L={0}

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- 1 2 cos( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- 1 2 cos( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 sin( x ) -1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) -1 = 0 | +1
2 sin( x ) = 1 |:2
canvas
sin( x ) = 0,5 |sin-1(⋅)

Der WTR liefert nun als Wert 0.5235987755983

1. Fall:

x1 = 5 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,5 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5 6 π = 1 6 π liegen muss.

2. Fall:

x2 = 1 6 π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x4 = 3 2 π

L={ 1 6 π ; 1 2 π ; 5 6 π ; 3 2 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
-3 cos( x + 3 2 π) -2 = -0,8

Lösung einblenden
-3 cos( x + 3 2 π) -2 = -0,8 | +2
-3 cos( x + 3 2 π) = 1,2 |:-3
canvas
cos( x + 3 2 π) = -0,4 |cos-1(⋅)

Der WTR liefert nun als Wert 1.9823131728624

1. Fall:

x + 3 2 π = 1,982

oder

x + 3 2 π = 1,982 +2π |⋅ 2
2x +3π = 3,964 +4π | -3π
2x = 3,964 + π
2x = 7,1056 |:2
x1 = 3,5528

Am Einheitskreis erkennen wir, dass die Gleichung cos( x + 3 2 π) = -0,4 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.4 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,982
bzw. bei - 1,982 +2π= 4,301 liegen muss.

2. Fall:

x + 3 2 π = 4,301

oder

x + 3 2 π = 4,301 +2π |⋅ 2
2x +3π = 8,602 +4π | -3π
2x = 8,602 + π
2x = 11,7436 |:2
x2 = 5,8718

L={ 3,5528 ; 5,8718 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; π ):
( 2 cos( 2x - π) -2 ) · ( x 2 -2x ) = 0

Lösung einblenden
( 2 cos( 2x - π) -2 ) ( x 2 -2x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( 2x - π) -2 = 0 | +2
2 cos( 2x - π) = 2 |:2
canvas
cos( 2x - π) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

2x - π = 0 | + π
2x = π |:2
x1 = 1 2 π

2. Fall:

x 2 -2x = 0
x ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x2 = 0

2. Fall:

x -2 = 0 | +2
x3 = 2

L={0; 1 2 π ; 2 }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 4 - ( sin( x ) ) 2 = 0

Lösung einblenden
( sin( x ) ) 4 - ( sin( x ) ) 2 = 0
( sin( x ) ) 2 ( ( sin( x ) ) 2 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

( sin( x ) ) 2 = 0 | 2
sin( x ) = 0
canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x2 = π

2. Fall:

( sin( x ) ) 2 -1 = 0 | +1
( sin( x ) ) 2 = 1 | 2

1. Fall

sin( x ) = - 1 = -1
canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x3 = 3 2 π

2. Fall

sin( x ) = 1 = 1
canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x4 = 1 2 π

L={0; 1 2 π ; π ; 3 2 π }

0 ist 2-fache Lösung! π ist 2-fache Lösung!

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 -5 cos( x ) +4 = 0

Lösung einblenden
( cos( x ) ) 2 -5 cos( x ) +4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 -5u +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +5 ± ( -5 ) 2 -4 · 1 · 4 21

u1,2 = +5 ± 25 -16 2

u1,2 = +5 ± 9 2

u1 = 5 + 9 2 = 5 +3 2 = 8 2 = 4

u2 = 5 - 9 2 = 5 -3 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = 5 2 ± 9 4

x1 = 5 2 - 3 2 = 2 2 = 1

x2 = 5 2 + 3 2 = 8 2 = 4

Rücksubstitution:

u1: cos( x ) = 4

cos( x ) = 4

Diese Gleichung hat keine Lösung!

u2: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

L={0}