nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
-2 cos( x - π) -1 = -3

Lösung einblenden
-2 cos( x - π) -1 = -3 | +1
-2 cos( x - π) = -2 |:-2
canvas
cos( x - π) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x - π = 0 | + π
x = π

L={ π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- 3 2 sin( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- 3 2 sin( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 cos( x ) -3 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( x ) -3 = 0 | +3
2 cos( x ) = 3 |:2
cos( x ) = 1,5

Diese Gleichung hat keine Lösung!


2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x2 = π

L={0; π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
sin( x - π) +1 = 0,15

Lösung einblenden
sin( x - π) +1 = 0,15 | -1 canvas
sin( x - π) = -0,85 |sin-1(⋅)

Der WTR liefert nun als Wert -1.0159852938148

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0; 2π ) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,267

1. Fall:

x - π = 5,267

oder

x - π = 5,267 -2π | + π
x1 = 5,267 - π
x1 = 2,1254

Am Einheitskreis erkennen wir, dass die Gleichung sin( x - π) = -0,85 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.85 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,267 =-2.1254 bzw. bei -2.1254+2π= 4,158 liegen muss.

2. Fall:

x - π = 4,158

oder

x - π = 4,158 -2π | + π
x2 = 4,158 - π
x2 = 1,0164

L={ 1,0164 ; 2,1254 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - cos( x ) = 0

Lösung einblenden
( cos( x ) ) 2 - cos( x ) = 0
( cos( x ) -1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) -1 = 0 | +1 canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={0; 1 2 π ; 3 2 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
-3 sin( 3x + 3 2 π) · cos( x ) = 0

Lösung einblenden
-3 sin( 3x + 3 2 π) · cos( x ) = 0
-3 sin( 3x + 3 2 π) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

canvas
sin( 3x + 3 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x + 3 2 π = 0

oder

3x + 3 2 π = 0+2π
3x + 3 2 π = 2π |⋅ 2
2( 3x + 3 2 π) = 4π
6x +3π = 4π | -3π
6x = π |:6
x1 = 1 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 3x + 3 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

3x + 3 2 π = π

oder

3x + 3 2 π = π+2π
3x + 3 2 π = 3π |⋅ 2
2( 3x + 3 2 π) = 6π
6x +3π = 6π | -3π
6x = 3π |:6
x2 = 1 2 π

Da sin( 3x + 3 2 π) die Periode 2 3 π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x3 = 1 6 π + 1⋅ 2 3 π = 5 6 π , x4 = 1 2 π + 1⋅ 2 3 π = 7 6 π
x5 = 1 6 π + 2⋅ 2 3 π = 3 2 π , x6 = 1 2 π + 2⋅ 2 3 π = 11 6 π


2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x7 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x8 = 3 2 π

L={ 1 6 π ; 1 2 π ; 5 6 π ; 7 6 π ; 3 2 π ; 11 6 π }

1 2 π ist 2-fache Lösung! 3 2 π ist 2-fache Lösung!

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - cos( x ) -2 = 0

Lösung einblenden
( cos( x ) ) 2 - cos( x ) -2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 - u -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -2 ) 21

u1,2 = +1 ± 1 +8 2

u1,2 = +1 ± 9 2

u1 = 1 + 9 2 = 1 +3 2 = 4 2 = 2

u2 = 1 - 9 2 = 1 -3 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = 1 2 ± 9 4

x1 = 1 2 - 3 2 = - 2 2 = -1

x2 = 1 2 + 3 2 = 4 2 = 2

Rücksubstitution:

u1: cos( x ) = 2

cos( x ) = 2

Diese Gleichung hat keine Lösung!

u2: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

L={ π }