nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
-3 cos( 2x + π) +1 = 4

Lösung einblenden
-3 cos( 2x + π) +1 = 4 | -1
-3 cos( 2x + π) = 3 |:-3
canvas
cos( 2x + π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

2x + π = π | - π
2x = 0 |:2
x = 0

L={0}

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 + 1 2 sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 + 1 2 sin( x ) = 0
1 2 ( 2 sin( x ) +1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) +1 = 0 | -1
2 sin( x ) = -1 |:2
canvas
sin( x ) = -0,5 |sin-1(⋅)

Der WTR liefert nun als Wert -0.5235987755983

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0; 2π ) suchen, addieren wir einfach noch 2π dazu und erhalten so 11 6 π

1. Fall:

x1 = 11 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,5 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 11 6 π =-2.618 bzw. bei -2.618+2π= 7 6 π liegen muss.

2. Fall:

x2 = 7 6 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x4 = π

L={0; π ; 7 6 π ; 11 6 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ).
-2 cos( 2x - π) -2 = -3,7

Lösung einblenden
-2 cos( 2x - π) -2 = -3,7 | +2
-2 cos( 2x - π) = -1,7 |:-2
canvas
cos( 2x - π) = 0,85 |cos-1(⋅)

Der WTR liefert nun als Wert 0.55481103298007

1. Fall:

2x - π = 0,555 | + π
2x = 0,555 + π
2x = 3,6966 |:2
x1 = 1,8483

Am Einheitskreis erkennen wir, dass die Gleichung cos( 2x - π) = 0,85 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.85 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 0,555
bzw. bei - 0,555 +2π= 5,728 liegen muss.

2. Fall:

2x - π = 5,728

oder

2x - π = 5,728 -2π | + π
2x = 5,728 - π
2x = 2,5864 |:2
x2 = 1,2932

L={ 1,2932 ; 1,8483 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 4 + ( sin( x ) ) 2 = 0

Lösung einblenden
( sin( x ) ) 4 + ( sin( x ) ) 2 = 0
( sin( x ) ) 2 ( ( sin( x ) ) 2 +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

( sin( x ) ) 2 = 0 | 2
sin( x ) = 0
canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x2 = π

2. Fall:

( sin( x ) ) 2 +1 = 0 | -1
( sin( x ) ) 2 = -1 | 2

Diese Gleichung hat keine (reele) Lösung!

L={0; π }

0 ist 2-fache Lösung! π ist 2-fache Lösung!

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
-3 sin( x - 3 2 π) · ( x 2 -6x ) = 0

Lösung einblenden
-3 sin( x - 3 2 π) · ( x 2 -6x ) = 0
-3 sin( x - 3 2 π) ( x 2 -6x ) = 0
-3 ( x 2 -6x ) · sin( x - 3 2 π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 -6x = 0
x ( x -6 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -6 = 0 | +6
x2 = 6

2. Fall:

canvas
sin( x - 3 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x - 3 2 π = 0 |⋅ 2
2( x - 3 2 π) = 0
2x -3π = 0 | +3π
2x = 3π |:2
x3 = 3 2 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x - 3 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x - 3 2 π = π

oder

x - 3 2 π = π-2π
x - 3 2 π = -π |⋅ 2
2( x - 3 2 π) = -2π
2x -3π = -2π | +3π
2x = π |:2
x4 = 1 2 π

L={0; 1 2 π ; 3 2 π ; 6 }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 + 3 2 sin( x ) + 1 2 = 0

Lösung einblenden
( sin( x ) ) 2 + 3 2 sin( x ) + 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 + 3 2 u + 1 2 = 0 |⋅ 2
2( u 2 + 3 2 u + 1 2 ) = 0

2 u 2 +3u +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 2 · 1 22

u1,2 = -3 ± 9 -8 4

u1,2 = -3 ± 1 4

u1 = -3 + 1 4 = -3 +1 4 = -2 4 = -0,5

u2 = -3 - 1 4 = -3 -1 4 = -4 4 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 u 2 +3u +1 = 0 |: 2

u 2 + 3 2 u + 1 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 4 ) 2 - ( 1 2 ) = 9 16 - 1 2 = 9 16 - 8 16 = 1 16

x1,2 = - 3 4 ± 1 16

x1 = - 3 4 - 1 4 = - 4 4 = -1

x2 = - 3 4 + 1 4 = - 2 4 = -0.5

Rücksubstitution:

u1: sin( x ) = -0,5

canvas
sin( x ) = -0,5 |sin-1(⋅)

Der WTR liefert nun als Wert -0.5235987755983

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;p) suchen, addieren wir einfach noch 2π dazu und erhalten so 11 6 π

1. Fall:

x1 = 11 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,5 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 11 6 π =-2.618 bzw. bei -2.618+2π= 7 6 π liegen muss.

2. Fall:

x2 = 7 6 π

u2: sin( x ) = -1

canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x3 = 3 2 π

L={ 7 6 π ; 3 2 π ; 11 6 π }