nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
2 sin( 2x + π) +1 = 1

Lösung einblenden
2 sin( 2x + π) +1 = 1 | -1
2 sin( 2x + π) = 0 |:2
canvas
sin( 2x + π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x + π = 0

oder

2x + π = 0+2π
2x + π = 2π | - π
2x = π |:2
x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x + π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

2x + π = π | - π
2x = 0 |:2
x2 = 0

L={0; 1 2 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
cos( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
cos( x ) + sin( x ) · cos( x ) = 0
( sin( x ) +1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) +1 = 0 | -1 canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={ 1 2 π ; 3 2 π }

3 2 π ist 2-fache Lösung!

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ).
- cos( 3x + 1 2 π) +2 = 1,4

Lösung einblenden
- cos( 3x + 1 2 π) +2 = 1,4 | -2
- cos( 3x + 1 2 π) = -0,6 |:-1
canvas
cos( 3x + 1 2 π) = 0,6 |cos-1(⋅)

Der WTR liefert nun als Wert 0.92729521800161

1. Fall:

3x + 1 2 π = 0,927

oder

3x + 1 2 π = 0,927 +2π |⋅ 2
6x + π = 1,854 +4π | - π
6x = 1,854 +3π
6x = 11,2788 |:6
x1 = 1,8798

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x + 1 2 π) = 0,6 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.6 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 0,927
bzw. bei - 0,927 +2π= 5,356 liegen muss.

2. Fall:

3x + 1 2 π = 5,356 |⋅ 2
2( 3x + 1 2 π) = 10,712
6x + π = 10,712 | - π
6x = 10,712 - π
6x = 7,5704 |:6
x2 = 1,2617

L={ 1,2617 ; 1,8798 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
2 cos( x - 1 2 π) · ( cos( x ) -1 ) = 0

Lösung einblenden
2 cos( x - 1 2 π) · ( cos( x ) -1 ) = 0
2 cos( x - 1 2 π) ( cos( x ) -1 ) = 0
2 ( cos( x ) -1 ) · cos( x - 1 2 π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) -1 = 0 | +1 canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

2. Fall:

canvas
cos( x - 1 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x - 1 2 π = 1 2 π |⋅ 2
2( x - 1 2 π) = π
2x - π = π | + π
2x = 2π |:2
x2 = π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x - 1 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x - 1 2 π = 3 2 π

oder

x - 1 2 π = 3 2 π-2π
x - 1 2 π = - 1 2 π |⋅ 2
2( x - 1 2 π) = -π
2x - π = -π | + π
2x = 0 |:2
x3 = 0

L={0; π }

0 ist 2-fache Lösung!

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 -1 = 0

Lösung einblenden
( cos( x ) ) 2 -1 = 0 | +1
( cos( x ) ) 2 = 1 | 2

1. Fall

cos( x ) = - 1 = -1
canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

2. Fall

cos( x ) = 1 = 1
canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 0

L={0; π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 -3 cos( x ) -4 = 0

Lösung einblenden
( cos( x ) ) 2 -3 cos( x ) -4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 -3u -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -4 ) 21

u1,2 = +3 ± 9 +16 2

u1,2 = +3 ± 25 2

u1 = 3 + 25 2 = 3 +5 2 = 8 2 = 4

u2 = 3 - 25 2 = 3 -5 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - ( -4 ) = 9 4 + 4 = 9 4 + 16 4 = 25 4

x1,2 = 3 2 ± 25 4

x1 = 3 2 - 5 2 = - 2 2 = -1

x2 = 3 2 + 5 2 = 8 2 = 4

Rücksubstitution:

u1: cos( x ) = 4

cos( x ) = 4

Diese Gleichung hat keine Lösung!

u2: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

L={ π }