nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
-3 cos( 3x - 3 2 π) -2 = -2

Lösung einblenden
-3 cos( 3x - 3 2 π) -2 = -2 | +2
-3 cos( 3x - 3 2 π) = 0 |:-3
canvas
cos( 3x - 3 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x - 3 2 π = 1 2 π

oder

3x - 3 2 π = 1 2 π-2π
3x - 3 2 π = - 3 2 π |⋅ 2
2( 3x - 3 2 π) = -3π
6x -3π = -3π | +3π
6x = 0 |:6
x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x - 3 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

3x - 3 2 π = 3 2 π

oder

3x - 3 2 π = 3 2 π-2π
3x - 3 2 π = - 1 2 π |⋅ 2
2( 3x - 3 2 π) = -π
6x -3π = -π | +3π
6x = 2π |:6
x2 = 1 3 π

L={0; 1 3 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 + 3 2 cos( x ) = 0

Lösung einblenden
( cos( x ) ) 2 + 3 2 cos( x ) = 0
1 2 ( 2 cos( x ) +3 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( x ) +3 = 0 | -3
2 cos( x ) = -3 |:2
cos( x ) = -1,5

Diese Gleichung hat keine Lösung!


2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x2 = 3 2 π

L={ 1 2 π ; 3 2 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
2 cos( x - 3 2 π) -1 = -2,4

Lösung einblenden
2 cos( x - 3 2 π) -1 = -2,4 | +1
2 cos( x - 3 2 π) = -1,4 |:2
canvas
cos( x - 3 2 π) = -0,7 |cos-1(⋅)

Der WTR liefert nun als Wert 2.3461938234056

1. Fall:

x - 3 2 π = 2,346

oder

x - 3 2 π = 2,346 -2π |⋅ 2
2x -3π = 4,692 -4π | +3π
2x = 4,692 - π
2x = 1,5504 |:2
x1 = 0,7752

Am Einheitskreis erkennen wir, dass die Gleichung cos( x - 3 2 π) = -0,7 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.7 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 2,346
bzw. bei - 2,346 +2π= 3,937 liegen muss.

2. Fall:

x - 3 2 π = 3,937

oder

x - 3 2 π = 3,937 -2π |⋅ 2
2x -3π = 7,874 -4π | +3π
2x = 7,874 - π
2x = 4,7324 |:2
x2 = 2,3662

L={ 0,7752 ; 2,3662 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( 3 cos( x - 3 2 π) -3 ) · ( sin( x ) +1 ) = 0

Lösung einblenden
( 3 cos( x - 3 2 π) -3 ) ( sin( x ) +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

3 cos( x - 3 2 π) -3 = 0 | +3
3 cos( x - 3 2 π) = 3 |:3
canvas
cos( x - 3 2 π) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x - 3 2 π = 0 |⋅ 2
2( x - 3 2 π) = 0
2x -3π = 0 | +3π
2x = 3π |:2
x1 = 3 2 π

2. Fall:

sin( x ) +1 = 0 | -1 canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 3 2 π

L={ 3 2 π }

3 2 π ist 2-fache Lösung!

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 4 -5 ( sin( x ) ) 2 +4 = 0

Lösung einblenden
( sin( x ) ) 4 -5 ( sin( x ) ) 2 +4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = ( sin( x ) ) 2

Draus ergibt sich die quadratische Gleichung:

u 2 -5u +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +5 ± ( -5 ) 2 -4 · 1 · 4 21

u1,2 = +5 ± 25 -16 2

u1,2 = +5 ± 9 2

u1 = 5 + 9 2 = 5 +3 2 = 8 2 = 4

u2 = 5 - 9 2 = 5 -3 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = 5 2 ± 9 4

x1 = 5 2 - 3 2 = 2 2 = 1

x2 = 5 2 + 3 2 = 8 2 = 4

Rücksubstitution:

u1: ( sin( x ) ) 2 = 4

( sin( x ) ) 2 = 4 | 2

1. Fall

sin( x ) = - 4 = -2
sin( x ) = -2

Diese Gleichung hat keine Lösung!

2. Fall

sin( x ) = 4 = 2
sin( x ) = 2

Diese Gleichung hat keine Lösung!

u2: ( sin( x ) ) 2 = 1

( sin( x ) ) 2 = 1 | 2

1. Fall

sin( x ) = - 1 = -1
canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall

sin( x ) = 1 = 1
canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 1 2 π

L={ 1 2 π ; 3 2 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 + 1 2 sin( x ) - 1 2 = 0

Lösung einblenden
( sin( x ) ) 2 + 1 2 sin( x ) - 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 + 1 2 u - 1 2 = 0 |⋅ 2
2( u 2 + 1 2 u - 1 2 ) = 0

2 u 2 + u -1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -1 ± 1 2 -4 · 2 · ( -1 ) 22

u1,2 = -1 ± 1 +8 4

u1,2 = -1 ± 9 4

u1 = -1 + 9 4 = -1 +3 4 = 2 4 = 0,5

u2 = -1 - 9 4 = -1 -3 4 = -4 4 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 u 2 + u -1 = 0 |: 2

u 2 + 1 2 u - 1 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 4 ) 2 - ( - 1 2 ) = 1 16 + 1 2 = 1 16 + 8 16 = 9 16

x1,2 = - 1 4 ± 9 16

x1 = - 1 4 - 3 4 = - 4 4 = -1

x2 = - 1 4 + 3 4 = 2 4 = 0.5

Rücksubstitution:

u1: sin( x ) = 0,5

canvas
sin( x ) = 0,5 |sin-1(⋅)

Der WTR liefert nun als Wert 0.5235987755983

1. Fall:

x1 = 5 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,5 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5 6 π = 1 6 π liegen muss.

2. Fall:

x2 = 1 6 π

u2: sin( x ) = -1

canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x3 = 3 2 π

L={ 1 6 π ; 5 6 π ; 3 2 π }