nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
-2 sin( 2x - 3 2 π) +2 = 2

Lösung einblenden
-2 sin( 2x - 3 2 π) +2 = 2 | -2
-2 sin( 2x - 3 2 π) = 0 |:-2
canvas
sin( 2x - 3 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x - 3 2 π = 0 |⋅ 2
2( 2x - 3 2 π) = 0
4x -3π = 0 | +3π
4x = 3π |:4
x1 = 3 4 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x - 3 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

2x - 3 2 π = π

oder

2x - 3 2 π = π-2π
2x - 3 2 π = -π |⋅ 2
2( 2x - 3 2 π) = -2π
4x -3π = -2π | +3π
4x = π |:4
x2 = 1 4 π

L={ 1 4 π ; 3 4 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- 1 2 sin( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- 1 2 sin( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 cos( x ) -1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( x ) -1 = 0 | +1
2 cos( x ) = 1 |:2
canvas
cos( x ) = 0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 1.0471975511966

1. Fall:

x1 = 1 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 3 π
bzw. bei - 1 3 π +2π= 5 3 π liegen muss.

2. Fall:

x2 = 5 3 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x4 = π

L={0; 1 3 π ; π ; 5 3 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
- sin( x - 3 2 π) = -0,2

Lösung einblenden
- sin( x - 3 2 π) = -0,2 |:-1
canvas
sin( x - 3 2 π) = 0,2 |sin-1(⋅)

Der WTR liefert nun als Wert 0.20135792079033

1. Fall:

x - 3 2 π = 0,201 |⋅ 2
2( x - 3 2 π) = 0,402
2x -3π = 0,402 | +3π
2x = 0,402 +3π
2x = 9,8268 |:2
x1 = 4,9134

Am Einheitskreis erkennen wir, dass die Gleichung sin( x - 3 2 π) = 0,2 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.2 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,201 = 2,94 liegen muss.

2. Fall:

x - 3 2 π = 2,94

oder

x - 3 2 π = 2,94 -2π |⋅ 2
2x -3π = 5,88 -4π | +3π
2x = 5,88 - π
2x = 2,7384 |:2
x2 = 1,3692

L={ 1,3692 ; 4,9134 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; π ):
( x 3 -2 x 2 ) · ( -3 sin( 2x + 3 2 π) ) = 0

Lösung einblenden
( x 3 -2 x 2 ) · ( -3 sin( 2x + 3 2 π) ) = 0
-3 ( x 3 -2 x 2 ) · sin( 2x + 3 2 π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 -2 x 2 = 0
x 2 ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x -2 = 0 | +2
x2 = 2

2. Fall:

canvas
sin( 2x + 3 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x + 3 2 π = 0

oder

2x + 3 2 π = 0+2π
2x + 3 2 π = 2π |⋅ 2
2( 2x + 3 2 π) = 4π
4x +3π = 4π | -3π
4x = π |:4
x3 = 1 4 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x + 3 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

2x + 3 2 π = π

oder

2x + 3 2 π = π+2π
2x + 3 2 π = 3π |⋅ 2
2( 2x + 3 2 π) = 6π
4x +3π = 6π | -3π
4x = 3π |:4
x4 = 3 4 π

L={0; 1 4 π ; 2 ; 3 4 π }

0 ist 2-fache Lösung!

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - cos( x ) -2 = 0

Lösung einblenden
( cos( x ) ) 2 - cos( x ) -2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 - u -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -2 ) 21

u1,2 = +1 ± 1 +8 2

u1,2 = +1 ± 9 2

u1 = 1 + 9 2 = 1 +3 2 = 4 2 = 2

u2 = 1 - 9 2 = 1 -3 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = 1 2 ± 9 4

x1 = 1 2 - 3 2 = - 2 2 = -1

x2 = 1 2 + 3 2 = 4 2 = 2

Rücksubstitution:

u1: cos( x ) = 2

cos( x ) = 2

Diese Gleichung hat keine Lösung!

u2: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

L={ π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 -3 cos( x ) +2 = 0

Lösung einblenden
( cos( x ) ) 2 -3 cos( x ) +2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 -3u +2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +3 ± ( -3 ) 2 -4 · 1 · 2 21

u1,2 = +3 ± 9 -8 2

u1,2 = +3 ± 1 2

u1 = 3 + 1 2 = 3 +1 2 = 4 2 = 2

u2 = 3 - 1 2 = 3 -1 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - 2 = 9 4 - 2 = 9 4 - 8 4 = 1 4

x1,2 = 3 2 ± 1 4

x1 = 3 2 - 1 2 = 2 2 = 1

x2 = 3 2 + 1 2 = 4 2 = 2

Rücksubstitution:

u1: cos( x ) = 2

cos( x ) = 2

Diese Gleichung hat keine Lösung!

u2: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

L={0}