nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
2 sin( x - π) = 2

Lösung einblenden
2 sin( x - π) = 2 |:2
canvas
sin( x - π) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x - π = 1 2 π | + π
x = 3 2 π

L={ 3 2 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- cos( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- cos( x ) + sin( x ) · cos( x ) = 0
( sin( x ) -1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) -1 = 0 | +1 canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={ 1 2 π ; 3 2 π }

1 2 π ist 2-fache Lösung!

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ).
-2 cos( 3x + 3 2 π) = 1,3

Lösung einblenden
-2 cos( 3x + 3 2 π) = 1,3 |:-2
canvas
cos( 3x + 3 2 π) = -0,65 |cos-1(⋅)

Der WTR liefert nun als Wert 2.2783807635203

1. Fall:

3x + 3 2 π = 2,278

oder

3x + 3 2 π = 2,278 +2π |⋅ 2
6x +3π = 4,556 +4π | -3π
6x = 4,556 + π
6x = 7,6976 |:6
x1 = 1,2829

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x + 3 2 π) = -0,65 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.65 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 2,278
bzw. bei - 2,278 +2π= 4,005 liegen muss.

2. Fall:

3x + 3 2 π = 4,005

oder

3x + 3 2 π = 4,005 +2π |⋅ 2
6x +3π = 8,01 +4π | -3π
6x = 8,01 + π
6x = 11,1516 |:6
x2 = 1,8586

L={ 1,2829 ; 1,8586 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
-3 cos( x - 3 2 π) · cos( x ) = 0

Lösung einblenden
-3 cos( x - 3 2 π) · cos( x ) = 0
-3 cos( x - 3 2 π) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

canvas
cos( x - 3 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x - 3 2 π = 1 2 π

oder

x - 3 2 π = 1 2 π-2π
x - 3 2 π = - 3 2 π |⋅ 2
2( x - 3 2 π) = -3π
2x -3π = -3π | +3π
2x = 0 |:2
x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung cos( x - 3 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x - 3 2 π = 3 2 π

oder

x - 3 2 π = 3 2 π-2π
x - 3 2 π = - 1 2 π |⋅ 2
2( x - 3 2 π) = -π
2x -3π = -π | +3π
2x = 2π |:2
x2 = π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x4 = 3 2 π

L={0; 1 2 π ; π ; 3 2 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 -4 cos( x ) +3 = 0

Lösung einblenden
( cos( x ) ) 2 -4 cos( x ) +3 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 -4u +3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +4 ± ( -4 ) 2 -4 · 1 · 3 21

u1,2 = +4 ± 16 -12 2

u1,2 = +4 ± 4 2

u1 = 4 + 4 2 = 4 +2 2 = 6 2 = 3

u2 = 4 - 4 2 = 4 -2 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -2 ) 2 - 3 = 4 - 3 = 1

x1,2 = 2 ± 1

x1 = 2 - 1 = 1

x2 = 2 + 1 = 3

Rücksubstitution:

u1: cos( x ) = 3

cos( x ) = 3

Diese Gleichung hat keine Lösung!

u2: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

L={0}

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 -5 cos( x ) +4 = 0

Lösung einblenden
( cos( x ) ) 2 -5 cos( x ) +4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 -5u +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +5 ± ( -5 ) 2 -4 · 1 · 4 21

u1,2 = +5 ± 25 -16 2

u1,2 = +5 ± 9 2

u1 = 5 + 9 2 = 5 +3 2 = 8 2 = 4

u2 = 5 - 9 2 = 5 -3 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = 5 2 ± 9 4

x1 = 5 2 - 3 2 = 2 2 = 1

x2 = 5 2 + 3 2 = 8 2 = 4

Rücksubstitution:

u1: cos( x ) = 4

cos( x ) = 4

Diese Gleichung hat keine Lösung!

u2: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

L={0}