nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
3 cos( x + 1 2 π) +2 = 2

Lösung einblenden
3 cos( x + 1 2 π) +2 = 2 | -2
3 cos( x + 1 2 π) = 0 |:3
canvas
cos( x + 1 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x + 1 2 π = 1 2 π |⋅ 2
2( x + 1 2 π) = π
2x + π = π | - π
2x = 0 |:2
x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung cos( x + 1 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x + 1 2 π = 3 2 π |⋅ 2
2( x + 1 2 π) = 3π
2x + π = 3π | - π
2x = 2π |:2
x2 = π

L={0; π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 + cos( x ) = 0

Lösung einblenden
( cos( x ) ) 2 + cos( x ) = 0
( cos( x ) +1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) +1 = 0 | -1 canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={ 1 2 π ; π ; 3 2 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
-3 cos( x + 1 2 π) -3 = -4,05

Lösung einblenden
-3 cos( x + 1 2 π) -3 = -4,05 | +3
-3 cos( x + 1 2 π) = -1,05 |:-3
canvas
cos( x + 1 2 π) = 0,35 |cos-1(⋅)

Der WTR liefert nun als Wert 1.2132252231494

1. Fall:

x + 1 2 π = 1,213

oder

x + 1 2 π = 1,213 +2π |⋅ 2
2x + π = 2,426 +4π | - π
2x = 2,426 +3π
2x = 11,8508 |:2
x1 = 5,9254

Am Einheitskreis erkennen wir, dass die Gleichung cos( x + 1 2 π) = 0,35 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.35 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,213
bzw. bei - 1,213 +2π= 5,07 liegen muss.

2. Fall:

x + 1 2 π = 5,07 |⋅ 2
2( x + 1 2 π) = 10,14
2x + π = 10,14 | - π
2x = 10,14 - π
2x = 6,9984 |:2
x2 = 3,4992

L={ 3,4992 ; 5,9254 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( 2 cos( x - π) +2 ) · ( cos( x ) -1 ) = 0

Lösung einblenden
( 2 cos( x - π) +2 ) ( cos( x ) -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( x - π) +2 = 0 | -2
2 cos( x - π) = -2 |:2
canvas
cos( x - π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x - π = π

oder

x - π = π-2π
x - π = -π | + π
x1 = 0

2. Fall:

cos( x ) -1 = 0 | +1 canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 0

L={0}

0 ist 2-fache Lösung!

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( 3 cos( 3x + 3 2 π) -3 ) · ( cos( x ) -1 ) = 0

Lösung einblenden
( 3 cos( 3x + 3 2 π) -3 ) ( cos( x ) -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

3 cos( 3x + 3 2 π) -3 = 0 | +3
3 cos( 3x + 3 2 π) = 3 |:3
canvas
cos( 3x + 3 2 π) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

3x + 3 2 π = 0

oder

3x + 3 2 π = 0+2π
3x + 3 2 π = 2π |⋅ 2
2( 3x + 3 2 π) = 4π
6x +3π = 4π | -3π
6x = π |:6
x1 = 1 6 π

Da 3 cos( 3x + 3 2 π) -3 die Periode 2 3 π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x2 = 1 6 π + 1⋅ 2 3 π = 5 6 π
x3 = 1 6 π + 2⋅ 2 3 π = 3 2 π


2. Fall:

cos( x ) -1 = 0 | +1 canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x4 = 0

L={0; 1 6 π ; 5 6 π ; 3 2 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 + sin( x ) -2 = 0

Lösung einblenden
( sin( x ) ) 2 + sin( x ) -2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 + u -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -1 ± 1 2 -4 · 1 · ( -2 ) 21

u1,2 = -1 ± 1 +8 2

u1,2 = -1 ± 9 2

u1 = -1 + 9 2 = -1 +3 2 = 2 2 = 1

u2 = -1 - 9 2 = -1 -3 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = - 1 2 ± 9 4

x1 = - 1 2 - 3 2 = - 4 2 = -2

x2 = - 1 2 + 3 2 = 2 2 = 1

Rücksubstitution:

u1: sin( x ) = 1

canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

u2: sin( x ) = -2

sin( x ) = -2

Diese Gleichung hat keine Lösung!

L={ 1 2 π }