nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
- cos( 2x + 3 2 π) -2 = -2

Lösung einblenden
- cos( 2x + 3 2 π) -2 = -2 | +2
- cos( 2x + 3 2 π) = 0 |:-1
canvas
cos( 2x + 3 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x + 3 2 π = 1 2 π

oder

2x + 3 2 π = 1 2 π+2π
2x + 3 2 π = 5 2 π |⋅ 2
2( 2x + 3 2 π) = 5π
4x +3π = 5π | -3π
4x = 2π |:4
x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( 2x + 3 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

2x + 3 2 π = 3 2 π |⋅ 2
2( 2x + 3 2 π) = 3π
4x +3π = 3π | -3π
4x = 0 |:4
x2 = 0

L={0; 1 2 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 - 3 2 sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 - 3 2 sin( x ) = 0
1 2 ( 2 sin( x ) -3 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) -3 = 0 | +3
2 sin( x ) = 3 |:2
sin( x ) = 1,5

Diese Gleichung hat keine Lösung!


2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x2 = π

L={0; π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ).
-2 sin( 3x - 1 2 π) +2 = 0,4

Lösung einblenden
-2 sin( 3x - 1 2 π) +2 = 0,4 | -2
-2 sin( 3x - 1 2 π) = -1,6 |:-2
canvas
sin( 3x - 1 2 π) = 0,8 |sin-1(⋅)

Der WTR liefert nun als Wert 0.92729521800161

1. Fall:

3x - 1 2 π = 0,927 |⋅ 2
2( 3x - 1 2 π) = 1,854
6x - π = 1,854 | + π
6x = 1,854 + π
6x = 4,9956 |:6
x1 = 0,8326

Am Einheitskreis erkennen wir, dass die Gleichung sin( 3x - 1 2 π) = 0,8 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.8 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,927 = 2,214 liegen muss.

2. Fall:

3x - 1 2 π = 2,214 |⋅ 2
2( 3x - 1 2 π) = 4,428
6x - π = 4,428 | + π
6x = 4,428 + π
6x = 7,5696 |:6
x2 = 1,2616

L={ 0,8326 ; 1,2616 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2 3 π ):
( x 2 - x ) · ( 3 cos( 3x - π) +3 ) = 0

Lösung einblenden
( x 2 - x ) ( 3 cos( 3x - π) +3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 - x = 0
x ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

2. Fall:

3 cos( 3x - π) +3 = 0 | -3
3 cos( 3x - π) = -3 |:3
canvas
cos( 3x - π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

3x - π = π

oder

3x - π = π-2π
3x - π = -π | + π
3x = 0 |:3
x3 = 0

L={0; 1 }

0 ist 2-fache Lösung!

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( x 2 - x ) · sin( x + 3 2 π) = 0

Lösung einblenden
( x 2 - x ) · sin( x + 3 2 π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 - x = 0
x ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

2. Fall:

canvas
sin( x + 3 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x + 3 2 π = 0

oder

x + 3 2 π = 0+2π
x + 3 2 π = 2π |⋅ 2
2( x + 3 2 π) = 4π
2x +3π = 4π | -3π
2x = π |:2
x3 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x + 3 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x + 3 2 π = π

oder

x + 3 2 π = π+2π
x + 3 2 π = 3π |⋅ 2
2( x + 3 2 π) = 6π
2x +3π = 6π | -3π
2x = 3π |:2
x4 = 3 2 π

L={0; 1 ; 1 2 π ; 3 2 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 4 - 3 2 ( sin( x ) ) 2 + 1 2 = 0

Lösung einblenden
( sin( x ) ) 4 - 3 2 ( sin( x ) ) 2 + 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = ( sin( x ) ) 2

Draus ergibt sich die quadratische Gleichung:

u 2 - 3 2 u + 1 2 = 0 |⋅ 2
2( u 2 - 3 2 u + 1 2 ) = 0

2 u 2 -3u +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +3 ± ( -3 ) 2 -4 · 2 · 1 22

u1,2 = +3 ± 9 -8 4

u1,2 = +3 ± 1 4

u1 = 3 + 1 4 = 3 +1 4 = 4 4 = 1

u2 = 3 - 1 4 = 3 -1 4 = 2 4 = 0,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 u 2 -3u +1 = 0 |: 2

u 2 - 3 2 u + 1 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 4 ) 2 - ( 1 2 ) = 9 16 - 1 2 = 9 16 - 8 16 = 1 16

x1,2 = 3 4 ± 1 16

x1 = 3 4 - 1 4 = 2 4 = 0.5

x2 = 3 4 + 1 4 = 4 4 = 1

Rücksubstitution:

u1: ( sin( x ) ) 2 = 1

( sin( x ) ) 2 = 1 | 2

1. Fall

sin( x ) = - 1 = -1
canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall

sin( x ) = 1 = 1
canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 1 2 π

u2: ( sin( x ) ) 2 = 0,5

( sin( x ) ) 2 = 0,5 | 2

1. Fall

sin( x ) = - 0,5 -0,707
canvas
sin( x ) = -0,707 |sin-1(⋅)

Der WTR liefert nun als Wert -0.78524716339515

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;p) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,498

1. Fall:

x3 = 5,498

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,707 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.707 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,498 =-2.3564 bzw. bei -2.3564+2π= 3,927 liegen muss.

2. Fall:

x4 = 3,927

2. Fall

sin( x ) = 0,5 0,707
canvas
sin( x ) = 0,707 |sin-1(⋅)

Der WTR liefert nun als Wert 0.78524716339515

1. Fall:

x5 = 0,785

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,707 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.707 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,785 = 2,356 liegen muss.

2. Fall:

x6 = 2,356

L={ 0,785 ; 1 2 π ; 2,356 ; 3,927 ; 3 2 π ; 5,498 }