nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
cos( x - 1 2 π) +2 = 1

Lösung einblenden
cos( x - 1 2 π) +2 = 1 | -2 canvas
cos( x - 1 2 π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x - 1 2 π = π |⋅ 2
2( x - 1 2 π) = 2π
2x - π = 2π | + π
2x = 3π |:2
x = 3 2 π

L={ 3 2 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- 3 2 sin( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- 3 2 sin( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 cos( x ) -3 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( x ) -3 = 0 | +3
2 cos( x ) = 3 |:2
cos( x ) = 1,5

Diese Gleichung hat keine Lösung!


2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x2 = π

L={0; π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ).
2 sin( 2x + π) +1 = 1,3

Lösung einblenden
2 sin( 2x + π) +1 = 1,3 | -1
2 sin( 2x + π) = 0,3 |:2
canvas
sin( 2x + π) = 0,15 |sin-1(⋅)

Der WTR liefert nun als Wert 0.15056827277669

1. Fall:

2x + π = 0,151

oder

2x + π = 0,151 +2π | - π
2x = 0,151 + π
2x = 3,2926 |:2
x1 = 1,6463

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x + π) = 0,15 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.15 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,151 = 2,991 liegen muss.

2. Fall:

2x + π = 2,991

oder

2x + π = 2,991 +2π | - π
2x = 2,991 + π
2x = 6,1326 |:2
x2 = 3,0663

L={ 1,6463 ; 3,0663 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 +2 cos( x ) -3 = 0

Lösung einblenden
( cos( x ) ) 2 +2 cos( x ) -3 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +2u -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

u1,2 = -2 ± 4 +12 2

u1,2 = -2 ± 16 2

u1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

u2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -3 ) = 1+ 3 = 4

x1,2 = -1 ± 4

x1 = -1 - 2 = -3

x2 = -1 + 2 = 1

Rücksubstitution:

u1: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

u2: cos( x ) = -3

cos( x ) = -3

Diese Gleichung hat keine Lösung!

L={0}

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
-2 sin( 2x + 3 2 π) · ( sin( x ) -1 ) = 0

Lösung einblenden
-2 sin( 2x + 3 2 π) · ( sin( x ) -1 ) = 0
-2 sin( 2x + 3 2 π) ( sin( x ) -1 ) = 0
-2 ( sin( x ) -1 ) · sin( 2x + 3 2 π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) -1 = 0 | +1 canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

2. Fall:

canvas
sin( 2x + 3 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x + 3 2 π = 0

oder

2x + 3 2 π = 0+2π
2x + 3 2 π = 2π |⋅ 2
2( 2x + 3 2 π) = 4π
4x +3π = 4π | -3π
4x = π |:4
x2 = 1 4 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x + 3 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

2x + 3 2 π = π

oder

2x + 3 2 π = π+2π
2x + 3 2 π = 3π |⋅ 2
2( 2x + 3 2 π) = 6π
4x +3π = 6π | -3π
4x = 3π |:4
x3 = 3 4 π

Da sin( 2x + 3 2 π) die Periode π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x4 = 1 4 π + 1⋅ π = 5 4 π , x5 = 3 4 π + 1⋅ π = 7 4 π

L={ 1 4 π ; 1 2 π ; 3 4 π ; 5 4 π ; 7 4 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 +2 sin( x ) +1 = 0

Lösung einblenden
( sin( x ) ) 2 +2 sin( x ) +1 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +2u +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -2 ± 2 2 -4 · 1 · 1 21

u1,2 = -2 ± 4 -4 2

u1,2 = -2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

u = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - 1 = 1 - 1 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -1 ± 0 = -1

Rücksubstitution:

u1: sin( x ) = -1

canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

u2: sin( x ) = -1

canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 3 2 π

L={ 3 2 π }

3 2 π ist 2-fache Lösung!