nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
- sin( 3x + 1 2 π) -1 = -1

Lösung einblenden
- sin( 3x + 1 2 π) -1 = -1 | +1
- sin( 3x + 1 2 π) = 0 |:-1
canvas
sin( 3x + 1 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x + 1 2 π = 0

oder

3x + 1 2 π = 0+2π
3x + 1 2 π = 2π |⋅ 2
2( 3x + 1 2 π) = 4π
6x + π = 4π | - π
6x = 3π |:6
x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 3x + 1 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

3x + 1 2 π = π |⋅ 2
2( 3x + 1 2 π) = 2π
6x + π = 2π | - π
6x = π |:6
x2 = 1 6 π

L={ 1 6 π ; 1 2 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 - 3 2 sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 - 3 2 sin( x ) = 0
1 2 ( 2 sin( x ) -3 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) -3 = 0 | +3
2 sin( x ) = 3 |:2
sin( x ) = 1,5

Diese Gleichung hat keine Lösung!


2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x2 = π

L={0; π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
sin( x - 1 2 π) +2 = 2,1

Lösung einblenden
sin( x - 1 2 π) +2 = 2,1 | -2 canvas
sin( x - 1 2 π) = 0,1 |sin-1(⋅)

Der WTR liefert nun als Wert 0.10016742116156

1. Fall:

x - 1 2 π = 0,1 |⋅ 2
2( x - 1 2 π) = 0,2
2x - π = 0,2 | + π
2x = 0,2 + π
2x = 3,3416 |:2
x1 = 1,6708

Am Einheitskreis erkennen wir, dass die Gleichung sin( x - 1 2 π) = 0,1 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.1 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,1 = 3,041 liegen muss.

2. Fall:

x - 1 2 π = 3,041 |⋅ 2
2( x - 1 2 π) = 6,082
2x - π = 6,082 | + π
2x = 6,082 + π
2x = 9,2236 |:2
x2 = 4,6118

L={ 1,6708 ; 4,6118 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 - sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 - sin( x ) = 0
( sin( x ) -1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) -1 = 0 | +1 canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x3 = π

L={0; 1 2 π ; π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; π ):
( - cos( 2x + 1 2 π) -1 ) · ( x 2 -2x ) = 0

Lösung einblenden
( - cos( 2x + 1 2 π) -1 ) ( x 2 -2x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

- cos( 2x + 1 2 π) -1 = 0 | +1
- cos( 2x + 1 2 π) = 1 |:-1
canvas
cos( 2x + 1 2 π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

2x + 1 2 π = π |⋅ 2
2( 2x + 1 2 π) = 2π
4x + π = 2π | - π
4x = π |:4
x1 = 1 4 π

2. Fall:

x 2 -2x = 0
x ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x2 = 0

2. Fall:

x -2 = 0 | +2
x3 = 2

L={0; 1 4 π ; 2 }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 -4 cos( x ) +3 = 0

Lösung einblenden
( cos( x ) ) 2 -4 cos( x ) +3 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 -4u +3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +4 ± ( -4 ) 2 -4 · 1 · 3 21

u1,2 = +4 ± 16 -12 2

u1,2 = +4 ± 4 2

u1 = 4 + 4 2 = 4 +2 2 = 6 2 = 3

u2 = 4 - 4 2 = 4 -2 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -2 ) 2 - 3 = 4 - 3 = 1

x1,2 = 2 ± 1

x1 = 2 - 1 = 1

x2 = 2 + 1 = 3

Rücksubstitution:

u1: cos( x ) = 3

cos( x ) = 3

Diese Gleichung hat keine Lösung!

u2: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

L={0}