nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
3 cos( 3x + π) +2 = 2

Lösung einblenden
3 cos( 3x + π) +2 = 2 | -2
3 cos( 3x + π) = 0 |:3
canvas
cos( 3x + π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x + π = 1 2 π

oder

3x + π = 1 2 π+2π
3x + π = 5 2 π | - π
3x = 3 2 π |:3
x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x + π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

3x + π = 3 2 π | - π
3x = 1 2 π |:3
x2 = 1 6 π

L={ 1 6 π ; 1 2 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - 3 2 cos( x ) = 0

Lösung einblenden
( cos( x ) ) 2 - 3 2 cos( x ) = 0
1 2 ( 2 cos( x ) -3 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( x ) -3 = 0 | +3
2 cos( x ) = 3 |:2
cos( x ) = 1,5

Diese Gleichung hat keine Lösung!


2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x2 = 3 2 π

L={ 1 2 π ; 3 2 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ).
sin( 3x + π) = -0,9

Lösung einblenden
canvas
sin( 3x + π) = -0,9 |sin-1(⋅)

Der WTR liefert nun als Wert -1.1197695149986

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0; 2 3 π ) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,163

1. Fall:

3x + π = 5,163 | - π
3x = 5,163 - π
3x = 2,0214 |:3
x1 = 0,6738

Am Einheitskreis erkennen wir, dass die Gleichung sin( 3x + π) = -0,9 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.9 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,163 =-2.0214 bzw. bei -2.0214+2π= 4,261 liegen muss.

2. Fall:

3x + π = 4,261 | - π
3x = 4,261 - π
3x = 1,1194 |:3
x2 = 0,3731

L={ 0,3731 ; 0,6738 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 -3 sin( x ) -4 = 0

Lösung einblenden
( sin( x ) ) 2 -3 sin( x ) -4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 -3u -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -4 ) 21

u1,2 = +3 ± 9 +16 2

u1,2 = +3 ± 25 2

u1 = 3 + 25 2 = 3 +5 2 = 8 2 = 4

u2 = 3 - 25 2 = 3 -5 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - ( -4 ) = 9 4 + 4 = 9 4 + 16 4 = 25 4

x1,2 = 3 2 ± 25 4

x1 = 3 2 - 5 2 = - 2 2 = -1

x2 = 3 2 + 5 2 = 8 2 = 4

Rücksubstitution:

u1: sin( x ) = 4

sin( x ) = 4

Diese Gleichung hat keine Lösung!

u2: sin( x ) = -1

canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

L={ 3 2 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- cos( 2x + 3 2 π) · ( cos( x ) -1 ) = 0

Lösung einblenden
- cos( 2x + 3 2 π) · ( cos( x ) -1 ) = 0
- cos( 2x + 3 2 π) ( cos( x ) -1 ) = 0
- ( cos( x ) -1 ) · cos( 2x + 3 2 π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) -1 = 0 | +1 canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

2. Fall:

canvas
cos( 2x + 3 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x + 3 2 π = 1 2 π

oder

2x + 3 2 π = 1 2 π+2π
2x + 3 2 π = 5 2 π |⋅ 2
2( 2x + 3 2 π) = 5π
4x +3π = 5π | -3π
4x = 2π |:4
x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( 2x + 3 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

2x + 3 2 π = 3 2 π |⋅ 2
2( 2x + 3 2 π) = 3π
4x +3π = 3π | -3π
4x = 0 |:4
x3 = 0

Da cos( 2x + 3 2 π) die Periode π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x4 = 1 2 π + 1⋅ π = 3 2 π , x5 = 0 + 1⋅ π = π

L={0; 1 2 π ; π ; 3 2 π }

0 ist 2-fache Lösung!

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 + 3 2 cos( x ) + 1 2 = 0

Lösung einblenden
( cos( x ) ) 2 + 3 2 cos( x ) + 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 + 3 2 u + 1 2 = 0 |⋅ 2
2( u 2 + 3 2 u + 1 2 ) = 0

2 u 2 +3u +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 2 · 1 22

u1,2 = -3 ± 9 -8 4

u1,2 = -3 ± 1 4

u1 = -3 + 1 4 = -3 +1 4 = -2 4 = -0,5

u2 = -3 - 1 4 = -3 -1 4 = -4 4 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 u 2 +3u +1 = 0 |: 2

u 2 + 3 2 u + 1 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 4 ) 2 - ( 1 2 ) = 9 16 - 1 2 = 9 16 - 8 16 = 1 16

x1,2 = - 3 4 ± 1 16

x1 = - 3 4 - 1 4 = - 4 4 = -1

x2 = - 3 4 + 1 4 = - 2 4 = -0.5

Rücksubstitution:

u1: cos( x ) = -0,5

canvas
cos( x ) = -0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 2.0943951023932

1. Fall:

x1 = 2 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = -0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 2 3 π
bzw. bei - 2 3 π +2π= 4 3 π liegen muss.

2. Fall:

x2 = 4 3 π

u2: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x3 = π

L={ 2 3 π ; π ; 4 3 π }