nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
-2 cos( 3x - 3 2 π) = 2

Lösung einblenden
-2 cos( 3x - 3 2 π) = 2 |:-2
canvas
cos( 3x - 3 2 π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

3x - 3 2 π = π

oder

3x - 3 2 π = π-2π
3x - 3 2 π = -π |⋅ 2
2( 3x - 3 2 π) = -2π
6x -3π = -2π | +3π
6x = π |:6
x = 1 6 π

L={ 1 6 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - 1 2 cos( x ) = 0

Lösung einblenden
( cos( x ) ) 2 - 1 2 cos( x ) = 0
1 2 ( 2 cos( x ) -1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( x ) -1 = 0 | +1
2 cos( x ) = 1 |:2
canvas
cos( x ) = 0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 1.0471975511966

1. Fall:

x1 = 1 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 3 π
bzw. bei - 1 3 π +2π= 5 3 π liegen muss.

2. Fall:

x2 = 5 3 π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x4 = 3 2 π

L={ 1 3 π ; 1 2 π ; 3 2 π ; 5 3 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
-2 sin( x + 1 2 π) -2 = -0,5

Lösung einblenden
-2 sin( x + 1 2 π) -2 = -0,5 | +2
-2 sin( x + 1 2 π) = 1,5 |:-2
canvas
sin( x + 1 2 π) = -0,75 |sin-1(⋅)

Der WTR liefert nun als Wert -0.84806207898148

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0; 2π ) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,435

1. Fall:

x + 1 2 π = 5,435 |⋅ 2
2( x + 1 2 π) = 10,87
2x + π = 10,87 | - π
2x = 10,87 - π
2x = 7,7284 |:2
x1 = 3,8642

Am Einheitskreis erkennen wir, dass die Gleichung sin( x + 1 2 π) = -0,75 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.75 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,435 =-2.2934 bzw. bei -2.2934+2π= 3,99 liegen muss.

2. Fall:

x + 1 2 π = 3,99 |⋅ 2
2( x + 1 2 π) = 7,98
2x + π = 7,98 | - π
2x = 7,98 - π
2x = 4,8384 |:2
x2 = 2,4192

L={ 2,4192 ; 3,8642 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - cos( x ) -2 = 0

Lösung einblenden
( cos( x ) ) 2 - cos( x ) -2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 - u -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -2 ) 21

u1,2 = +1 ± 1 +8 2

u1,2 = +1 ± 9 2

u1 = 1 + 9 2 = 1 +3 2 = 4 2 = 2

u2 = 1 - 9 2 = 1 -3 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = 1 2 ± 9 4

x1 = 1 2 - 3 2 = - 2 2 = -1

x2 = 1 2 + 3 2 = 4 2 = 2

Rücksubstitution:

u1: cos( x ) = 2

cos( x ) = 2

Diese Gleichung hat keine Lösung!

u2: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

L={ π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( -3 sin( 2x - 3 2 π) +3 ) · ( cos( x ) +1 ) = 0

Lösung einblenden
( -3 sin( 2x - 3 2 π) +3 ) ( cos( x ) +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

-3 sin( 2x - 3 2 π) +3 = 0 | -3
-3 sin( 2x - 3 2 π) = -3 |:-3
canvas
sin( 2x - 3 2 π) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

2x - 3 2 π = 1 2 π

oder

2x - 3 2 π = 1 2 π-2π
2x - 3 2 π = - 3 2 π |⋅ 2
2( 2x - 3 2 π) = -3π
4x -3π = -3π | +3π
4x = 0 |:4
x1 = 0

Da -3 sin( 2x - 3 2 π) +3 die Periode π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x2 = 0 + 1⋅ π = π


2. Fall:

cos( x ) +1 = 0 | -1 canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x3 = π

L={0; π }

π ist 2-fache Lösung!

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 -3 cos( x ) +2 = 0

Lösung einblenden
( cos( x ) ) 2 -3 cos( x ) +2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 -3u +2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +3 ± ( -3 ) 2 -4 · 1 · 2 21

u1,2 = +3 ± 9 -8 2

u1,2 = +3 ± 1 2

u1 = 3 + 1 2 = 3 +1 2 = 4 2 = 2

u2 = 3 - 1 2 = 3 -1 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - 2 = 9 4 - 2 = 9 4 - 8 4 = 1 4

x1,2 = 3 2 ± 1 4

x1 = 3 2 - 1 2 = 2 2 = 1

x2 = 3 2 + 1 2 = 4 2 = 2

Rücksubstitution:

u1: cos( x ) = 2

cos( x ) = 2

Diese Gleichung hat keine Lösung!

u2: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

L={0}