nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
- cos( 2x + 1 2 π) -2 = -3

Lösung einblenden
- cos( 2x + 1 2 π) -2 = -3 | +2
- cos( 2x + 1 2 π) = -1 |:-1
canvas
cos( 2x + 1 2 π) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

2x + 1 2 π = 0

oder

2x + 1 2 π = 2π |⋅ 2
2( 2x + 1 2 π) = 4π
4x + π = 4π | - π
4x = 3π |:4
x = 3 4 π

L={ 3 4 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 - sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 - sin( x ) = 0
( sin( x ) -1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) -1 = 0 | +1 canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x3 = π

L={0; 1 2 π ; π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
3 sin( 2x - 3 2 π) +3 = 3,75

Lösung einblenden
3 sin( 2x - 3 2 π) +3 = 3,75 | -3
3 sin( 2x - 3 2 π) = 0,75 |:3
canvas
sin( 2x - 3 2 π) = 0,25 |sin-1(⋅)

Der WTR liefert nun als Wert 0.25268025514208

1. Fall:

2x - 3 2 π = 0,253 |⋅ 2
2( 2x - 3 2 π) = 0,506
4x -3π = 0,506 | +3π
4x = 0,506 +3π
4x = 9,9308 |:4
x1 = 2,4827

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x - 3 2 π) = 0,25 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.25 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,253 = 2,889 liegen muss.

2. Fall:

2x - 3 2 π = 2,889

oder

2x - 3 2 π = 2,889 -2π |⋅ 2
4x -3π = 5,778 -4π | +3π
4x = 5,778 - π
4x = 2,6364 |:4
x2 = 0,6591

L={ 0,6591 ; 2,4827 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
-3 cos( x - π) · cos( x ) = 0

Lösung einblenden
-3 cos( x - π) · cos( x ) = 0
-3 cos( x - π) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

canvas
cos( x - π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x - π = 1 2 π | + π
x1 = 3 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x - π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x - π = 3 2 π

oder

x - π = 3 2 π-2π
x - π = - 1 2 π | + π
x2 = 1 2 π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x4 = 3 2 π

L={ 1 2 π ; 3 2 π }

1 2 π ist 2-fache Lösung! 3 2 π ist 2-fache Lösung!

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( 3x - 1 2 π) +1 ) · ( cos( x ) +1 ) = 0

Lösung einblenden
( cos( 3x - 1 2 π) +1 ) ( cos( x ) +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( 3x - 1 2 π) +1 = 0 | -1 canvas
cos( 3x - 1 2 π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

3x - 1 2 π = π |⋅ 2
2( 3x - 1 2 π) = 2π
6x - π = 2π | + π
6x = 3π |:6
x1 = 1 2 π

Da cos( 3x - 1 2 π) +1 die Periode 2 3 π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x2 = 1 2 π + 1⋅ 2 3 π = 7 6 π
x3 = 1 2 π + 2⋅ 2 3 π = 11 6 π


2. Fall:

cos( x ) +1 = 0 | -1 canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x4 = π

L={ 1 2 π ; π ; 7 6 π ; 11 6 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 +2 sin( x ) +1 = 0

Lösung einblenden
( sin( x ) ) 2 +2 sin( x ) +1 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +2u +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -2 ± 2 2 -4 · 1 · 1 21

u1,2 = -2 ± 4 -4 2

u1,2 = -2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

u = -2 2 = -1

Rücksubstitution:

u1: sin( x ) = -1

canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

u2: sin( x ) = -1

canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 3 2 π

L={ 3 2 π }

3 2 π ist 2-fache Lösung!