nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
cos( x + 1 2 π) = 1

Lösung einblenden
canvas
cos( x + 1 2 π) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x + 1 2 π = 0

oder

x + 1 2 π = 0+2π
x + 1 2 π = 2π |⋅ 2
2( x + 1 2 π) = 4π
2x + π = 4π | - π
2x = 3π |:2
x = 3 2 π

L={ 3 2 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- 1 2 sin( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- 1 2 sin( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 cos( x ) -1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( x ) -1 = 0 | +1
2 cos( x ) = 1 |:2
canvas
cos( x ) = 0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 1.0471975511966

1. Fall:

x1 = 1 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 3 π
bzw. bei - 1 3 π +2π= 5 3 π liegen muss.

2. Fall:

x2 = 5 3 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x4 = π

L={0; 1 3 π ; π ; 5 3 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ).
2 sin( 3x - 1 2 π) +1 = 1,9

Lösung einblenden
2 sin( 3x - 1 2 π) +1 = 1,9 | -1
2 sin( 3x - 1 2 π) = 0,9 |:2
canvas
sin( 3x - 1 2 π) = 0,45 |sin-1(⋅)

Der WTR liefert nun als Wert 0.4667653390473

1. Fall:

3x - 1 2 π = 0,467 |⋅ 2
2( 3x - 1 2 π) = 0,934
6x - π = 0,934 | + π
6x = 0,934 + π
6x = 4,0756 |:6
x1 = 0,6793

Am Einheitskreis erkennen wir, dass die Gleichung sin( 3x - 1 2 π) = 0,45 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.45 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,467 = 2,675 liegen muss.

2. Fall:

3x - 1 2 π = 2,675 |⋅ 2
2( 3x - 1 2 π) = 5,35
6x - π = 5,35 | + π
6x = 5,35 + π
6x = 8,4916 |:6
x2 = 1,4153

L={ 0,6793 ; 1,4153 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 +3 sin( x ) -4 = 0

Lösung einblenden
( sin( x ) ) 2 +3 sin( x ) -4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +3u -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 1 · ( -4 ) 21

u1,2 = -3 ± 9 +16 2

u1,2 = -3 ± 25 2

u1 = -3 + 25 2 = -3 +5 2 = 2 2 = 1

u2 = -3 - 25 2 = -3 -5 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -4 ) = 9 4 + 4 = 9 4 + 16 4 = 25 4

x1,2 = - 3 2 ± 25 4

x1 = - 3 2 - 5 2 = - 8 2 = -4

x2 = - 3 2 + 5 2 = 2 2 = 1

Rücksubstitution:

u1: sin( x ) = 1

canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

u2: sin( x ) = -4

sin( x ) = -4

Diese Gleichung hat keine Lösung!

L={ 1 2 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( x 2 -2x ) · 3 cos( x - 1 2 π) = 0

Lösung einblenden
( x 2 -2x ) · 3 cos( x - 1 2 π) = 0
3 ( x 2 -2x ) · cos( x - 1 2 π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 -2x = 0
x ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -2 = 0 | +2
x2 = 2

2. Fall:

canvas
cos( x - 1 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x - 1 2 π = 1 2 π |⋅ 2
2( x - 1 2 π) = π
2x - π = π | + π
2x = 2π |:2
x3 = π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x - 1 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x - 1 2 π = 3 2 π

oder

x - 1 2 π = 3 2 π-2π
x - 1 2 π = - 1 2 π |⋅ 2
2( x - 1 2 π) = -π
2x - π = -π | + π
2x = 0 |:2
x4 = 0

L={0; 2 ; π }

0 ist 2-fache Lösung!

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 +3 cos( x ) +2 = 0

Lösung einblenden
( cos( x ) ) 2 +3 cos( x ) +2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +3u +2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 1 · 2 21

u1,2 = -3 ± 9 -8 2

u1,2 = -3 ± 1 2

u1 = -3 + 1 2 = -3 +1 2 = -2 2 = -1

u2 = -3 - 1 2 = -3 -1 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - 2 = 9 4 - 2 = 9 4 - 8 4 = 1 4

x1,2 = - 3 2 ± 1 4

x1 = - 3 2 - 1 2 = - 4 2 = -2

x2 = - 3 2 + 1 2 = - 2 2 = -1

Rücksubstitution:

u1: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

u2: cos( x ) = -2

cos( x ) = -2

Diese Gleichung hat keine Lösung!

L={ π }