Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Wert zum Einsetzen finden
Beispiel:
Gegeben ist die Gleichung mit 2 Variablen: = .
Bestimme x so, dass (x|-7) eine Lösung dieser Gleichung ist.
Man setzt einfach y = -7 in die Gleichung ein und erhält:
=
Jetzt kann man die Gleichung nach x auflösen:
| = | |||
| = | | | ||
| = | |: | ||
| = |
Die Lösung ist somit: (2|-7)
Wert zum Einsetzen finden (offen)
Beispiel:
Gegeben ist die Gleichung mit 2 Variablen: = .
Bestimme eine mögliche Lösung (x|y) dieser Gleichung ist.
Eine (der unendlich vielen) Lösungen wäre beispielsweise: (-2|7)
denn
-5⋅
Eine weitere Lösung wäre aber auch: (-5|12)
denn -5⋅
Oder : (1|2)
denn -5⋅
LGS (1 Var. schon aufgelöst)
Beispiel:
Löse das lineare Gleichungssystem:
Man erkennt, dass in der 1. Gleichung gar kein y mehr da ist.
Deswegen können wir diese Zeile sehr einfach nach x umstellen:
|
|
= |
|
|: |
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das x
durch
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Somit haben wir eine Lösung für y.
Für x haben wir die Lösung ja oben schon erhalten: x =
Die Lösung des LGS ist damit: (-5|-2)
LGS (1 Var. ohne Koeff.)
Beispiel:
Löse das lineare Gleichungssystem:
Man erkennt, dass in der 2. Gleichung kein Koeffizient vor dem y ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach y umstellt:
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 2. Zeile können wir nun in der 1. Zeile das y
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 2. Zeile ein:
y =
=
=
also
y = -2
Die Lösung des LGS ist damit: (5|-2)
LGS (Standard)
Beispiel:
Löse das lineare Gleichungssystem:
Man erkennt, dass in der 2. Gleichung kein Koeffizient vor dem x ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach x umstellt:
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 2. Zeile können wir nun in der 1. Zeile das x
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Somit haben wir eine Lösung für y.
Diese setzen wir nun in die bereits umgestellte 2. Zeile ein:
x =
=
=
also
x = -2
Die Lösung des LGS ist damit: (-2|6)
LGS (vorher umformen)
Beispiel:
Löse das lineare Gleichungssystem:
| | = | | (I) | ||
| | = | | (II) |
Zuerst formen wir die beiden Gleichungen so um, dass links nur noch die Variablen und rechts nur noch die Zahlenwerte stehen:
|
| = |
|
(I) | ||
|
| = |
|
(II) |
|
| = |
|
| +
| (I) | |
|
| = |
|
|
| (II) |
Man erkennt, dass in der 2. Gleichung kein Koeffizient vor dem y ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach y umstellt:
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 2. Zeile können wir nun in der 1. Zeile das y
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 2. Zeile ein:
y =
=
=
also
y = -2
Die Lösung des LGS ist damit: (4|-2)
LGS zu Lösungen finden
Beispiel:
Finde ein lineares Gleichungssystem, bei dem x = 2 und y = 4 Lösungen sind.
Dabei darf keiner der Koeffizienten =0 sein.
Eigentlich kann man die Koeffizienten vor x und y frei wählen, z.B.:
1x
4x
Jetzt muss man einfach die Lösungen x = 2 und y = 4 einsetzen und ausrechnen:
1x
4x
So erhält mam als eine von unendlich vielen Lösungen:
1x
4x
LGS Lösungsvielfalt erkennen
Beispiel:
Bestimme die Lösungsmenge:
Wir stellen die 1. Gleichung nach y um:
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das y
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
| = |
Diese Gleichung hat unendlich viele Lösungen!
Diese Gleichung ist für jeden Wert von x gültig. Die Lösungsmenge der Gleichung und die des LGS sind also unendlich groß.
LGS Anwendungen
Beispiel:
Carola war 3 Stunden wandern. Danach hat sie 5 Schokobonbons gegessen. Als sie diese Werte in ihre Fitness-App einträgt, meldet diese, dass sie durch beide Aktionen zusammen 225 kcal Energie verbraucht hätte. Am Tag zuvor war sie 7 Stunden wandern und hat 4 Schokobonbons gegessen, wofür ihre Fitness-App einen Ernergieverbrauch von 870 kcal berechnete. Wie viele kcal verliert man bei einer Stunde Wandern, wie viel kcal hat ein Schokobonbon?
Wir bezeichnen x als kcal-Verbrauch bei einer Stunde Wandern und y als kcal eines Schokobonbons und
Aus den Sätzen der Aufgabenstellung ergibt sich somit folgendes lineare Gleichungssystem:
Wir stellen die 1. Gleichung nach y um:
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das y
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|⋅ 5 |
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 1. Zeile ein:
y =
=
=
also
y = 45
Die Lösung des LGS ist damit: (150|45)
Bezogen auf die Anwendungsaufgabe ergibt sich nun als Lösung:
kcal-Verbrauch bei einer Stunde Wandern (x-Wert): 150
kcal eines Schokobonbons (y-Wert): 45
quadr. Funktionterm bestimmen
Beispiel:
Die Punkte A(-1|-1) und B(-3|-5) liegen auf einer verschobenen Normalparabel.
Bestimme einen Funktionsterm dieser Parabel.
Wir setzen einfach bei beiden Punkten A und B jeweils den x- und den y-Wert in die allgemeine Funktionsgleichung y = x² + bx + c ein:
A(-1|-1): -1 =
B(-3|-5): -5 =
Damit erhalten wir ein LGS (lineares Gleichungssystem):
-1 = 1
-5 = 9
-2 = -1b +c
-14 = -3b +c
Wir vertauschen die linke mit der rechten Seite und lösen dann das LGS:
Man erkennt, dass in der 2. Gleichung kein Koeffizient vor dem c ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach c umstellt:
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 2. Zeile können wir nun in der 1. Zeile das c
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Somit haben wir eine Lösung für b.
Diese setzen wir nun in die bereits umgestellte 2. Zeile ein:
c =
=
=
also
c = 4
Die Lösung des LGS ist damit: (6|4)
Jetzt können wir b=
Scheitel aus 2 Punkten bestimmen
Beispiel:
Die Punkte A(-1|6) und B(-2|13) liegen auf einer verschobenen Normalparabel.
Bestimme die Koordinaten des Scheitels dieser Parabel.
Um den Scheitel dieser Parabel bestimmen zu können, müssen wir zuerst den Funktionsterm dieser Parabel berechnen:
Wir setzen einfach bei beiden Punkten A und B jeweils den x- und den y-Wert in die allgemeine Funktionsgleichung y = x² + bx + c ein:
A(-1|6): 6 =
B(-2|13): 13 =
Damit erhalten wir ein LGS (lineares Gleichungssystem):
6 = 1
13 = 4
5 = -1b +c
9 = -2b +c
Wir vertauschen die linke mit der rechten Seite und lösen dann das LGS:
Man erkennt, dass in der 2. Gleichung kein Koeffizient vor dem c ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach c umstellt:
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 2. Zeile können wir nun in der 1. Zeile das c
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
Somit haben wir eine Lösung für b.
Diese setzen wir nun in die bereits umgestellte 2. Zeile ein:
c =
=
=
also
c = 1
Die Lösung des LGS ist damit: (-4|1)
Jetzt können wir b=
Jetzt müssen wir noch den Scheitel dieser Parabel bestimmen:
1. Weg
Man erweitert die ersten beiden Summanden (
=
=
=
Jetzt kann man den Scheitel leicht ablesen: S(2|-3).
2. Weg
Wir betrachten nun nur
Von
|
|
= | ||
|
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
| x1 | = |
2. Fall:
|
|
= | |
|
|
| x2 | = |
|
Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(2|y).
y =
also: S(2|-3).
