Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Wert zum Einsetzen finden
Beispiel:
Gegeben ist die Gleichung mit 2 Variablen: = .
Bestimme y so, dass (6|y) eine Lösung dieser Gleichung ist.
Man setzt einfach x = 6 in die Gleichung ein und erhält:
=
Jetzt kann man die Gleichung nach y auflösen:
= | |||
= | |||
= | | | ||
= | |: | ||
= |
Die Lösung ist somit: (6|-2)
Wert zum Einsetzen finden (offen)
Beispiel:
Gegeben ist die Gleichung mit 2 Variablen: = .
Bestimme eine mögliche Lösung (x|y) dieser Gleichung ist.
Eine (der unendlich vielen) Lösungen wäre beispielsweise: (0|-5)
denn
5⋅
Eine weitere Lösung wäre aber auch: (-4|-10)
denn 5⋅
Oder : (4|0)
denn 5⋅
LGS (1 Var. schon aufgelöst)
Beispiel:
Löse das lineare Gleichungssystem:
Man erkennt, dass in der 1. Gleichung gar kein x mehr da ist.
Deswegen können wir diese Zeile sehr einfach nach y umstellen:
|
= |
|
|: |
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das y
durch
|
= |
|
|
|
= |
|
|
|
|
= |
|
|: |
|
= |
|
Somit haben wir eine Lösung für x.
Für y haben wir die Lösung ja oben schon erhalten: y =
Die Lösung des LGS ist damit: (-2|-6)
LGS (1 Var. ohne Koeff.)
Beispiel:
Löse das lineare Gleichungssystem:
Man erkennt, dass in der 2. Gleichung kein Koeffizient vor dem y ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach y umstellt:
|
= |
|
|
|
= |
|
|
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 2. Zeile können wir nun in der 1. Zeile das y
durch (
|
= | ||
|
= | ||
|
= | |
|
|
|
= |
|
|:( |
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 2. Zeile ein:
y =
=
=
also
y = -2
Die Lösung des LGS ist damit: (1|-2)
LGS (Standard)
Beispiel:
Löse das lineare Gleichungssystem:
Man erkennt, dass in der 2. Gleichung kein Koeffizient vor dem y ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach y umstellt:
|
= |
|
|
|
= |
|
|
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 2. Zeile können wir nun in der 1. Zeile das y
durch (
|
= |
|
|
|
= |
|
|
|
= |
|
|
|
|
= |
|
|: |
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 2. Zeile ein:
y =
=
=
also
y = -4
Die Lösung des LGS ist damit: (-2|-4)
LGS (vorher umformen)
Beispiel:
Löse das lineare Gleichungssystem:
| = | | (I) | ||
| = | | (II) |
Zuerst formen wir die beiden Gleichungen so um, dass links nur noch die Variablen und rechts nur noch die Zahlenwerte stehen:
| = |
|
(I) | ||
| = |
|
(II) |
| = |
|
|
| (I) | |
| = |
|
(II) |
Man erkennt, dass in der 2. Gleichung kein Koeffizient vor dem y ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach y umstellt:
|
= |
|
|
|
= |
|
|
|
|
= |
|
|:( |
|
= |
|
Als neues LGS erhält man so:
Wegen der 2. Zeile können wir nun in der 1. Zeile das y
durch (
|
= |
|
|
|
= |
|
|
|
= |
|
|
|
|
= |
|
|: |
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 2. Zeile ein:
y =
=
=
also
y = -4
Die Lösung des LGS ist damit: (4|-4)
LGS zu Lösungen finden
Beispiel:
Finde ein lineares Gleichungssystem, bei dem x = -5 und y = 3 Lösungen sind.
Dabei darf keiner der Koeffizienten =0 sein.
Eigentlich kann man die Koeffizienten vor x und y frei wählen, z.B.:
1x
-2x
Jetzt muss man einfach die Lösungen x = -5 und y = 3 einsetzen und ausrechnen:
1x
-2x
So erhält mam als eine von unendlich vielen Lösungen:
1x
-2x
LGS Lösungsvielfalt erkennen
Beispiel:
Bestimme die Lösungsmenge:
Man erkennt, dass in der 1. Gleichung kein Koeffizient vor dem y ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach y umstellt:
|
= | ||
|
= | |
|
|
|
= |
|
|:( |
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das y
durch
|
= |
|
|
|
= |
|
|
|
= |
|
|:( |
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 1. Zeile ein:
y =
=
also
y = -5
Die Lösung des LGS ist damit: (-1|-5)
LGS Anwendungen
Beispiel:
Wenn man zu einer Zahl x das 6-fache einer anderen Zahl y addiert, so erhält man 27.
Wenn man aber vom 5-fachen von x 3 mal die Zahl y subtrahiert, so erhält man 3.
Bestimme x und y.
Aus den Sätzen der Aufgabenstellung ergibt sich somit folgendes lineare Gleichungssystem:
Man erkennt, dass in der 1. Gleichung kein Koeffizient vor dem x ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach x umstellt:
|
= |
|
|
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das x
durch (
|
= |
|
|
|
= |
|
|
|
= |
|
|
|
|
= |
|
|:( |
|
= |
|
Somit haben wir eine Lösung für y.
Diese setzen wir nun in die bereits umgestellte 1. Zeile ein:
x =
=
=
also
x = 3
Die Lösung des LGS ist damit: (3|4)
Bezogen auf die Anwendungsaufgabe ergibt sich nun als Lösung:
x (x-Wert): 3
y (y-Wert): 4