nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Erwartungswert, Standardabweichung best.

Beispiel:

Eine Zufallsgröße ist binomialverteilt mit den Parametern n = 61 und p = 0.45
Bestimme den Erwartungswert μ und die Standardabweichung σ von X .

Lösung einblenden

Für Erwartungswert und Standardabweichung bei der Binomialverteilung gibt es ja einfache Formeln, in die man einfach n = 61 und p = 0.45 einsetzen muss:

Erwartungswert E(X) = n ⋅ p = 61 ⋅ 0.45 = 27.45

Standardabweichung S(X) = n ⋅ p ⋅ (1-p) = 61 ⋅ 0.45 ⋅ 0.55 = 15.0975 3.89

n und p aus Erwartungswert und Standardabw.

Beispiel:

Bei einer Binomialverteilung sind der Erwartungswert μ = 60 und die Standardabweichung σ = 6 bekannt.

Bestimme die Parameter n (Stichprobengröße) und p (Einzelwahrscheinlichkeit) dieser Binomialverteilung.

Lösung einblenden

Für den Erwartungswert μ und die Standardabweichung σ gelten die Formeln:
(1) μ = n ⋅ p, also 60 = n ⋅ p
(2) σ = n p (1-p)

Setzt man nun 6 für σ und 60 für n ⋅ p in die 2. Formel ein, so erhält man:

6 = 60 (1-p)

(wenn man nun auf beiden Seiten quadriert braucht man anschließend keine Probe, weil wir es ausschließlich mit positiven Werten zu tun haben)

36 = 60 ⋅ (1-p) |:60

36 60 = 1-p

3 5 = 1-p

Also gilt p = 1 - 3 5 = 2 5

Jetzt kann man das n einfach durch Einsetzen von p in (1) bestimmen:

60 = n ⋅ 2 5 |⋅ 5 2

Somit gilt: n = 150