nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Bernoulli-Formel vervollständigen (einfach)

Beispiel:

Ein Basketballspieler mit einer Trefferquote von 40% wirft 60 mal auf den Korb. Gesucht ist die Wahrscheinlichkeit dass er dabei genau 44 mal trifft.

Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.

P(X = 44) = ( a b ) 0.4c de

Lösung einblenden

Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 60 Ebenen lösen.

Der Binomialkoeffizient ( a b ) vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 44 mal getroffen und 16 mal nicht getroffen wird. Davon gibt es ( n k ) , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=60 und b=44 sein.

Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser ( 60 44 ) Pfade an. Da ja in jedem Pfad 44 Treffer und 16 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
0.4440.616

Somit muss d = 0.6, sowie c = 44 und e = 16 sein.

Bernoulli-Formel vervollständigen

Beispiel:

Ein idealer Würfel wird 20 mal geworfen.

Für welches der aufgeführten Ereignisse könnte der Term P = ( 1 6 )20 + ( 20 a ) ( 1 6 )19 ( b 6 )c die Wahrscheinlichkeit angeben?

Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.

Lösung einblenden

Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es wird eine 6 gewürfelt)
Y : Anzahl der Nicht-Treffer (also es wird keine 6 gewürfelt)

Beim ersten Summand ( 1 6 )20 steht ja die gegebene Wahrscheinlichkeit in der Basis und die Gesamtanzahl n=20 in der Hochzahl. Dieser Teilterm gibt also die Wahrscheinlichkeit für 20 Treffer bzw. 0 Nicht-Treffer an, also P(X=20) bzw. P(Y=0).

Beim zweiten längeren Term erkennt man die Potenz ( 1 6 )19, bei dem die gegebene Wahrscheinlichkeit in der Basis steht. Weil 19 in der Hochzahl steht, muss das also die Wahrscheinlichkeit für 19 Treffer sein, also P(X=19) bzw. P(Y=1).

X: Treffer:
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Y: keine Treffer:
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Zusammengefasst ergibt sich also die Wahrscheinlichkeit P(X=20)+P(X=19)=P(X≥19) bzw. P(Y≤1)

Somit ist die gesuchte Option: Mindestens 19 mal wird eine 6 gewürfelt oder eben gleich bedeutend: Weniger als 2 mal wird keine 6 gewürfelt.

Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 5.

Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 20 Versuchen die Anzahl der "Nicht-Treffer" mit c = 1 bestimmen.

Die Anzahl der richtigen Pfade (mit 19 Treffer und 1 Nicht-Treffer) steht vorne im Binomialkoeffizient mit ( 20 19 ) , also ist a = 19 (hier ist auch a=1 möglich).

Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Eine faire Münze wird 28 mal geworfen.
Bestimme die Wahrscheinlichkeit des folgenden Ereignisses: Von den ersten 17 Versuchen landen höchstens 8 Versuche mit Zahl oben und von den restlichen Versuchen erscheint genau 6 mal "Zahl".

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 17 Durchgänge:

Die Zufallsvariable X gibt die Anzahl der Würfe bei denen die Zahl sichtbar ist an. X ist binomialverteilt mit n=17 und p=0.5.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.517 (X8) ≈ 0.5.

Analog betrachten wir nun die restlichen 11 Durchgänge:

Die Zufallsvariable Y gibt die Anzahl der Würfe bei denen die Zahl sichtbar ist an. Y ist binomialverteilt mit n=11 und p=0.5.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.511 (Y=6) ≈ 0.2256.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.517 (X8) P0.511 (Y=6) = 0.5 ⋅ 0.2256 ≈ 0.1128

zwei unabhängige Binom.

Beispiel:

Ein Biathlet hat beim Liegendschießen eine Trefferquote von 90% und im Stehen 87%. Beim Sprintwettbewerb muss er 5 mal liegend und 5 mal im Stehen schießen. Wie hoch ist die Wahrscheinlichkeit, dass er dabei mindestens 9 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von mindestens 9 kommen kann:

  • 4 mal Liegendschießen und 5 mal Stehendschießen
  • 5 mal Liegendschießen und 4 mal Stehendschießen
  • 5 mal Liegendschießen und 5 mal Stehendschießen

4 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 4 mal Liegendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.9.

P0.95 (X=4) = ( 5 4 ) 0.94 0.11 ≈ 0.3281
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.87.

P0.875 (X=5) = ( 5 5 ) 0.875 0.130 ≈ 0.4984
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.3281 ⋅ 0.4984 = 0.16352504

5 mal Liegendschießen und 4 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.9.

P0.95 (X=5) = ( 5 5 ) 0.95 0.10 ≈ 0.5905
Die Wahrscheinlichkeit für 4 mal Stehendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.87.

P0.875 (X=4) = ( 5 4 ) 0.874 0.131 ≈ 0.3724
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.5905 ⋅ 0.3724 = 0.2199022

5 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.9.

P0.95 (X=5) = ( 5 5 ) 0.95 0.10 ≈ 0.5905
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.87.

P0.875 (X=5) = ( 5 5 ) 0.875 0.130 ≈ 0.4984
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.5905 ⋅ 0.4984 = 0.2943052


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.1635 + 0.2199 + 0.2943 = 0.6777

Kombination Binom.-Baumdiagramm

Beispiel:

Ein 10-Klässler bekommt im Schulsport eine 1 als Teilnote, wenn er beim Basketball von 20 Korblegerversuchen mindestens 18 trifft. Weil der Sportlehrer ein nettes Weichei ist, darf der Schüler den Test noch ein zweites mal probieren, wenn er unzufrieden ist. Wie groß ist Wahrscheinlichkeit, dass der Schüler mit seiner Trefferquote von 87% eine 1 bekommt?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'genügend Treffer'.

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=20 und p=0.87.

Gesucht ist die Wahrscheinlichkeit für mindestens 18 Treffer bei 20 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.87,
also P0.8720 (X18) .

Dies berechnet man über die Gegenwahrscheinlichkeit: P0.8720 (X18) = 1 - P0.8720 (X17)

≈ 1 - 0.492 ≈ 0.508 (TI-Befehl: 1-binompdf(20,0.87,17))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'genügend Treffer' (p=0.508) und 'zu wenig'(p=0.492).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 1 mal 'genügend Treffer' oder 2 mal 'genügend Treffer'

EreignisP
genügend Treffer -> genügend Treffer0.258064
genügend Treffer -> zu wenig0.249936
zu wenig -> genügend Treffer0.249936
zu wenig -> zu wenig0.242064

Einzel-Wahrscheinlichkeiten: genügend Treffer: 0.508; zu wenig: 0.492;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'genügend Treffer'-'zu wenig' (P=0.249936)
'zu wenig'-'genügend Treffer' (P=0.249936)
'genügend Treffer'-'genügend Treffer' (P=0.258064)


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0.249936 + 0.249936 + 0.258064 = 0.757936


feste Reihenfolge im Binomialkontext

Beispiel:

Bei einem Glücksrad beträgt die Wahrscheinlichkeit für den grünen Bereich 30%. Es wird 10 mal gedreht.
Bestimme die Wahrscheinlichkeit, dass dabei genau 5 mal in den grünen Bereich gedreht wird und diese Drehungen unmittelbar hintereinander erfolgen (also ohne, dass dazwischen mal nicht in den grünen Bereich gedreht wird).

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 5 Treffer bei 10 Versuchen mit der Formel von Bernoulli berechnen: ( 10 5 ) 0.3 5 0.7 5

Dabei gibt ja 0.3 5 0.7 5 die Wahrscheinlichkeit eines bestimmten Pfads mit 5 Treffer und 5 Nicht-Treffern und ( 10 5 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 10 5 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXXXOOOOO

OXXXXXOOOO

OOXXXXXOOO

OOOXXXXXOO

OOOOXXXXXO

OOOOOXXXXX

Es gibt also genau 6 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 6 ⋅ 0.3 5 0.7 5 ≈ 0.0025