nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Bernoulli-Formel vervollständigen (einfach)

Beispiel:

Ein idealer Würfel wird 20 mal geworfen. Gesucht ist die Wahrscheinlichkeit dass genau 3 mal eine 6 geworfen wird.

Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.

P(X = 3) = ( a b ) ( 1 6 )c ( d 6 )e

Lösung einblenden

Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 20 Ebenen lösen.

Der Binomialkoeffizient ( a b ) vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 3 mal getroffen und 17 mal nicht getroffen wird. Davon gibt es ( n k ) , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=20 und b=3 sein.

Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser ( 20 3 ) Pfade an. Da ja in jedem Pfad 3 Treffer und 17 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
( 1 6 )3( 5 6 )17

Somit muss d = 5, sowie c = 3 und e = 17 sein.

Bernoulli-Formel vervollständigen

Beispiel:

Ein idealer Würfel wird 5 mal geworfen.

Für welches der aufgeführten Ereignisse könnte der Term P = 1 -( 1 6 )5 - ( 5 a ) ( 1 6 )4 ( b 6 )c die Wahrscheinlichkeit angeben?

Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.

Lösung einblenden

Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es wird eine 6 gewürfelt)
Y : Anzahl der Nicht-Treffer (also es wird keine 6 gewürfelt)

Beim ersten Summand nach dem "1-", also bei ( 1 6 )5 steht ja die gegebene Wahrscheinlichkeit in der Basis und die Gesamtanzahl n=5 in der Hochzahl. Dieser Teilterm gibt also die Wahrscheinlichkeit für 5 Treffer bzw. 0 Nicht-Treffer an, also P(X=5) bzw. P(Y=0).

Beim zweiten längeren Term erkennt man die Potenz ( 1 6 )4, bei dem die gegebene Wahrscheinlichkeit in der Basis steht. Weil 4 in der Hochzahl steht, muss das also die Wahrscheinlichkeit für 4 Treffer sein, also P(X=4) bzw. P(Y=1).

Diese beiden Teilwahrscheinlichkeiten werden von der 1 abgezogen, d.h. der gegebene Term gibt also die Wahrscheinlichkeit für das Gegenereignis an, also in diesem Fall, dass alle Möglichkeiten außer 5 und 4 Treffer möglich sind, also 3, 2, ..., kurz P(X≤3) bzw. P(Y≥2).

X: Treffer:
0
1
2
3
4
5

Y: keine Treffer:
5
4
3
2
1
0

Somit ist die gesuchte Option: Höchstens 3 mal wird eine 6 gewürfelt oder eben gleich bedeutend: Mehr als 1 mal wird keine 6 gewürfelt.

Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 5.

Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 5 Versuchen die Anzahl der "Nicht-Treffer" mit c = 1 bestimmen.

Die Anzahl der richtigen Pfade (mit 4 Treffer und 1 Nicht-Treffer) steht vorne im Binomialkoeffizient mit ( 5 4 ) , also ist a = 4 (hier ist auch a=1 möglich).

Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 15 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er von den ersten 4 Aufgaben keine einzige und von den restlichen Fragen nicht mehr als 2 richtig errät?

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 4 Durchgänge:

Die Zufallsgröße X gibt die Anzahl der zufällig richtig geratenen Antworten an. X ist binomialverteilt mit n=4 und p=0.25.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.254 (X=0) ≈ 0.3164.

Analog betrachten wir nun die restlichen 11 Durchgänge:

Die Zufallsgröße Y gibt die Anzahl der zufällig richtig geratenen Antworten an. Y ist binomialverteilt mit n=11 und p=0.25.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.2511 (Y2) ≈ 0.4552.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.254 (X=0) P0.2511 (Y2) = 0.3164 ⋅ 0.4552 ≈ 0.144

zwei unabhängige Binom.

Beispiel:

Ein Biathlet hat beim Liegendschießen eine Trefferquote von 90% und im Stehen 86%. Beim Sprintwettbewerb muss er 5 mal liegend und 5 mal im Stehen schießen. Wie hoch ist die Wahrscheinlichkeit, dass er dabei mindestens 9 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von mindestens 9 kommen kann:

  • 4 mal Liegendschießen und 5 mal Stehendschießen
  • 5 mal Liegendschießen und 4 mal Stehendschießen
  • 5 mal Liegendschießen und 5 mal Stehendschießen

4 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 4 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.9.

P0.95 (X=4) = ( 5 4 ) 0.94 0.11 ≈ 0.3281
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.86.

P0.865 (X=5) = ( 5 5 ) 0.865 0.140 ≈ 0.4704
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.3281 ⋅ 0.4704 = 0.15433824

5 mal Liegendschießen und 4 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.9.

P0.95 (X=5) = ( 5 5 ) 0.95 0.10 ≈ 0.5905
Die Wahrscheinlichkeit für 4 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.86.

P0.865 (X=4) = ( 5 4 ) 0.864 0.141 ≈ 0.3829
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.5905 ⋅ 0.3829 = 0.22610245

5 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.9.

P0.95 (X=5) = ( 5 5 ) 0.95 0.10 ≈ 0.5905
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.86.

P0.865 (X=5) = ( 5 5 ) 0.865 0.140 ≈ 0.4704
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.5905 ⋅ 0.4704 = 0.2777712


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.1543 + 0.2261 + 0.2778 = 0.6582

Kombination Binom.-Baumdiagramm

Beispiel:

Bei einer Fluggesellschaft treten 13% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 104 Tickets für ihr Flugzeug mit 98 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=104 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit für höchstens 98 Treffer bei 104 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.87, also P0.87104 (X98)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=104 und p=0.87.

P0.87104 (X98) = P0.87104 (X=0) + P0.87104 (X=1) + P0.87104 (X=2) +... + P0.87104 (X=98) = 0.99492948411455 ≈ 0.9949
(TI-Befehl: binomcdf(104,0.87,98))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.9949) und 'überbucht'(p=0.0051).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'

EreignisP
nicht überbucht -> nicht überbucht -> nicht überbucht0,9848
nicht überbucht -> nicht überbucht -> überbucht0,005
nicht überbucht -> überbucht -> nicht überbucht0,005
nicht überbucht -> überbucht -> überbucht0
überbucht -> nicht überbucht -> nicht überbucht0,005
überbucht -> nicht überbucht -> überbucht0
überbucht -> überbucht -> nicht überbucht0
überbucht -> überbucht -> überbucht0

Einzel-Wahrscheinlichkeiten: P("nicht überbucht")=0,9949; P("überbucht")=0,0051;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=0,9848)
  • 'nicht überbucht'-'nicht überbucht'-'überbucht' (P=0,005)
  • 'nicht überbucht'-'überbucht'-'nicht überbucht' (P=0,005)
  • 'überbucht'-'nicht überbucht'-'nicht überbucht' (P=0,005)

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0,9848 + 0,005 + 0,005 + 0,005 = 0,9999


feste Reihenfolge im Binomialkontext

Beispiel:

Ein Basketballspieler mit einer Trefferquote von 25% wirft 9 mal auf den Korb. Bestimme die Wahrscheinlichkeit, dass er bei diesen 9 Versuchen irgendwann einmal eine Serie mit 4 aufeinanderfolgenden Treffern hinlegt und bei allen anderen Versuchen nicht trifft.

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 4 Treffer bei 9 Versuchen mit der Formel von Bernoulli berechnen: ( 9 4 ) 0.25 4 0.75 5

Dabei gibt ja 0.25 4 0.75 5 die Wahrscheinlichkeit eines bestimmten Pfads mit 4 Treffer und 5 Nicht-Treffern und ( 9 4 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 9 4 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXXOOOOO

OXXXXOOOO

OOXXXXOOO

OOOXXXXOO

OOOOXXXXO

OOOOOXXXX

Es gibt also genau 6 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 6 ⋅ 0.25 4 0.75 5 ≈ 0.0056