Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Addieren, Subtrahieren (einfach)
Beispiel:
Berechne:
6,1 5,7
Am besten schreibt man die beiden Dezimalzahlen immer so untereinander, dass die Kommas direkt untereinander stehen.
Meistens kann man dann auch ohne schriftliches Addieren bzw. Subtrahieren das Ergebnis berechnen, indem man zunächst einfach mal die Zahlen ohne Komma im Kopf berechnet, also hier 61 57 = 4, und danach das Komma wieder an die richtige Stelle setzt:
| 6 | , | 1 | |
| - | 5 | , | 7 |
| 0 | , | 4 |
Addieren, Subtrahieren
Beispiel:
Berechne im Kopf: 0,05
Am einfachsten rechnet man die Aufgabe erst mit dem 100-fachen, so dass man mit ganzen Zahlen rechnen kann:
5
Danach müssen wir dieses Ergebnis eben wieder durch 100 teilen:
0,05
Addieren, Subtrahieren (mit Klammer)
Beispiel:
Berechne:
8,3 +
Zunächst lösen wir mal die Klammer auf: 8,3 +
Am besten schreibt man die beiden Dezimalzahlen immer so untereinander, dass die Kommas direkt untereinander stehen.
Meistens kann man dann auch ohne schriftliches Addieren bzw. Subtrahieren das Ergebnis berechnen, indem man zunächst einfach mal die Zahlen ohne Komma im Kopf berechnet,
also hier 83
| 8 | , | 3 | |
| - | 0 | , | 4 |
| 7 | , | 9 |
Addieren, Subtrahieren rückwärts
Beispiel:
Berechne:
⬜ + 1,05 = -8,65
⬜ + 1,05 = -8,65
Wenn man 1,05 zum Kästchen addiert, erhält man ja -8,65.
Also muss doch das Kästchen um 1,05 kleiner als -8,65 sein,
also -8,65 1,05 = ⬜.
Wir berechnen also: -8,65 1,05
Am besten schreibt man die beiden Dezimalzahlen immer so untereinander, dass die Kommas direkt untereinander stehen.
Meistens kann man dann auch ohne schriftliches Addieren bzw. Subtrahieren das Ergebnis berechnen, indem man zunächst einfach mal die Zahlen ohne Komma im Kopf berechnet,
also hier -865
| - | 8 | , | 6 | 5 | |
| - | 1 | , | 0 | 5 | |
| - | 9 | , | 7 |
Das Ergebnis ist also ⬜ = -9,7.
Zur Kontrolle können wir auch noch mal die ursprüngleiche Rechnung mit unser Lösung ⬜ = -9,7 nachrechnen:
| - | 9 | , | 7 | ||
| + | 1 | , | 0 | 5 | |
| - | 8 | , | 6 | 5 |
Add./Subtr. Rechenvorteile
Beispiel:
Berechne möglichst geschickt:
Wir suchen zwei Summanden, die gut zusammen passen und berechnen zuerst die Summe der beiden passenden Summanden:
=
= -10,8
Addieren/Subtrahieren verbal
Beispiel:
Addiere zur Zahl -1 die Differenz von -1,6 und -0,9.
Zuerst müssen wir den Text in einen mathematischen Term übersetzen:
-1 + (-1,6 -
= -1 + (-1,6 + 0,9)
= -1 +
= -1 - 0,7
= -1,7
Add./Subtr. rückwärts (komplexer)
Beispiel:
Berechne:
9,1 + (⬜ 4,5) = -0,5
9,1 + (⬜ 4,5) = -0,5
Am besten löst man als erstes die Klammer auf. Und weil ja ein " + " davor steht, kann man die Klammer einfach weglassen.
9,1 + ⬜ 4,5 = -0,5
Um die beiden Zahlen links vom Gleichheitszeichen miteinader zu verrechnen, sortieren wir die beiden Zahlen erst um:
9,1 4,5 + ⬜ = -0,5
4,6 + ⬜ = -0,5
Wenn man zu 4,6 das Kästchen addiert, erhält man ja -0,5.
Also gibt doch das Kästchen gerade das an, um wie viel 4,6 kleiner als -0,5 ist,
also ⬜ = -0,5
Wir berechnen also: -0,5
Zunächst lösen wir mal die Klammer auf: -5,1
= -5,1.
Runden
Beispiel:
Runde die Zahl 2720,838 auf Zehntel:
Wenn wir eine Zahl auf Zehntel runden, muss am Ende noch 1 Stelle nach dem Komma dastehen.
Also müssen wir auf die 2-te Stelle nach dem Komma schauen, ob wir auf- oder abrunden müssen.
Und weil da eine 3 steht, müssen wir abrunden zu 2720,8.
Die gesuchte Zahl ist also: 2720,8
Größen verrechnen (Dezimalzahlen)
Beispiel:
Berechne in km: 5,2 km + 382 m
Da ja das Ergebnis in km gesucht ist, wandeln wir erstmal die 382 m in km um:
382 m = km = 0,382 km
Jetzt können wir die beiden Größen verrechnen:
5,2 km + 382 m = 5,2 km + 0,382 km = 5,582 km
auf größere Einheit runden
Beispiel:
Runde auf cm²: 1,51 cm²
Wenn wir 1,51 cm² auf cm² runden sollen, müssen wir einfach auf die erste Stellen nach dem Komma achten.
Und weil da eine 5 steht, müssen wir eben aufrunden:
1,51 cm² auf cm² gerundt ist somit 2 cm²
