Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Addieren, Subtrahieren (einfach)
Beispiel:
Berechne:
10,6 0,5
Am besten schreibt man die beiden Dezimalzahlen immer so untereinander, dass die Kommas direkt untereinander stehen.
Meistens kann man dann auch ohne schriftliches Addieren bzw. Subtrahieren das Ergebnis berechnen, indem man zunächst einfach mal die Zahlen ohne Komma im Kopf berechnet, also hier 106 5 = 101, und danach das Komma wieder an die richtige Stelle setzt:
| 1 | 0 | , | 6 | |
| - | 0 | , | 5 | |
| 1 | 0 | , | 1 |
Addieren, Subtrahieren
Beispiel:
Berechne im Kopf: 0,7
Am einfachsten rechnet man die Aufgabe erst mit dem 100-fachen, so dass man mit ganzen Zahlen rechnen kann:
70
Danach müssen wir dieses Ergebnis eben wieder durch 100 teilen:
0,7
Addieren, Subtrahieren (mit Klammer)
Beispiel:
Berechne:
-3,7
Zunächst lösen wir mal die Klammer auf: -3,7
Am besten schreibt man die beiden Dezimalzahlen immer so untereinander, dass die Kommas direkt untereinander stehen.
Meistens kann man dann auch ohne schriftliches Addieren bzw. Subtrahieren das Ergebnis berechnen, indem man zunächst einfach mal die Zahlen ohne Komma im Kopf berechnet,
also hier -370 +
| - | 3 | , | 7 | ||
| + | 1 | 1 | , | 0 | 2 |
| 7 | , | 3 | 2 |
Addieren, Subtrahieren rückwärts
Beispiel:
Berechne:
⬜ 4,03 = -1,33
⬜ 4,03 = -1,33
Wenn man 4,03 vom Kästchen subtrahiert , erhält man ja -1,33.
Also muss doch das Kästchen um 4,03 größer als -1,33 sein,
also -1,33 + 4,03 = ⬜.
Wir berechnen also: -1,33 + 4,03
Am besten schreibt man die beiden Dezimalzahlen immer so untereinander, dass die Kommas direkt untereinander stehen.
Meistens kann man dann auch ohne schriftliches Addieren bzw. Subtrahieren das Ergebnis berechnen, indem man zunächst einfach mal die Zahlen ohne Komma im Kopf berechnet,
also hier -133 +
| - | 1 | , | 3 | 3 | |
| + | 4 | , | 0 | 3 | |
| 2 | , | 7 |
Das Ergebnis ist also ⬜ = 2,7.
Zur Kontrolle können wir auch noch mal die ursprüngleiche Rechnung mit unser Lösung ⬜ = 2,7 nachrechnen:
| 2 | , | 7 | |||
| - | 4 | , | 0 | 3 | |
| - | 1 | , | 3 | 3 |
Add./Subtr. Rechenvorteile
Beispiel:
Berechne möglichst geschickt:
Wir suchen zwei Summanden, die gut zusammen passen, ändern entsprechend die Reihenfolge und berechnen zuerst die Summe der beiden passenden Summanden:
=
=
= -14
Addieren/Subtrahieren verbal
Beispiel:
Addiere zur Differenz von 0,3 und -0,8 die Zahl 0,7.
Zuerst müssen wir den Text in einen mathematischen Term übersetzen:
(0,3 -
= (0,3 + 0,8) +
= 1,1 +
= 1,8
Add./Subtr. rückwärts (komplexer)
Beispiel:
Berechne:
7,1 + (4,9 ⬜) = 0,4
7,1 + (4,9 ⬜) = 0,4
Am besten löst man als erstes die Klammer auf. Und weil ja ein " + " davor steht, kann man die Klammer einfach weglassen.
7,1
12 ⬜ = 0,4
Wenn man von 12 das Kästchen subtrahiert, erhält man ja 0,4.
Also gibt doch das Kästchen gerade das an, um wie viel 12 größer als 0,4 ist,
also ⬜ = 12
Wir berechnen also: 12
= 11,6.
Runden
Beispiel:
Runde die Zahl 162,4338 auf Hundertstel:
Wenn wir eine Zahl auf Hundertstel runden, müssen auf Ende noch 2 Stellen nach dem Komma dastehen.
Also müssen wir auf die 3-te Stelle nach dem Komma schauen, ob wir auf- oder abrunden müssen.
Und weil da eine 3 steht, müssen wir abrunden zu 162,43.
Die gesuchte Zahl ist also: 162,43
Größen verrechnen (Dezimalzahlen)
Beispiel:
Berechne in km²: 8,8 km² - 307 ha
Da ja das Ergebnis in km² gesucht ist, wandeln wir erstmal die 307 ha in km² um:
307 ha = km² = 3,07 km²
Jetzt können wir die beiden Größen verrechnen:
8,8 km² - 307 ha = 8,8 km² - 3,07 km² = 5,73 km²
auf größere Einheit runden
Beispiel:
Runde auf cm: 92,3 mm
Da ja die Zahl auf cm gerundet werden soll, wandeln wir erstmal die 92,3 mm in cm um:
92,3 mm = cm = 9,23 cm
Um jetzt auf cm zu runden, müssen wir einfach auf die erste Stellen nach dem Komma achten.
Und weil da eine 2 steht, müssen wir eben abrunden:
92,3 mm auf cm gerundt ist somit 9 cm
