nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Addieren, Subtrahieren (einfach)

Beispiel:

Berechne:

2,8 + 10,9

Lösung einblenden

Am besten schreibt man die beiden Dezimalzahlen immer so untereinander, dass die Kommas direkt untereinander stehen.

Meistens kann man dann auch ohne schriftliches Addieren bzw. Subtrahieren das Ergebnis berechnen, indem man zunächst einfach mal die Zahlen ohne Komma im Kopf berechnet, also hier 28 + 109 = 137, und danach das Komma wieder an die richtige Stelle setzt:

  2,8
+10,9
 13,7

Addieren, Subtrahieren

Beispiel:

Berechne im Kopf: -0,07 +0,2

Lösung einblenden

Am einfachsten rechnet man die Aufgabe erst mit dem 100-fachen, so dass man mit ganzen Zahlen rechnen kann:
-7+20 = 13

Danach müssen wir dieses Ergebnis eben wieder durch 100 teilen:

-0,07 +0,2 = 0,13

Addieren, Subtrahieren (mit Klammer)

Beispiel:

Berechne:

0,1 + ( - 0,5 )

Lösung einblenden

Zunächst lösen wir mal die Klammer auf: 0,1 + ( - 0,5 ) = 0,1-0,5

Am besten schreibt man die beiden Dezimalzahlen immer so untereinander, dass die Kommas direkt untereinander stehen.

Meistens kann man dann auch ohne schriftliches Addieren bzw. Subtrahieren das Ergebnis berechnen, indem man zunächst einfach mal die Zahlen ohne Komma im Kopf berechnet, also hier 1 - 5 = -4, und danach das Komma wieder an die richtige Stelle setzt:

  0,1
- 0,5
 -0,4

Addieren, Subtrahieren rückwärts

Beispiel:

Berechne:

⬜ + 4,8 = -2,5

Lösung einblenden

⬜ + 4,8 = -2,5

Wenn man 4,8 zum Kästchen addiert, erhält man ja -2,5.
Also muss doch das Kästchen um 4,8 kleiner als -2,5 sein, also -2,5 - 4,8 = ⬜.

Wir berechnen also: -2,5 - 4,8

Am besten schreibt man die beiden Dezimalzahlen immer so untereinander, dass die Kommas direkt untereinander stehen.

Meistens kann man dann auch ohne schriftliches Addieren bzw. Subtrahieren das Ergebnis berechnen, indem man zunächst einfach mal die Zahlen ohne Komma im Kopf berechnet, also hier -25 - 48 = -73, und danach das Komma wieder an die richtige Stelle setzt:

 -2,5
- 4,8
 -7,3

Das Ergebnis ist also ⬜ = -7,3.

Zur Kontrolle können wir auch noch mal die ursprüngleiche Rechnung mit unser Lösung ⬜ = -7,3 nachrechnen:

 -7,3
+ 4,8
 -2,5

Add./Subtr. Rechenvorteile

Beispiel:

Berechne möglichst geschickt:

2,9 +1,7 -0,9 +3,3

Lösung einblenden

2,9 +1,7 -0,9 +3,3

Wir suchen zwei Summanden, die gut zusammen passen, ändern entsprechend die Reihenfolge und berechnen zuerst die Summe der beiden passenden Summanden:

= 2,9 -0,9 +1,7 +3,3

= 2 +5

= 7

Addieren/Subtrahieren verbal

Beispiel:

Addiere zur Differenz von -1,2 und 0,3 die Zahl 0,7.

Lösung einblenden

Zuerst müssen wir den Text in einen mathematischen Term übersetzen:

(-1,2 - 0,3) + 0,7

= -1,5 + 0,7

= -0,8

Add./Subtr. rückwärts (komplexer)

Beispiel:

Berechne:

2,3 -(⬜ -6,1) = 0,6

Lösung einblenden

2,3 -(⬜ -6,1) = 0,6

Am besten löst man als erstes die Klammer auf. Und weil ja ein " -" davor steht, muss man alle Vorzeichen in der Klammer umkehren.

2,3 -⬜ + 6,1 = 0,6

Um die beiden Zahlen links vom Gleichheitszeichen miteinader zu verrechnen, sortieren wir die beiden Zahlen erst um:

2,3 + 6,1 -⬜ = 0,6

8,4 -⬜ = 0,6

Wenn man von 8,4 das Kästchen subtrahiert, erhält man ja 0,6.
Also gibt doch das Kästchen gerade das an, um wie viel 8,4 größer als 0,6 ist, also ⬜ = 8,4 -0,6

Wir berechnen also: 8,4 -0,6

= 7,8.

Runden

Beispiel:

Runde die Zahl 63481,044 auf Zehntel:

Lösung einblenden

Wenn wir eine Zahl auf Zehntel runden, muss am Ende noch 1 Stelle nach dem Komma dastehen.

Also müssen wir auf die 2-te Stelle nach dem Komma schauen, ob wir auf- oder abrunden müssen.
Und weil da eine 4 steht, müssen wir abrunden zu 63481.

Die gesuchte Zahl ist also: 63481

Größen verrechnen (Dezimalzahlen)

Beispiel:

Berechne in dm: 3,9 dm + 6 cm

Lösung einblenden

Da ja das Ergebnis in dm gesucht ist, wandeln wir erstmal die 6 cm in dm um:

6 cm = 6 10 dm = 0,6 dm

Jetzt können wir die beiden Größen verrechnen:

3,9 dm + 6 cm = 3,9 dm + 0,6 dm = 4,5 dm

auf größere Einheit runden

Beispiel:

Runde auf m²: 307 dm²

Lösung einblenden

Da ja die Zahl auf m² gerundet werden soll, wandeln wir erstmal die 307 dm² in m² um:

307 dm² = 307 100 m² = 3,07 m²

Um jetzt auf m² zu runden, müssen wir einfach auf die erste Stellen nach dem Komma achten.

Und weil da eine 0 steht, müssen wir eben abrunden:

307 dm² auf m² gerundt ist somit 3 m²