nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Addieren, Subtrahieren (einfach)

Beispiel:

Berechne:

7,5 + 8,9

Lösung einblenden

Am besten schreibt man die beiden Dezimalzahlen immer so untereinander, dass die Kommas direkt untereinander stehen.

Meistens kann man dann auch ohne schriftliches Addieren bzw. Subtrahieren das Ergebnis berechnen, indem man zunächst einfach mal die Zahlen ohne Komma im Kopf berechnet, also hier 75 + 89 = 164, und danach das Komma wieder an die richtige Stelle setzt:

  7,5
+ 8,9
 16,4

Addieren, Subtrahieren

Beispiel:

Berechne im Kopf: 0,4 -0,3

Lösung einblenden

Am einfachsten rechnet man die Aufgabe erst mit dem 10-fachen, so dass man mit ganzen Zahlen rechnen kann:
4-3 = 1

Danach müssen wir dieses Ergebnis eben wieder durch 10 teilen:

0,4 -0,3 = 0,1

Addieren, Subtrahieren (mit Klammer)

Beispiel:

Berechne:

-11,6 -( - 0,9 )

Lösung einblenden

Zunächst lösen wir mal die Klammer auf: -11,6 -( - 0,9 ) = -11,6+0,9

Am besten schreibt man die beiden Dezimalzahlen immer so untereinander, dass die Kommas direkt untereinander stehen.

Meistens kann man dann auch ohne schriftliches Addieren bzw. Subtrahieren das Ergebnis berechnen, indem man zunächst einfach mal die Zahlen ohne Komma im Kopf berechnet, also hier -116 + 9 = -107, und danach das Komma wieder an die richtige Stelle setzt:

 -11,6
+  0,9
 -10,7

Addieren, Subtrahieren rückwärts

Beispiel:

Berechne:

-4,3 - ⬜ = -13,36

Lösung einblenden

-4,3 - ⬜ = -13,36

Wenn man von -4,3 das Kästchen subtrahiert, erhält man ja -13,36.
Also gibt doch das Kästchen gerade das an, um wie viel -4,3 größer als -13.36 ist, also ⬜ = -4,3 -( - 13,36 )

Wir berechnen also: -4,3 -( - 13,36 )

Zunächst lösen wir mal die Klammer auf: -4,3 -( - 13,36 ) = -4,3+13,36

Am besten schreibt man die beiden Dezimalzahlen immer so untereinander, dass die Kommas direkt untereinander stehen.

Meistens kann man dann auch ohne schriftliches Addieren bzw. Subtrahieren das Ergebnis berechnen, indem man zunächst einfach mal die Zahlen ohne Komma im Kopf berechnet, also hier -430 + 1336 = 906, und danach das Komma wieder an die richtige Stelle setzt:

 -4,3 
+13,36
  9,06

Das Ergebnis ist also ⬜ = 9,06.

Zur Kontrolle können wir auch noch mal die ursprüngleiche Rechnung mit unser Lösung ⬜ = 9,06 nachrechnen:

  -4,3 
-  9,06
 -13,36

Add./Subtr. Rechenvorteile

Beispiel:

Berechne möglichst geschickt:

-9,7 +0,7 +3,6 +1,4

Lösung einblenden

-9,7 +0,7 +3,6 +1,4

Wir suchen zwei Summanden, die gut zusammen passen und berechnen zuerst die Summe der beiden passenden Summanden:

= -9 +5

= -4

Addieren/Subtrahieren verbal

Beispiel:

Addiere zur Summe von -1,5 und -0,4 die Zahl -0,6.

Lösung einblenden

Zuerst müssen wir den Text in einen mathematischen Term übersetzen:

(-1,5 + ( - 0,4 )) + ( - 0,6 )

= (-1,5 - 0,4) + ( - 0,6 )

= -1,9 + ( - 0,6 )

= -1,9 - 0,6

= -2,5

Add./Subtr. rückwärts (komplexer)

Beispiel:

Berechne:

1,1 -(4,9 - ⬜) = -15,2

Lösung einblenden

1,1 -(4,9 - ⬜) = -15,2

Am besten löst man als erstes die Klammer auf. Und weil ja ein " -" davor steht, muss man alle Vorzeichen in der Klammer umkehren.

1,1 -4,9 + ⬜ = -15,2

-3,8 + ⬜ = -15,2

Wenn man zu -3,8 das Kästchen addiert, erhält man ja -15,2.
Also gibt doch das Kästchen gerade das an, um wie viel -3,8 kleiner als -15,2 ist, also ⬜ = -15,2 -( - 3,8 )

Wir berechnen also: -15,2 -( - 3,8 )

Zunächst lösen wir mal die Klammer auf: 4,9 -( - 15,2 ) = -3,8+15,2

= -11,4.

Runden

Beispiel:

Runde die Zahl 3170,168 auf Hundertstel:

Lösung einblenden

Wenn wir eine Zahl auf Hundertstel runden, müssen auf Ende noch 2 Stellen nach dem Komma dastehen.

Also müssen wir auf die 3-te Stelle nach dem Komma schauen, ob wir auf- oder abrunden müssen.
Und weil da eine 8 steht, müssen wir aufrunden zu 3170,17.

Die gesuchte Zahl ist also: 3170,17

Größen verrechnen (Dezimalzahlen)

Beispiel:

Berechne in m: 6,3 m + 400 cm

Lösung einblenden

Da ja das Ergebnis in m gesucht ist, wandeln wir erstmal die 400 cm in m um:

400 cm = 400 100 m = 4 m

Jetzt können wir die beiden Größen verrechnen:

6,3 m + 400 cm = 6,3 m + 4 m = 10,3 m

auf größere Einheit runden

Beispiel:

Runde auf g: 52,2 g

Lösung einblenden

Wenn wir 52,2 g auf g runden sollen, müssen wir einfach auf die erste Stellen nach dem Komma achten.

Und weil da eine 2 steht, müssen wir eben abrunden:

52,2 g auf g gerundt ist somit 52 g