nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Addieren, Subtrahieren (einfach)

Beispiel:

Berechne:

6,6 + 10,8

Lösung einblenden

Am besten schreibt man die beiden Dezimalzahlen immer so untereinander, dass die Kommas direkt untereinander stehen.

Meistens kann man dann auch ohne schriftliches Addieren bzw. Subtrahieren das Ergebnis berechnen, indem man zunächst einfach mal die Zahlen ohne Komma im Kopf berechnet, also hier 66 + 108 = 174, und danach das Komma wieder an die richtige Stelle setzt:

  6,6
+10,8
 17,4

Addieren, Subtrahieren

Beispiel:

Berechne im Kopf: -0,2 -0,6

Lösung einblenden

Am einfachsten rechnet man die Aufgabe erst mit dem 10-fachen, so dass man mit ganzen Zahlen rechnen kann:
-2-6 = -8

Danach müssen wir dieses Ergebnis eben wieder durch 10 teilen:

-0,2 -0,6 = -0,8

Addieren, Subtrahieren (mit Klammer)

Beispiel:

Berechne:

10,6 + ( - 9,08 )

Lösung einblenden

Zunächst lösen wir mal die Klammer auf: 10,6 + ( - 9,08 ) = 10,6-9,08

Am besten schreibt man die beiden Dezimalzahlen immer so untereinander, dass die Kommas direkt untereinander stehen.

Meistens kann man dann auch ohne schriftliches Addieren bzw. Subtrahieren das Ergebnis berechnen, indem man zunächst einfach mal die Zahlen ohne Komma im Kopf berechnet, also hier 1060 - 908 = 152, und danach das Komma wieder an die richtige Stelle setzt:

 10,6 
- 9,08
  1,52

Addieren, Subtrahieren rückwärts

Beispiel:

Berechne:

-0,7 + ⬜ = -10,8

Lösung einblenden

-0,7 + ⬜ = -10,8

Wenn man zu -0,7 das Kästchen addiert, erhält man ja -10,8.
Also gibt doch das Kästchen gerade das an, um wie viel -0,7 kleiner als -10.8 ist, also ⬜ = -10,8 -( - 0,7 )

Wir berechnen also: -10,8 -( - 0,7 )

Zunächst lösen wir mal die Klammer auf: -0,7 -( - 0,7 ) = -10,8+0,7

Am besten schreibt man die beiden Dezimalzahlen immer so untereinander, dass die Kommas direkt untereinander stehen.

Meistens kann man dann auch ohne schriftliches Addieren bzw. Subtrahieren das Ergebnis berechnen, indem man zunächst einfach mal die Zahlen ohne Komma im Kopf berechnet, also hier -108 + 7 = -101, und danach das Komma wieder an die richtige Stelle setzt:

 -10,8
+  0,7
 -10,1

Das Ergebnis ist also ⬜ = -10,1.

Zur Kontrolle können wir auch noch mal die ursprüngleiche Rechnung mit unser Lösung ⬜ = -10,1 nachrechnen:

  -0,7
+-10,1
 -10,8

Add./Subtr. Rechenvorteile

Beispiel:

Berechne möglichst geschickt:

10,5 -0,5 +0,52

Lösung einblenden

10,5 -0,5 +0,52

Wir suchen zwei Summanden, die gut zusammen passen und berechnen zuerst die Summe der beiden passenden Summanden:

= 10 +0,52

= 10,52

Addieren/Subtrahieren verbal

Beispiel:

Addiere zur Summe von 1,9 und 1 die Zahl -0,8.

Lösung einblenden

Zuerst müssen wir den Text in einen mathematischen Term übersetzen:

(1,9 + 1) + ( - 0,8 )

= 2,9 + ( - 0,8 )

= 2,9 - 0,8

= 2,1

Add./Subtr. rückwärts (komplexer)

Beispiel:

Berechne:

3,8 -(⬜ -9,3) = 17,3

Lösung einblenden

3,8 -(⬜ -9,3) = 17,3

Am besten löst man als erstes die Klammer auf. Und weil ja ein " -" davor steht, muss man alle Vorzeichen in der Klammer umkehren.

3,8 -⬜ + 9,3 = 17,3

Um die beiden Zahlen links vom Gleichheitszeichen miteinader zu verrechnen, sortieren wir die beiden Zahlen erst um:

3,8 + 9,3 -⬜ = 17,3

13,1 -⬜ = 17,3

Wenn man von 13,1 das Kästchen subtrahiert, erhält man ja 17,3.
Also gibt doch das Kästchen gerade das an, um wie viel 13,1 größer als 17,3 ist, also ⬜ = 13,1 -17,3

Wir berechnen also: 13,1 -17,3

= -4,2.

Runden

Beispiel:

Runde die Zahl 2189,7708 auf Hundertstel:

Lösung einblenden

Wenn wir eine Zahl auf Hundertstel runden, müssen auf Ende noch 2 Stellen nach dem Komma dastehen.

Also müssen wir auf die 3-te Stelle nach dem Komma schauen, ob wir auf- oder abrunden müssen.
Und weil da eine 0 steht, müssen wir abrunden zu 2189,77.

Die gesuchte Zahl ist also: 2189,77

Größen verrechnen (Dezimalzahlen)

Beispiel:

Berechne in cm²: 4,8 cm² - 474 mm²

Lösung einblenden

Da ja das Ergebnis in cm² gesucht ist, wandeln wir erstmal die 474 mm² in cm² um:

474 mm² = 474 100 cm² = 4,74 cm²

Jetzt können wir die beiden Größen verrechnen:

4,8 cm² - 474 mm² = 4,8 cm² - 4,74 cm² = 0,06 cm²

auf größere Einheit runden

Beispiel:

Runde auf €: 250 ct

Lösung einblenden

Da ja die Zahl auf € gerundet werden soll, wandeln wir erstmal die 250 ct in € um:

250 ct = 250 100 € = 2,5 €

Um jetzt auf € zu runden, müssen wir einfach auf die erste Stellen nach dem Komma achten.

Und weil da eine 5 steht, müssen wir eben aufrunden:

250 ct auf € gerundt ist somit 3 €