Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Addieren, Subtrahieren (einfach)
Beispiel:
Berechne:
3,3 + 5,3
Am besten schreibt man die beiden Dezimalzahlen immer so untereinander, dass die Kommas direkt untereinander stehen.
Meistens kann man dann auch ohne schriftliches Addieren bzw. Subtrahieren das Ergebnis berechnen, indem man zunächst einfach mal die Zahlen ohne Komma im Kopf berechnet, also hier 33 + 53 = 86, und danach das Komma wieder an die richtige Stelle setzt:
| 3 | , | 3 | |
| + | 5 | , | 3 |
| 8 | , | 6 |
Addieren, Subtrahieren
Beispiel:
Berechne im Kopf: -0,01
Am einfachsten rechnet man die Aufgabe erst mit dem 100-fachen, so dass man mit ganzen Zahlen rechnen kann:
-1
Danach müssen wir dieses Ergebnis eben wieder durch 100 teilen:
-0,01
Addieren, Subtrahieren (mit Klammer)
Beispiel:
Berechne:
-3,1 +
Zunächst lösen wir mal die Klammer auf: -3,1 +
Am besten schreibt man die beiden Dezimalzahlen immer so untereinander, dass die Kommas direkt untereinander stehen.
Meistens kann man dann auch ohne schriftliches Addieren bzw. Subtrahieren das Ergebnis berechnen, indem man zunächst einfach mal die Zahlen ohne Komma im Kopf berechnet,
also hier -31
| - | 3 | , | 1 | |
| - | 6 | , | 2 | |
| - | 9 | , | 3 |
Addieren, Subtrahieren rückwärts
Beispiel:
Berechne:
⬜ + 11,07 = 4,37
⬜ + 11,07 = 4,37
Wenn man 11,07 zum Kästchen addiert, erhält man ja 4,37.
Also muss doch das Kästchen um 11,07 kleiner als 4,37 sein,
also 4,37 11,07 = ⬜.
Wir berechnen also: 4,37 11,07
Am besten schreibt man die beiden Dezimalzahlen immer so untereinander, dass die Kommas direkt untereinander stehen.
Meistens kann man dann auch ohne schriftliches Addieren bzw. Subtrahieren das Ergebnis berechnen, indem man zunächst einfach mal die Zahlen ohne Komma im Kopf berechnet,
also hier 437
| 4 | , | 3 | 7 | ||
| - | 1 | 1 | , | 0 | 7 |
| - | 6 | , | 7 |
Das Ergebnis ist also ⬜ = -6,7.
Zur Kontrolle können wir auch noch mal die ursprüngleiche Rechnung mit unser Lösung ⬜ = -6,7 nachrechnen:
| - | 6 | , | 7 | ||
| + | 1 | 1 | , | 0 | 7 |
| 4 | , | 3 | 7 |
Add./Subtr. Rechenvorteile
Beispiel:
Berechne möglichst geschickt:
Wir suchen zwei Summanden, die gut zusammen passen, ändern entsprechend die Reihenfolge und berechnen zuerst die Summe der beiden passenden Summanden:
=
=
= -4
Addieren/Subtrahieren verbal
Beispiel:
Addiere zur Differenz von -1 und -0,9 die Zahl -0,9.
Zuerst müssen wir den Text in einen mathematischen Term übersetzen:
(-1 -
= (-1 + 0,9) +
= -0,1 +
= -0,1 - 0,9
= -1
Add./Subtr. rückwärts (komplexer)
Beispiel:
Berechne:
8,4 + (⬜ + 3,5) = 7,5
8,4 + (⬜ + 3,5) = 7,5
Am besten löst man als erstes die Klammer auf. Und weil ja ein " + " davor steht, kann man die Klammer einfach weglassen.
8,4 + ⬜ + 3,5 = 7,5
Um die beiden Zahlen links vom Gleichheitszeichen miteinader zu verrechnen, sortieren wir die beiden Zahlen erst um:
8,4 + 3,5 + ⬜ = 7,5
11,9 + ⬜ = 7,5
Wenn man zu 11,9 das Kästchen addiert, erhält man ja 7,5.
Also gibt doch das Kästchen gerade das an, um wie viel 11,9 kleiner als 7,5 ist,
also ⬜ = 7,5
Wir berechnen also: 7,5
= -4,4.
Runden
Beispiel:
Runde die Zahl 4,765 auf Hundertstel:
Wenn wir eine Zahl auf Hundertstel runden, müssen auf Ende noch 2 Stellen nach dem Komma dastehen.
Also müssen wir auf die 3-te Stelle nach dem Komma schauen, ob wir auf- oder abrunden müssen.
Und weil da eine 4 steht, müssen wir abrunden zu 4,77.
Die gesuchte Zahl ist also: 4,77
Größen verrechnen (Dezimalzahlen)
Beispiel:
Berechne in cm²: 7,3 cm² + 221 mm²
Da ja das Ergebnis in cm² gesucht ist, wandeln wir erstmal die 221 mm² in cm² um:
221 mm² = cm² = 2,21 cm²
Jetzt können wir die beiden Größen verrechnen:
7,3 cm² + 221 mm² = 7,3 cm² + 2,21 cm² = 9,51 cm²
auf größere Einheit runden
Beispiel:
Runde auf m³: 991 dm³
Da ja die Zahl auf m³ gerundet werden soll, wandeln wir erstmal die 991 dm³ in m³ um:
991 dm³ = m³ = 0,991 m³
Um jetzt auf m³ zu runden, müssen wir einfach auf die erste Stellen nach dem Komma achten.
Und weil da eine 9 steht, müssen wir eben aufrunden:
991 dm³ auf m³ gerundt ist somit 1 m³
