nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 2 Versuchen mindestens einmal zu treffen bei 88% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.88 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 2 Durchgängen, also ist 1-P=0.12 die Wahrscheinlichkeit für keinen Treffer bei bei 2 Durchgängen.

Es gilt also 0.12=(1-p)2

=>1-p=0.122 ≈ 0.3464

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.3464 ≈ 0.6536

Binomialvert. mit variablem n (mind)

Beispiel:

In einer Urne ist der Anteil der grünen Kugeln 15%. Wie oft muss mindestens gezogen werden ( - natürlich mit Zurücklegen - ), so dass mit mind. 60% Wahrscheinlichkeit 33 oder mehr grüne Kugeln gezogen werden?

Lösung einblenden
nP(X≤k)
......
2220.4488
2230.4377
2240.4267
2250.4159
2260.4051
2270.3944
......

Die Zufallsgröße X gibt Anzahl der gezogenen grünen Kugeln an und ist im Idealfall binomialverteilt mit p = 0.15 und variablem n.

Es muss gelten: P0.15n (X33) ≥ 0.6

Weil man ja aber P0.15n (X33) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.15n (X33) = 1 - P0.15n (X32) ≥ 0.6 |+ P0.15n (X32) - 0.6

0.4 ≥ P0.15n (X32) oder P0.15n (X32) ≤ 0.4

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 15% der Versuche mit einem Treffer. Also müssten dann doch bei 33 0.15 ≈ 220 Versuchen auch ungefähr 33 (≈0.15⋅220) Treffer auftreten.

Wir berechnen also mit unserem ersten n=220:
P0.15n (X32) ≈ 0.4711 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.4 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.4 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=227 die gesuchte Wahrscheinlichkeit unter 0.4 ist.

n muss also mindestens 227 sein, damit P0.15n (X32) ≤ 0.4 oder eben P0.15n (X33) ≥ 0.6 gilt.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einer Urne sind 40 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 50% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?

Lösung einblenden
Anzahl der schwarzen Kugeln in der UrneP('mindestens eine schwarze Kugel')
......
31- 37 40 36 39 =1- 111 130 ≈0.1462
41- 36 40 35 39 =1- 21 26 ≈0.1923
51- 35 40 34 39 =1- 119 156 ≈0.2372
61- 34 40 33 39 =1- 187 260 ≈0.2808
71- 33 40 32 39 =1- 44 65 ≈0.3231
81- 32 40 31 39 =1- 124 195 ≈0.3641
91- 31 40 30 39 =1- 31 52 ≈0.4038
101- 30 40 29 39 =1- 29 52 ≈0.4423
111- 29 40 28 39 =1- 203 390 ≈0.4795
121- 28 40 27 39 =1- 63 130 ≈0.5154
......

Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.

Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= 37 40 36 39 (beim ersten Zufallsversuch 37 40 und beim zweiten 36 39 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1- 37 40 36 39

Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(40-x)/40*(39-x)/39)

In dieser Tabelle erkennen wir, dass erstmals bei 12 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte Wahrscheinlichkeit über 50% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 12 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Eine Firma, die Überraschungseier vertreibt, möchte als Werbegag manche Eier mit Superfiguren bestücken. Aus Angst vor Kundenbeschwerden sollen in einer 6er-Packung mit der mindestens 75% Wahrscheinlichkeit 2 oder mehr Superfiguren enthalten sein. Wenn in jedes n-te Ei eine Superfigur rein soll, wie groß darf dann n höchstens sein?

Lösung einblenden
pP(X≥2)=1-P(X≤1)
......
1 2 0.8906
1 3 0.6488
......

Die Zufallsgröße X gibt die Anzahl der Eier mit einer Superfigur an. X ist binomialverteilt mit n=6 und unbekanntem Parameter p.

Es muss gelten: Pp6 (X2) = 1- Pp6 (X1) = 0.75 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp6 (X2) ('mindestens 2 Treffer bei 6 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Als Startwert wählen wir als p= 1 2 .

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 1 2 die gesuchte Wahrscheinlichkeit über 75% bleibt.
Der Nenner, also die das wievielte Ei eine Superfigur enthält, darf also höchstens 2 sein.