Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
p gesucht (n-te Wurzel)
Beispiel:
Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 4 Versuchen mindestens einmal zu treffen bei 96% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)
P=0.96 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.04 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.
Es gilt also 0.04=(1-p)4
=>1-p= ≈ 0.4472
Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.4472 ≈ 0.5528
Binomialvert. mit variablem n (höchst.)
Beispiel:
In einer Urne ist der Anteil der grünen Kugeln 50%. Wie oft darf höchstens gezogen werden ( - natürlich mit Zurücklegen - ), so dass mit mind. 70% Wahrscheinlichkeit nicht mehr als 33 grüne Kugeln gezogen werden?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 62 | 0.7371 |
| 63 | 0.6927 |
| 64 | 0.646 |
| 65 | 0.5978 |
| 66 | 0.5489 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der gezogenen grünen Kugeln an und ist im Idealfall binomialverteilt mit p = 0.5 und variablem n.
Es muss gelten: ≥ 0.7
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 50% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 66 Versuchen auch ungefähr 33 (≈0.5⋅66) Treffer auftreten.
Wir berechnen also mit unserem ersten n=66:
≈ 0.5489
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=62 die gesuchte Wahrscheinlichkeit über 70% ist.
gesuchtes p (ohne zurücklegen)
Beispiel:
Bei einer Tombola sind 45 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 95% liegen. Wieviel der 45 Lose dürfen höchstens Nieten sein?
| Anzahl der Nieten im Lostopf | P('höchstens eine Niete') |
|---|---|
| ... | ... |
| 5 | 1-⋅=1-≈0.9899 |
| 6 | 1-⋅=1-≈0.9848 |
| 7 | 1-⋅=1-≈0.9788 |
| 8 | 1-⋅=1-≈0.9717 |
| 9 | 1-⋅=1-≈0.9636 |
| 10 | 1-⋅=1-≈0.9545 |
| 11 | 1-⋅=1-≈0.9444 |
| ... | ... |
Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.
Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist): Wenn beispielsweise die Anzahl der Nieten im Lostopf=5 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= ⋅ (beim ersten Zufallsversuch und beim zweiten weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1-⋅
Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=5. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/45*(x-1)/44)
In dieser Tabelle erkennen wir, dass letztmals bei 10 als 'Anzahl der Nieten im Lostopf' die gesuchte
Wahrscheinlichkeit über 95% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 10 sein.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
Eine Schulklasse möchte fürs Schulfest ein Glücksrad entwickeln. Aus optischen Gründen sollen dabei alle Sektoren gleich groß sein. Einer davon soll für den Hauptpreis stehen. Hierfür haben sie insgesamt 5 Preise gesammelt. Sie erwarten, dass das Glücksrad beim Schulfest 50 mal gespielt wird. Mit wie vielen Sektoren müssen sie ihr Glückrad mindestens bestücken damit die 5 Hauptpreise mit einer Wahrscheinlichkeit von mindestens 75% für die 50 Durchgänge reichen?
| p | P(X≤5) |
|---|---|
| ... | ... |
| 0.6161 | |
| 0.6991 | |
| 0.7647 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Hauptpreise an. X ist binomialverteilt mit n=50 und unbekanntem Parameter p.
Es muss gelten: =0.75 (oder mehr)
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit ('höchstens 5 Treffer bei 50 Versuchen') bei diesen Nennern wird (siehe Tabelle links)
Um einen günstigen Startwert zu finden wählen wir mal als p=. Mit diesem p wäre ja 5=⋅50 der Erwartungswert und somit irgendwo in der nähe von 50%. Wenn wir nun p= mit erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= einen brauchbaren Einstiegswert für dieses Probieren erhalten.
In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 75% steigt.
Der Nenner, also die Anzahl der Sektoren des Glücksrad, muss also mindestens
12 sein.
