nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Bei einer Tombola werden elektronische Lose so verkauft, dass bei jedem Los jede Preiskategorie immer die gleiche Gewinnwahrscheinlichkeit hat. Aus Marketinggründen wird dabei auch ein Vierer-Pack angeboten. Dabei wird geworben, dass mit einer Wahrscheinlichkeit von 76% bei jedem Viererpack mindestens ein hochwertiger Preis dabei ist. Wie hoch muss man die Einzelwahrscheinlichkeit für einen hochwertigen Preis setzen, damit dieses Versprechen eingehalten wird?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.76 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.24 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.

Es gilt also 0.24=(1-p)4

=>1-p=0.244 ≈ 0.6999

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.6999 ≈ 0.3001

Binomialvert. mit variablem n (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,3.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 50% Wahrscheinlichkeit, höchstens 21 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
700.5586
710.5275
720.4966
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.3 und variablem n.

Es muss gelten: P0.3n (X21) ≥ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 30% der Versuche mit einem Treffer. Also müssten dann doch bei 21 0.3 ≈ 70 Versuchen auch ungefähr 21 (≈0.3⋅70) Treffer auftreten.

Wir berechnen also mit unserem ersten n=70:
P0.3n (X21) ≈ 0.5586 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=71 die gesuchte Wahrscheinlichkeit über 50% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

Bei einer Tombola sind 60 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 80% liegen. Wieviel der 60 Lose dürfen höchstens Nieten sein?

Lösung einblenden
Anzahl der Nieten im LostopfP('höchstens eine Niete')
......
71- 7 60 6 59 =1- 7 590 ≈0.9881
81- 8 60 7 59 =1- 14 885 ≈0.9842
91- 9 60 8 59 =1- 6 295 ≈0.9797
101- 10 60 9 59 =1- 3 118 ≈0.9746
111- 11 60 10 59 =1- 11 354 ≈0.9689
121- 12 60 11 59 =1- 11 295 ≈0.9627
131- 13 60 12 59 =1- 13 295 ≈0.9559
141- 14 60 13 59 =1- 91 1770 ≈0.9486
151- 15 60 14 59 =1- 7 118 ≈0.9407
161- 16 60 15 59 =1- 4 59 ≈0.9322
171- 17 60 16 59 =1- 68 885 ≈0.9232
181- 18 60 17 59 =1- 51 590 ≈0.9136
191- 19 60 18 59 =1- 57 590 ≈0.9034
201- 20 60 19 59 =1- 19 177 ≈0.8927
211- 21 60 20 59 =1- 7 59 ≈0.8814
221- 22 60 21 59 =1- 77 590 ≈0.8695
231- 23 60 22 59 =1- 253 1770 ≈0.8571
241- 24 60 23 59 =1- 46 295 ≈0.8441
251- 25 60 24 59 =1- 10 59 ≈0.8305
261- 26 60 25 59 =1- 65 354 ≈0.8164
271- 27 60 26 59 =1- 117 590 ≈0.8017
281- 28 60 27 59 =1- 63 295 ≈0.7864
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.

Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Nieten im Lostopf=7 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= 7 60 6 59 (beim ersten Zufallsversuch 7 60 und beim zweiten 6 59 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1- 7 60 6 59

Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=7. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/60*(x-1)/59)

In dieser Tabelle erkennen wir, dass letztmals bei 27 als 'Anzahl der Nieten im Lostopf' die gesuchte Wahrscheinlichkeit über 80% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 27 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 3 rote und einige schwarze Kugeln. Es soll 27 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 70% unter den 27 gezogenen Kugeln nicht mehr als 21 schwarze sind?

Lösung einblenden
pP(X≤21)
......
3 6 0.9992
4 7 0.9928
5 8 0.9713
6 9 0.9281
7 10 0.8642
8 11 0.786
9 12 0.7011
10 13 0.6159
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=27 und unbekanntem Parameter p.

Es muss gelten: Pp27 (X21) = 0.7 (oder mehr)

Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 3 größer sein muss als der Zähler.

Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit Pp27 (X21) ('höchstens 21 Treffer bei 27 Versuchen') auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p= 3 6 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 9 12 die gesuchte Wahrscheinlichkeit über 70% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 9 sein.