Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
p gesucht (n-te Wurzel)
Beispiel:
Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 2 Versuchen mindestens einmal zu treffen bei 97% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)
P=0.97 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 2 Durchgängen, also ist 1-P=0.03 die Wahrscheinlichkeit für keinen Treffer bei bei 2 Durchgängen.
Es gilt also 0.03=(1-p)2
=>1-p= ≈ 0.1732
Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.1732 ≈ 0.8268
Binomialvert. mit variablem n (mind)
Beispiel:
Bei einem Glücksrad, ist die Wahrscheinlichkeit in den grünen Bereich zu kommen p=0,7. Wie oft muss man dieses Glückrad mindestens drehen, um mit einer Wahrscheinlichkeit von mindestens 80% 23 mal oder öfters in den grünen Bereich zu kommen?
n | P(X≤k) |
---|---|
... | ... |
33 | 0.4007 |
34 | 0.3068 |
35 | 0.2271 |
36 | 0.1627 |
... | ... |
Die Zufallsgröße X gibt Anzahl der Drehungen, die im grünen Bereich landen an und ist im Idealfall binomialverteilt mit p = 0.7 und variablem n.
Es muss gelten: ≥ 0.8
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.8 |+ - 0.8
0.2 ≥ oder ≤ 0.2
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 70% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 33 Versuchen auch ungefähr 23 (≈0.7⋅33) Treffer auftreten.
Wir berechnen also mit unserem ersten n=33:
≈ 0.4007
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.2 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.2 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=36 die gesuchte Wahrscheinlichkeit unter 0.2 ist.
n muss also mindestens 36 sein, damit ≤ 0.2 oder eben ≥ 0.8 gilt.
gesuchtes p (ohne zurücklegen)
Beispiel:
In einem Kartenstapel mit 21 Karten sind auch einige Joker-Karten drin. Wenn man 2 Karten gleichzeitig aus dem Stapel zieht, soll mit 80%-iger Wahrscheinlichkeit höchstens eine Jokerkarte dabei sein liegen. Wie viele Jokerkarten dürfen maximal in dem Stapel drin sein?
Anzahl der Joker im Kartenstapel | P('höchstens einen Joker') |
---|---|
... | ... |
3 | 1-⋅=1-≈0.9857 |
4 | 1-⋅=1-≈0.9714 |
5 | 1-⋅=1-≈0.9524 |
6 | 1-⋅=1-≈0.9286 |
7 | 1-⋅=1-≈0.9 |
8 | 1-⋅=1-≈0.8667 |
9 | 1-⋅=1-≈0.8286 |
10 | 1-⋅=1-≈0.7857 |
... | ... |
Gesucht ist die Wahrscheinlichkeit von 'höchstens einen Joker'.
Das Gegenereignis ('genau zwei Joker') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist): Wenn beispielsweise die Anzahl der Joker im Kartenstapel=3 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Joker'= ⋅ (beim ersten Zufallsversuch und beim zweiten weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens einen Joker'=1-⋅
Wir erhöhen nun schrittweise immer die Anzahl der Joker im Kartenstapel um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens einen Joker' auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/21*(x-1)/20)
In dieser Tabelle erkennen wir, dass letztmals bei 9 als 'Anzahl der Joker im Kartenstapel' die gesuchte
Wahrscheinlichkeit über 80% auftritt.
Die gesuchte Anzahl der Joker im Kartenstapel darf also höchstens 9 sein.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
In einer Urne sind 2 rote und einige schwarze Kugeln. Es soll 12 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den 12 gezogenen Kugeln nicht mehr als 3 rote sind?
p | P(X≤3) |
---|---|
... | ... |
0.6488 | |
0.7325 | |
0.7946 | |
... | ... |
Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe rot an. X ist binomialverteilt mit n=12 und unbekanntem Parameter p.
Es muss gelten: =0.75 (oder mehr)
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 2 sein muss, da es ja genau 2 günstige Fälle gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit ('höchstens 3 Treffer bei 12 Versuchen') bei diesen Nennern wird (siehe Tabelle links)
Um einen günstigen Startwert zu finden wählen wir mal als p=. Mit diesem p wäre ja 3=⋅12 der Erwartungswert und somit irgendwo in der nähe von 50%. Wenn wir nun p= mit erweitern (so dass wir auf den Zähler 2 kommen) und den Nenner abrunden, müssten wir mit p= einen brauchbaren Einstiegswert für dieses Probieren erhalten.
In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 75% steigt.
Der Nenner, also die Anzahl aller Kugeln, muss also mindestens
10 sein.
Also werden noch 8 zusätzliche Optionen (also schwarze Kugeln) benötigt.