nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 2 Versuchen mindestens einmal zu treffen bei 97% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.97 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 2 Durchgängen, also ist 1-P=0.03 die Wahrscheinlichkeit für keinen Treffer bei bei 2 Durchgängen.

Es gilt also 0.03=(1-p)2

=>1-p=0.032 ≈ 0.1732

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.1732 ≈ 0.8268

Binomialvert. mit variablem n (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,7.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 60% Wahrscheinlichkeit, höchstens 35 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
490.6388
500.5532
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.7 und variablem n.

Es muss gelten: P0.7n (X35) ≥ 0.6

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 70% der Versuche mit einem Treffer. Also müssten dann doch bei 35 0.7 ≈ 50 Versuchen auch ungefähr 35 (≈0.7⋅50) Treffer auftreten.

Wir berechnen also mit unserem ersten n=50:
P0.7n (X35) ≈ 0.5532 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=49 die gesuchte Wahrscheinlichkeit über 60% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einer Urne sind 45 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 50% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?

Lösung einblenden
Anzahl der schwarzen Kugeln in der UrneP('mindestens eine schwarze Kugel')
......
31- 42 45 41 44 =1- 287 330 ≈0.1303
41- 41 45 40 44 =1- 82 99 ≈0.1717
51- 40 45 39 44 =1- 26 33 ≈0.2121
61- 39 45 38 44 =1- 247 330 ≈0.2515
71- 38 45 37 44 =1- 703 990 ≈0.2899
81- 37 45 36 44 =1- 37 55 ≈0.3273
91- 36 45 35 44 =1- 7 11 ≈0.3636
101- 35 45 34 44 =1- 119 198 ≈0.399
111- 34 45 33 44 =1- 17 30 ≈0.4333
121- 33 45 32 44 =1- 8 15 ≈0.4667
131- 32 45 31 44 =1- 248 495 ≈0.499
141- 31 45 30 44 =1- 31 66 ≈0.5303
......

Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.

Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= 42 45 41 44 (beim ersten Zufallsversuch 42 45 und beim zweiten 41 44 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1- 42 45 41 44

Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(45-x)/45*(44-x)/44)

In dieser Tabelle erkennen wir, dass erstmals bei 14 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte Wahrscheinlichkeit über 50% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 14 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 5 rote und einige schwarze Kugeln. Es soll 27 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 70% unter den 27 gezogenen Kugeln nicht mehr als 21 schwarze sind?

Lösung einblenden
pP(X≤21)
......
5 10 0.9992
6 11 0.9967
7 12 0.99
8 13 0.9772
9 14 0.9567
10 15 0.9281
11 16 0.8919
12 17 0.8495
13 18 0.8024
14 19 0.7524
15 20 0.7011
16 21 0.6497
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=27 und unbekanntem Parameter p.

Es muss gelten: Pp27 (X21) = 0.7 (oder mehr)

Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 5 größer sein muss als der Zähler.

Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit Pp27 (X21) ('höchstens 21 Treffer bei 27 Versuchen') auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p= 5 10 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 15 20 die gesuchte Wahrscheinlichkeit über 70% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 15 sein.