nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

An einem Glücksrad wird 2 mal gedreht. Die Wahrscheinlichkeit, dass bei allen 2 Durchgängen die Farbe 'blau' kommt, ist 0,1. Wie groß muss bei diesem Glücksrad die Wahrscheinlichkeit für das blaue Feld sein?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.1 ist die Wahrscheinlichkeit, dass 2 mal das Ereignis mit der Wahrscheinlichkeit p eintritt.

Es gilt also 0.1=p2

=>p=0.12 ≈ 0.3162

Binomialvert. mit variablem n (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,25.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 70% Wahrscheinlichkeit, höchstens 37 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
1390.7089
1400.6915
1410.6738
1420.6558
1430.6376
1440.6191
1450.6005
1460.5818
1470.5629
1480.544
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.25 und variablem n.

Es muss gelten: P0.25n (X37) ≥ 0.7

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 25% der Versuche mit einem Treffer. Also müssten dann doch bei 37 0.25 ≈ 148 Versuchen auch ungefähr 37 (≈0.25⋅148) Treffer auftreten.

Wir berechnen also mit unserem ersten n=148:
P0.25n (X37) ≈ 0.544 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=139 die gesuchte Wahrscheinlichkeit über 70% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einer Urne sind 30 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?

Lösung einblenden
Anzahl der schwarzen Kugeln in der UrneP('mindestens eine schwarze Kugel')
......
31- 27 30 26 29 =1- 117 145 ≈0.1931
41- 26 30 25 29 =1- 65 87 ≈0.2529
51- 25 30 24 29 =1- 20 29 ≈0.3103
61- 24 30 23 29 =1- 92 145 ≈0.3655
71- 23 30 22 29 =1- 253 435 ≈0.4184
81- 22 30 21 29 =1- 77 145 ≈0.469
91- 21 30 20 29 =1- 14 29 ≈0.5172
101- 20 30 19 29 =1- 38 87 ≈0.5632
111- 19 30 18 29 =1- 57 145 ≈0.6069
121- 18 30 17 29 =1- 51 145 ≈0.6483
131- 17 30 16 29 =1- 136 435 ≈0.6874
141- 16 30 15 29 =1- 8 29 ≈0.7241
151- 15 30 14 29 =1- 7 29 ≈0.7586
......

Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.

Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= 27 30 26 29 (beim ersten Zufallsversuch 27 30 und beim zweiten 26 29 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1- 27 30 26 29

Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(30-x)/30*(29-x)/29)

In dieser Tabelle erkennen wir, dass erstmals bei 15 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte Wahrscheinlichkeit über 75% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 15 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 3 rote und einige schwarze Kugeln. Es soll 25 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 90% unter den 25 gezogenen Kugeln nicht mehr als 21 schwarze sind?

Lösung einblenden
pP(X≤21)
......
4 7 0.999
5 8 0.9951
6 9 0.9851
7 10 0.9668
8 11 0.9394
9 12 0.9038
10 13 0.8617
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=25 und unbekanntem Parameter p.

Es muss gelten: Pp25 (X21) = 0.9 (oder mehr)

Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 3 größer sein muss als der Zähler.

Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit Pp25 (X21) ('höchstens 21 Treffer bei 25 Versuchen') auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p= 4 7 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 9 12 die gesuchte Wahrscheinlichkeit über 90% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 9 sein.