nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

An einem Glücksrad wird 3 mal gedreht. Die Wahrscheinlichkeit, dass bei allen 3 Durchgängen die Farbe 'blau' kommt, ist 0,5. Wie groß muss bei diesem Glücksrad die Wahrscheinlichkeit für das blaue Feld sein?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.5 ist die Wahrscheinlichkeit, dass 3 mal das Ereignis mit der Wahrscheinlichkeit p eintritt.

Es gilt also 0.5=p3

=>p=0.53 ≈ 0.7937

Binomialvert. mit variablem n (mind)

Beispiel:

Wie oft muss man mit einem normalen Würfel mindestens würfeln, um mit einer Wahrscheinlichkeit von mindestens 50% 36 oder mehr 6er zu erzielen?

Lösung einblenden
nP(X≤k)
......
2130.5082
2140.496
2150.4838
2160.4717
......

Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p = 1 6 und variablem n.

Es muss gelten: P 1 6 n (X36) ≥ 0.5

Weil man ja aber P 1 6 n (X36) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P 1 6 n (X36) = 1 - P 1 6 n (X35) ≥ 0.5 |+ P 1 6 n (X35) - 0.5

0.5 ≥ P 1 6 n (X35) oder P 1 6 n (X35) ≤ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 1 6 der Versuche mit einem Treffer. Also müssten dann doch bei 36 1 6 ≈ 216 Versuchen auch ungefähr 36 (≈ 1 6 ⋅216) Treffer auftreten.

Wir berechnen also mit unserem ersten n=216:
P 1 6 n (X35) ≈ 0.4717 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=214 die gesuchte Wahrscheinlichkeit unter 0.5 ist.

n muss also mindestens 214 sein, damit P 1 6 n (X35) ≤ 0.5 oder eben P 1 6 n (X36) ≥ 0.5 gilt.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einer Urne sind 45 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 50% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?

Lösung einblenden
Anzahl der schwarzen Kugeln in der UrneP('mindestens eine schwarze Kugel')
......
31- 42 45 41 44 =1- 287 330 ≈0.1303
41- 41 45 40 44 =1- 82 99 ≈0.1717
51- 40 45 39 44 =1- 26 33 ≈0.2121
61- 39 45 38 44 =1- 247 330 ≈0.2515
71- 38 45 37 44 =1- 703 990 ≈0.2899
81- 37 45 36 44 =1- 37 55 ≈0.3273
91- 36 45 35 44 =1- 7 11 ≈0.3636
101- 35 45 34 44 =1- 119 198 ≈0.399
111- 34 45 33 44 =1- 17 30 ≈0.4333
121- 33 45 32 44 =1- 8 15 ≈0.4667
131- 32 45 31 44 =1- 248 495 ≈0.499
141- 31 45 30 44 =1- 31 66 ≈0.5303
......

Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.

Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= 42 45 41 44 (beim ersten Zufallsversuch 42 45 und beim zweiten 41 44 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1- 42 45 41 44

Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(45-x)/45*(44-x)/44)

In dieser Tabelle erkennen wir, dass erstmals bei 14 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte Wahrscheinlichkeit über 50% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 14 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Eine Schulklasse möchte fürs Schulfest ein Glücksrad entwickeln. Aus optischen Gründen sollen dabei alle Sektoren gleich groß sein. Einer davon soll für den Hauptpreis stehen. Hierfür haben sie insgesamt 7 Preise gesammelt. Sie erwarten, dass das Glücksrad beim Schulfest 90 mal gespielt wird. Mit wie vielen Sektoren müssen sie ihr Glückrad mindestens bestücken damit die 7 Hauptpreise mit einer Wahrscheinlichkeit von mindestens 85% für die 90 Durchgänge reichen?

Lösung einblenden
pP(X≤7)
......
1 12 0.5215
1 13 0.6107
1 14 0.6864
1 15 0.7489
1 16 0.7996
1 17 0.8403
1 18 0.8727
......

Die Zufallsgröße X gibt die Anzahl der Hauptpreise an. X ist binomialverteilt mit n=90 und unbekanntem Parameter p.

Es muss gelten: Pp90 (X7) =0.85 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp90 (X7) ('höchstens 7 Treffer bei 90 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 7 90 . Mit diesem p wäre ja 7= 7 90 ⋅90 der Erwartungswert und somit Pp90 (X7) irgendwo in der nähe von 50%. Wenn wir nun p= 7 90 mit 1 7 erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= 1 12 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 1 18 die gesuchte Wahrscheinlichkeit über 85% steigt.
Der Nenner, also die Anzahl der Sektoren des Glücksrad, muss also mindestens 18 sein.