Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
p gesucht (n-te Wurzel)
Beispiel:
An einem Glücksrad wird 3 mal gedreht. Die Wahrscheinlichkeit, dass bei allen 3 Durchgängen die Farbe 'blau' kommt, ist 0,1. Wie groß muss bei diesem Glücksrad die Wahrscheinlichkeit für das blaue Feld sein?
(Bitte auf 3 Stellen runden!)
P=0.1 ist die Wahrscheinlichkeit, dass 3 mal das Ereignis mit der Wahrscheinlichkeit p eintritt.
Es gilt also 0.1=p3
=>p= ≈ 0.4642
Binomialvert. mit variablem n (höchst.)
Beispiel:
Wie oft darf man mit einem normalen Würfel höchstens würfeln, um mit einer Wahrscheinlichkeit von mindestens 70% nicht mehr als 40 6er zu würfeln?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 225 | 0.7091 |
| 226 | 0.6986 |
| 227 | 0.688 |
| 228 | 0.6772 |
| 229 | 0.6664 |
| 230 | 0.6554 |
| 231 | 0.6444 |
| 232 | 0.6332 |
| 233 | 0.622 |
| 234 | 0.6107 |
| 235 | 0.5994 |
| 236 | 0.588 |
| 237 | 0.5765 |
| 238 | 0.5651 |
| 239 | 0.5536 |
| 240 | 0.5421 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p = und variablem n.
Es muss gelten: ≥ 0.7
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden der Versuche mit einem Treffer.
Also müssten dann doch bei ≈ 240 Versuchen auch ungefähr 40
(≈
Wir berechnen also mit unserem ersten n=240:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=225 die gesuchte Wahrscheinlichkeit über 70% ist.
gesuchtes p (ohne zurücklegen)
Beispiel:
In einer Urne sind 30 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?
| Anzahl der schwarzen Kugeln in der Urne | P('mindestens eine schwarze Kugel') |
|---|---|
| ... | ... |
| 3 | 1- |
| 4 | 1- |
| 5 | 1- |
| 6 | 1- |
| 7 | 1- |
| 8 | 1- |
| 9 | 1- |
| 10 | 1- |
| 11 | 1- |
| 12 | 1- |
| 13 | 1- |
| 14 | 1- |
| 15 | 1- |
| ... | ... |
Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.
Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'=
Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(30-x)/30*(29-x)/29)
In dieser Tabelle erkennen wir, dass erstmals bei 15 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte
Wahrscheinlichkeit über 75% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 15 sein.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
Eine Firma, die Überraschungseier vertreibt, möchte als Werbegag manche Eier mit Superfiguren bestücken. Aus Angst vor Kundenbeschwerden sollen in einer 5er-Packung mit der mindestens 75% Wahrscheinlichkeit 2 oder mehr Superfiguren enthalten sein. Wenn in jedes n-te Ei eine Superfigur rein soll, wie groß darf dann n höchstens sein?
| p | P(X≥2)=1-P(X≤1) |
|---|---|
| ... | ... |
| 0.8125 | |
| 0.5391 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Eier mit einer Superfigur an. X ist binomialverteilt mit n=5 und unbekanntem Parameter p.
Es muss gelten:
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit
Als Startwert wählen wir als p=
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p=
Der Nenner, also die das wievielte Ei eine Superfigur enthält, darf also höchstens
2 sein.
