Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
p gesucht (n-te Wurzel)
Beispiel:
Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 2 Versuchen mindestens einmal zu treffen bei 93% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)
P=0.93 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 2 Durchgängen, also ist 1-P=0.07 die Wahrscheinlichkeit für keinen Treffer bei bei 2 Durchgängen.
Es gilt also 0.07=(1-p)2
=>1-p= ≈ 0.2646
Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.2646 ≈ 0.7354
Binomialvert. mit variablem n (mind)
Beispiel:
Wie oft muss man mit einem normalen Würfel mindestens würfeln, um mit einer Wahrscheinlichkeit von mindestens 50% 31 oder mehr 6er zu erzielen?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 183 | 0.5088 |
| 184 | 0.4957 |
| 185 | 0.4825 |
| 186 | 0.4695 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p = und variablem n.
Es muss gelten: ≥ 0.5
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.5 |+ - 0.5
0.5 ≥ oder ≤ 0.5
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden der Versuche mit einem Treffer.
Also müssten dann doch bei ≈ 186 Versuchen auch ungefähr 31
(≈
Wir berechnen also mit unserem ersten n=186:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=184 die gesuchte Wahrscheinlichkeit unter 0.5 ist.
n muss also mindestens 184 sein, damit
gesuchtes p (ohne zurücklegen)
Beispiel:
In einem Kartenstapel mit 20 Karten sind auch einige Joker-Karten drin. Wenn man 2 Karten gleichzeitig aus dem Stapel zieht, soll mit 80%-iger Wahrscheinlichkeit höchstens eine Jokerkarte dabei sein liegen. Wie viele Jokerkarten dürfen maximal in dem Stapel drin sein?
| Anzahl der Joker im Kartenstapel | P('höchstens einen Joker') |
|---|---|
| ... | ... |
| 3 | 1- |
| 4 | 1- |
| 5 | 1- |
| 6 | 1- |
| 7 | 1- |
| 8 | 1- |
| 9 | 1- |
| 10 | 1- |
| ... | ... |
Gesucht ist die Wahrscheinlichkeit von 'höchstens einen Joker'.
Das Gegenereignis ('genau zwei Joker') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Joker im Kartenstapel=3 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Joker'=
Wir erhöhen nun schrittweise immer die Anzahl der Joker im Kartenstapel um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens einen Joker' auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/20*(x-1)/19)
In dieser Tabelle erkennen wir, dass letztmals bei 9 als 'Anzahl der Joker im Kartenstapel' die gesuchte
Wahrscheinlichkeit über 80% auftritt.
Die gesuchte Anzahl der Joker im Kartenstapel darf also höchstens 9 sein.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
In einer Urne sind 4 rote und einige schwarze Kugeln. Es soll 13 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 80% unter den 13 gezogenen Kugeln nicht mehr als 6 rote sind?
| p | P(X≤6) |
|---|---|
| ... | ... |
| 0.5 | |
| 0.659 | |
| 0.7712 | |
| 0.8466 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe rot an. X ist binomialverteilt mit n=13 und unbekanntem Parameter p.
Es muss gelten:
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 4 sein muss, da es ja genau 4 günstige Fälle gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit
Um einen günstigen Startwert zu finden wählen wir mal als p=
In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p=
Der Nenner, also die Anzahl aller Kugeln, muss also mindestens
11 sein.
Also werden noch 7 zusätzliche Optionen (also schwarze Kugeln) benötigt.
