nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Bei einer Tombola werden elektronische Lose so verkauft, dass bei jedem Los jede Preiskategorie immer die gleiche Gewinnwahrscheinlichkeit hat. Aus Marketinggründen wird dabei auch ein Vierer-Pack angeboten. Dabei wird geworben, dass mit einer Wahrscheinlichkeit von 88% bei jedem Viererpack mindestens ein hochwertiger Preis dabei ist. Wie hoch muss man die Einzelwahrscheinlichkeit für einen hochwertigen Preis setzen, damit dieses Versprechen eingehalten wird?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.88 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.12 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.

Es gilt also 0.12=(1-p)4

=>1-p=0.124 ≈ 0.5886

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.5886 ≈ 0.4114

Binomialvert. mit variablem n (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,75.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 60% Wahrscheinlichkeit, höchstens 24 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
310.6883
320.5675
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.75 und variablem n.

Es muss gelten: P0.75n (X24) ≥ 0.6

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 75% der Versuche mit einem Treffer. Also müssten dann doch bei 24 0.75 ≈ 32 Versuchen auch ungefähr 24 (≈0.75⋅32) Treffer auftreten.

Wir berechnen also mit unserem ersten n=32:
P0.75n (X24) ≈ 0.5675 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=31 die gesuchte Wahrscheinlichkeit über 60% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einem Kartenstapel mit 22 Karten sind auch einige Joker-Karten drin. Wenn man 2 Karten gleichzeitig aus dem Stapel zieht, soll mit 95%-iger Wahrscheinlichkeit höchstens eine Jokerkarte dabei sein liegen. Wie viele Jokerkarten dürfen maximal in dem Stapel drin sein?

Lösung einblenden
Anzahl der Joker im KartenstapelP('höchstens einen Joker')
......
31- 3 22 2 21 =1- 1 77 ≈0.987
41- 4 22 3 21 =1- 2 77 ≈0.974
51- 5 22 4 21 =1- 10 231 ≈0.9567
61- 6 22 5 21 =1- 5 77 ≈0.9351
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens einen Joker'.

Das Gegenereignis ('genau zwei Joker') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Joker im Kartenstapel=3 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Joker'= 3 22 2 21 (beim ersten Zufallsversuch 3 22 und beim zweiten 2 21 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens einen Joker'=1- 3 22 2 21

Wir erhöhen nun schrittweise immer die Anzahl der Joker im Kartenstapel um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens einen Joker' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/22*(x-1)/21)

In dieser Tabelle erkennen wir, dass letztmals bei 5 als 'Anzahl der Joker im Kartenstapel' die gesuchte Wahrscheinlichkeit über 95% auftritt.
Die gesuchte Anzahl der Joker im Kartenstapel darf also höchstens 5 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 2 rote und einige schwarze Kugeln. Es soll 11 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den 11 gezogenen Kugeln nicht mehr als 3 rote sind?

Lösung einblenden
pP(X≤3)
......
2 7 0.6114
2 8 0.7133
2 9 0.7864
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe rot an. X ist binomialverteilt mit n=11 und unbekanntem Parameter p.

Es muss gelten: Pp11 (X3) =0.75 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 2 sein muss, da es ja genau 2 günstige Fälle gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp11 (X3) ('höchstens 3 Treffer bei 11 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 3 11 . Mit diesem p wäre ja 3= 3 11 ⋅11 der Erwartungswert und somit Pp11 (X3) irgendwo in der nähe von 50%. Wenn wir nun p= 3 11 mit 2 3 erweitern (so dass wir auf den Zähler 2 kommen) und den Nenner abrunden, müssten wir mit p= 2 7 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 2 9 die gesuchte Wahrscheinlichkeit über 75% steigt.
Der Nenner, also die Anzahl aller Kugeln, muss also mindestens 9 sein.

Also werden noch 7 zusätzliche Optionen (also schwarze Kugeln) benötigt.