Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
p gesucht (n-te Wurzel)
Beispiel:
Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 3 Versuchen mindestens einmal zu treffen bei 99% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)
P=0.99 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 3 Durchgängen, also ist 1-P=0.01 die Wahrscheinlichkeit für keinen Treffer bei bei 3 Durchgängen.
Es gilt also 0.01=(1-p)3
=>1-p= ≈ 0.2154
Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.2154 ≈ 0.7846
Binomialvert. mit variablem n (höchst.)
Beispiel:
In einer Urne ist der Anteil der grünen Kugeln 65%. Wie oft darf höchstens gezogen werden ( - natürlich mit Zurücklegen - ), so dass mit mind. 60% Wahrscheinlichkeit nicht mehr als 22 grüne Kugeln gezogen werden?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 33 | 0.643 |
| 34 | 0.55 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der gezogenen grünen Kugeln an und ist im Idealfall binomialverteilt mit p = 0.65 und variablem n.
Es muss gelten: ≥ 0.6
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 65% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 34 Versuchen auch ungefähr 22 (≈0.65⋅34) Treffer auftreten.
Wir berechnen also mit unserem ersten n=34:
≈ 0.55
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=33 die gesuchte Wahrscheinlichkeit über 60% ist.
gesuchtes p (ohne zurücklegen)
Beispiel:
In einem Kartenstapel mit 27 Karten sind auch einige Joker-Karten drin. Wenn man 2 Karten gleichzeitig aus dem Stapel zieht, soll mit 90%-iger Wahrscheinlichkeit höchstens eine Jokerkarte dabei sein liegen. Wie viele Jokerkarten dürfen maximal in dem Stapel drin sein?
| Anzahl der Joker im Kartenstapel | P('höchstens einen Joker') |
|---|---|
| ... | ... |
| 4 | 1-⋅=1-≈0.9829 |
| 5 | 1-⋅=1-≈0.9715 |
| 6 | 1-⋅=1-≈0.9573 |
| 7 | 1-⋅=1-≈0.9402 |
| 8 | 1-⋅=1-≈0.9202 |
| 9 | 1-⋅=1-≈0.8974 |
| ... | ... |
Gesucht ist die Wahrscheinlichkeit von 'höchstens einen Joker'.
Das Gegenereignis ('genau zwei Joker') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist): Wenn beispielsweise die Anzahl der Joker im Kartenstapel=4 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Joker'= ⋅ (beim ersten Zufallsversuch und beim zweiten weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens einen Joker'=1-⋅
Wir erhöhen nun schrittweise immer die Anzahl der Joker im Kartenstapel um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens einen Joker' auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=4. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/27*(x-1)/26)
In dieser Tabelle erkennen wir, dass letztmals bei 8 als 'Anzahl der Joker im Kartenstapel' die gesuchte
Wahrscheinlichkeit über 90% auftritt.
Die gesuchte Anzahl der Joker im Kartenstapel darf also höchstens 8 sein.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
In einer Urne sind 4 rote und einige schwarze Kugeln. Es soll 28 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 80% unter den 28 gezogenen Kugeln nicht mehr als 24 schwarze sind?
| p | P(X≤24) |
|---|---|
| ... | ... |
| 0.9993 | |
| 0.9976 | |
| 0.9939 | |
| 0.9873 | |
| 0.9771 | |
| 0.963 | |
| 0.9449 | |
| 0.923 | |
| 0.8978 | |
| 0.8699 | |
| 0.8398 | |
| 0.8082 | |
| 0.7756 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=28 und unbekanntem Parameter p.
Es muss gelten: = 0.8 (oder mehr)
Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 4 größer sein muss als der Zähler.
Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit ('höchstens 24 Treffer bei 28 Versuchen') auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=. (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 80% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 17 sein.
