nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

An einem Glücksrad wird 2 mal gedreht. Die Wahrscheinlichkeit, dass bei allen 2 Durchgängen die Farbe 'blau' kommt, ist 0,1. Wie groß muss bei diesem Glücksrad die Wahrscheinlichkeit für das blaue Feld sein?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.1 ist die Wahrscheinlichkeit, dass 2 mal das Ereignis mit der Wahrscheinlichkeit p eintritt.

Es gilt also 0.1=p2

=>p=0.12 ≈ 0.3162

Binomialvert. mit variablem n (mind)

Beispiel:

Ein Lebensmittelhersteller wirbt damit, dass sich in jeder 7. Verpackung eine Überraschung befindet. Wie viele Packungen muss man mindestens kaufen, um mit einer Wahrscheinlichkeit von mindestens 90% mindestens 3 Überraschung(en) zu erhalten.

Lösung einblenden
nP(X≤k)
......
310.1604
320.1449
330.1307
340.1178
350.106
360.0953
......

Die Zufallsgröße X gibt die Anzahl der Überraschungen an und ist im Idealfall binomialverteilt mit p = 1 7 und variablem n.

Es muss gelten: P 1 7 n (X3) ≥ 0.9

Weil man ja aber P 1 7 n (X3) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P 1 7 n (X3) = 1 - P 1 7 n (X2) ≥ 0.9 |+ P 1 7 n (X2) - 0.9

0.1 ≥ P 1 7 n (X2) oder P 1 7 n (X2) ≤ 0.1

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 1 7 der Versuche mit einem Treffer. Also müssten dann doch bei 3 1 7 ≈ 21 Versuchen auch ungefähr 3 (≈ 1 7 ⋅21) Treffer auftreten.

Wir berechnen also mit unserem ersten n=21:
P 1 7 n (X2) ≈ 0.4058 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.1 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.1 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=36 die gesuchte Wahrscheinlichkeit unter 0.1 ist.

n muss also mindestens 36 sein, damit P 1 7 n (X2) ≤ 0.1 oder eben P 1 7 n (X3) ≥ 0.9 gilt.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einer Urne sind 45 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?

Lösung einblenden
Anzahl der schwarzen Kugeln in der UrneP('mindestens eine schwarze Kugel')
......
31- 42 45 41 44 =1- 287 330 ≈0.1303
41- 41 45 40 44 =1- 82 99 ≈0.1717
51- 40 45 39 44 =1- 26 33 ≈0.2121
61- 39 45 38 44 =1- 247 330 ≈0.2515
71- 38 45 37 44 =1- 703 990 ≈0.2899
81- 37 45 36 44 =1- 37 55 ≈0.3273
91- 36 45 35 44 =1- 7 11 ≈0.3636
101- 35 45 34 44 =1- 119 198 ≈0.399
111- 34 45 33 44 =1- 17 30 ≈0.4333
121- 33 45 32 44 =1- 8 15 ≈0.4667
131- 32 45 31 44 =1- 248 495 ≈0.499
141- 31 45 30 44 =1- 31 66 ≈0.5303
151- 30 45 29 44 =1- 29 66 ≈0.5606
161- 29 45 28 44 =1- 203 495 ≈0.5899
171- 28 45 27 44 =1- 21 55 ≈0.6182
181- 27 45 26 44 =1- 39 110 ≈0.6455
191- 26 45 25 44 =1- 65 198 ≈0.6717
201- 25 45 24 44 =1- 10 33 ≈0.697
211- 24 45 23 44 =1- 46 165 ≈0.7212
221- 23 45 22 44 =1- 23 90 ≈0.7444
231- 22 45 21 44 =1- 7 30 ≈0.7667
......

Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.

Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= 42 45 41 44 (beim ersten Zufallsversuch 42 45 und beim zweiten 41 44 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1- 42 45 41 44

Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(45-x)/45*(44-x)/44)

In dieser Tabelle erkennen wir, dass erstmals bei 23 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte Wahrscheinlichkeit über 75% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 23 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Eine Firma, die Überraschungseier vertreibt, möchte als Werbegag manche Eier mit Superfiguren bestücken. Aus Angst vor Kundenbeschwerden sollen in einer 10er-Packung mit der mindestens 50% Wahrscheinlichkeit 1 oder mehr Superfiguren enthalten sein. Wenn in jedes n-te Ei eine Superfigur rein soll, wie groß darf dann n höchstens sein?

Lösung einblenden
pP(X≥1)=1-P(X≤0)
......
1 2 0.999
1 3 0.9827
1 4 0.9437
1 5 0.8926
1 6 0.8385
1 7 0.7859
1 8 0.7369
1 9 0.6921
1 10 0.6513
1 11 0.6145
1 12 0.5811
1 13 0.5509
1 14 0.5234
1 15 0.4984
......

Die Zufallsgröße X gibt die Anzahl der Eier mit einer Superfigur an. X ist binomialverteilt mit n=10 und unbekanntem Parameter p.

Es muss gelten: Pp10 (X1) = 1- Pp10 (X0) = 0.5 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp10 (X1) ('mindestens 1 Treffer bei 10 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Als Startwert wählen wir als p= 1 2 .

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 1 14 die gesuchte Wahrscheinlichkeit über 50% bleibt.
Der Nenner, also die das wievielte Ei eine Superfigur enthält, darf also höchstens 14 sein.