nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 4 Versuchen mindestens einmal zu treffen bei 96% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.96 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.04 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.

Es gilt also 0.04=(1-p)4

=>1-p=0.044 ≈ 0.4472

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.4472 ≈ 0.5528

Binomialvert. mit variablem n (höchst.)

Beispiel:

In einer Urne ist der Anteil der grünen Kugeln 50%. Wie oft darf höchstens gezogen werden ( - natürlich mit Zurücklegen - ), so dass mit mind. 70% Wahrscheinlichkeit nicht mehr als 33 grüne Kugeln gezogen werden?

Lösung einblenden
nP(X≤k)
......
620.7371
630.6927
640.646
650.5978
660.5489
......

Die Zufallsgröße X gibt Anzahl der gezogenen grünen Kugeln an und ist im Idealfall binomialverteilt mit p = 0.5 und variablem n.

Es muss gelten: P0.5n (X33) ≥ 0.7

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 50% der Versuche mit einem Treffer. Also müssten dann doch bei 33 0.5 ≈ 66 Versuchen auch ungefähr 33 (≈0.5⋅66) Treffer auftreten.

Wir berechnen also mit unserem ersten n=66:
P0.5n (X33) ≈ 0.5489 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=62 die gesuchte Wahrscheinlichkeit über 70% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

Bei einer Tombola sind 45 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 95% liegen. Wieviel der 45 Lose dürfen höchstens Nieten sein?

Lösung einblenden
Anzahl der Nieten im LostopfP('höchstens eine Niete')
......
51- 5 45 4 44 =1- 1 99 ≈0.9899
61- 6 45 5 44 =1- 1 66 ≈0.9848
71- 7 45 6 44 =1- 7 330 ≈0.9788
81- 8 45 7 44 =1- 14 495 ≈0.9717
91- 9 45 8 44 =1- 2 55 ≈0.9636
101- 10 45 9 44 =1- 1 22 ≈0.9545
111- 11 45 10 44 =1- 1 18 ≈0.9444
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.

Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Nieten im Lostopf=5 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= 5 45 4 44 (beim ersten Zufallsversuch 5 45 und beim zweiten 4 44 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1- 5 45 4 44

Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=5. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/45*(x-1)/44)

In dieser Tabelle erkennen wir, dass letztmals bei 10 als 'Anzahl der Nieten im Lostopf' die gesuchte Wahrscheinlichkeit über 95% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 10 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Eine Schulklasse möchte fürs Schulfest ein Glücksrad entwickeln. Aus optischen Gründen sollen dabei alle Sektoren gleich groß sein. Einer davon soll für den Hauptpreis stehen. Hierfür haben sie insgesamt 5 Preise gesammelt. Sie erwarten, dass das Glücksrad beim Schulfest 50 mal gespielt wird. Mit wie vielen Sektoren müssen sie ihr Glückrad mindestens bestücken damit die 5 Hauptpreise mit einer Wahrscheinlichkeit von mindestens 75% für die 50 Durchgänge reichen?

Lösung einblenden
pP(X≤5)
......
1 10 0.6161
1 11 0.6991
1 12 0.7647
......

Die Zufallsgröße X gibt die Anzahl der Hauptpreise an. X ist binomialverteilt mit n=50 und unbekanntem Parameter p.

Es muss gelten: Pp50 (X5) =0.75 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp50 (X5) ('höchstens 5 Treffer bei 50 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 5 50 . Mit diesem p wäre ja 5= 5 50 ⋅50 der Erwartungswert und somit Pp50 (X5) irgendwo in der nähe von 50%. Wenn wir nun p= 5 50 mit 1 5 erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= 1 10 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 1 12 die gesuchte Wahrscheinlichkeit über 75% steigt.
Der Nenner, also die Anzahl der Sektoren des Glücksrad, muss also mindestens 12 sein.