nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

An einem Glücksrad wird 3 mal gedreht. Die Wahrscheinlichkeit, dass bei allen 3 Durchgängen die Farbe 'blau' kommt, ist 0,5. Wie groß muss bei diesem Glücksrad die Wahrscheinlichkeit für das blaue Feld sein?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.5 ist die Wahrscheinlichkeit, dass 3 mal das Ereignis mit der Wahrscheinlichkeit p eintritt.

Es gilt also 0.5=p3

=>p=0.53 ≈ 0.7937

Binomialvert. mit variablem n (mind)

Beispiel:

Bei einem Glücksrad, ist die Wahrscheinlichkeit in den grünen Bereich zu kommen p=0,5. Wie oft muss man dieses Glückrad mindestens drehen, um mit einer Wahrscheinlichkeit von mindestens 80% 39 mal oder öfters in den grünen Bereich zu kommen?

Lösung einblenden
nP(X≤k)
......
800.3688
810.3285
820.2906
830.2552
840.2226
850.1928
......

Die Zufallsgröße X gibt Anzahl der Drehungen, die im grünen Bereich landen an und ist im Idealfall binomialverteilt mit p = 0.5 und variablem n.

Es muss gelten: P0.5n (X39) ≥ 0.8

Weil man ja aber P0.5n (X39) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.5n (X39) = 1 - P0.5n (X38) ≥ 0.8 |+ P0.5n (X38) - 0.8

0.2 ≥ P0.5n (X38) oder P0.5n (X38) ≤ 0.2

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 50% der Versuche mit einem Treffer. Also müssten dann doch bei 39 0.5 ≈ 78 Versuchen auch ungefähr 39 (≈0.5⋅78) Treffer auftreten.

Wir berechnen also mit unserem ersten n=78:
P0.5n (X38) ≈ 0.455 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.2 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.2 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=85 die gesuchte Wahrscheinlichkeit unter 0.2 ist.

n muss also mindestens 85 sein, damit P0.5n (X38) ≤ 0.2 oder eben P0.5n (X39) ≥ 0.8 gilt.

gesuchtes p (ohne zurücklegen)

Beispiel:

Bei einer Tombola sind 45 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 85% liegen. Wieviel der 45 Lose dürfen höchstens Nieten sein?

Lösung einblenden
Anzahl der Nieten im LostopfP('höchstens eine Niete')
......
51- 5 45 4 44 =1- 1 99 ≈0.9899
61- 6 45 5 44 =1- 1 66 ≈0.9848
71- 7 45 6 44 =1- 7 330 ≈0.9788
81- 8 45 7 44 =1- 14 495 ≈0.9717
91- 9 45 8 44 =1- 2 55 ≈0.9636
101- 10 45 9 44 =1- 1 22 ≈0.9545
111- 11 45 10 44 =1- 1 18 ≈0.9444
121- 12 45 11 44 =1- 1 15 ≈0.9333
131- 13 45 12 44 =1- 13 165 ≈0.9212
141- 14 45 13 44 =1- 91 990 ≈0.9081
151- 15 45 14 44 =1- 7 66 ≈0.8939
161- 16 45 15 44 =1- 4 33 ≈0.8788
171- 17 45 16 44 =1- 68 495 ≈0.8626
181- 18 45 17 44 =1- 17 110 ≈0.8455
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.

Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Nieten im Lostopf=5 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= 5 45 4 44 (beim ersten Zufallsversuch 5 45 und beim zweiten 4 44 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1- 5 45 4 44

Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=5. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/45*(x-1)/44)

In dieser Tabelle erkennen wir, dass letztmals bei 17 als 'Anzahl der Nieten im Lostopf' die gesuchte Wahrscheinlichkeit über 85% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 17 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 3 rote und einige schwarze Kugeln. Es soll 11 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 85% unter den 11 gezogenen Kugeln nicht mehr als 3 rote sind?

Lösung einblenden
pP(X≤3)
......
3 11 0.6491
3 12 0.7133
3 13 0.7647
3 14 0.8059
3 15 0.8389
3 16 0.8654
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe rot an. X ist binomialverteilt mit n=11 und unbekanntem Parameter p.

Es muss gelten: Pp11 (X3) =0.85 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 3 sein muss, da es ja genau 3 günstige Fälle gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp11 (X3) ('höchstens 3 Treffer bei 11 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 3 11 . Mit diesem p wäre ja 3= 3 11 ⋅11 der Erwartungswert und somit Pp11 (X3) irgendwo in der nähe von 50%. Wenn wir nun p= 3 11 mit 3 3 erweitern (so dass wir auf den Zähler 3 kommen) und den Nenner abrunden, müssten wir mit p= 3 11 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 3 16 die gesuchte Wahrscheinlichkeit über 85% steigt.
Der Nenner, also die Anzahl aller Kugeln, muss also mindestens 16 sein.

Also werden noch 13 zusätzliche Optionen (also schwarze Kugeln) benötigt.