nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 4 Versuchen mindestens einmal zu treffen bei 83% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.83 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.17 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.

Es gilt also 0.17=(1-p)4

=>1-p=0.174 ≈ 0.6421

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.6421 ≈ 0.3579

Binomialvert. mit variablem n (höchst.)

Beispiel:

Eine Fluggesellschaft geht davon aus, dass 13% der gekauften Tickets gar nicht eingelöst werden. Wieviel Tickets kann sie für ihre 31-Platzmaschine höchstens verkaufen, so dass es zu mindestens 60% Wahrscheinlichkeit zu keiner Überbelegung kommt.

Lösung einblenden
nP(X≤k)
......
350.684
360.5105
......

Die Zufallsgröße X gibt die Anzahl der Ticketbesitzer, die tatsächlich fliegen an und ist im Idealfall binomialverteilt mit p = 0.87 und variablem n.

Es muss gelten: P0.87n (X31) ≥ 0.6

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 87% der Versuche mit einem Treffer. Also müssten dann doch bei 31 0.87 ≈ 36 Versuchen auch ungefähr 31 (≈0.87⋅36) Treffer auftreten.

Wir berechnen also mit unserem ersten n=36:
P0.87n (X31) ≈ 0.5105 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=35 die gesuchte Wahrscheinlichkeit über 60% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

Bei einer Tombola sind 45 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 90% liegen. Wieviel der 45 Lose dürfen höchstens Nieten sein?

Lösung einblenden
Anzahl der Nieten im LostopfP('höchstens eine Niete')
......
51- 5 45 4 44 =1- 1 99 ≈0.9899
61- 6 45 5 44 =1- 1 66 ≈0.9848
71- 7 45 6 44 =1- 7 330 ≈0.9788
81- 8 45 7 44 =1- 14 495 ≈0.9717
91- 9 45 8 44 =1- 2 55 ≈0.9636
101- 10 45 9 44 =1- 1 22 ≈0.9545
111- 11 45 10 44 =1- 1 18 ≈0.9444
121- 12 45 11 44 =1- 1 15 ≈0.9333
131- 13 45 12 44 =1- 13 165 ≈0.9212
141- 14 45 13 44 =1- 91 990 ≈0.9081
151- 15 45 14 44 =1- 7 66 ≈0.8939
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.

Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Nieten im Lostopf=5 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= 5 45 4 44 (beim ersten Zufallsversuch 5 45 und beim zweiten 4 44 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1- 5 45 4 44

Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=5. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/45*(x-1)/44)

In dieser Tabelle erkennen wir, dass letztmals bei 14 als 'Anzahl der Nieten im Lostopf' die gesuchte Wahrscheinlichkeit über 90% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 14 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Ein neuer Multiple Choice Test mit 15 verschiedenen Fragen soll entwickelt werden. Dabei muss immer genau eine von mehreren Antwortmöglichkeiten richtig sein. Die Anzahl an Antwortmöglichkeiten soll bei allen Fragen gleich sein. Insgesamt soll der Test so konzipiert sein, dass die Wahrscheinlichkeit mehr als 2 Fragen nur durch Raten zufällig richtig zu beantworten (obwohl man keinerlei Wissen hat) bei höchstens 15% liegt. Bestimme die hierfür notwendige Mindestanzahl an Antwortmöglichkeiten bei jeder Frage.

Lösung einblenden
pP(X≤2)
......
1 7 0.6355
1 8 0.7132
1 9 0.7717
1 10 0.8159
1 11 0.8498
1 12 0.8761
......

Die Zufallsgröße X gibt die Anzahl der zufällig richtig geratenenen Antworten an. X ist binomialverteilt mit n=15 und unbekanntem Parameter p.

Es muss gelten: Pp15 (X2) =0.85 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp15 (X2) ('höchstens 2 Treffer bei 15 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 2 15 . Mit diesem p wäre ja 2= 2 15 ⋅15 der Erwartungswert und somit Pp15 (X2) irgendwo in der nähe von 50%. Wenn wir nun p= 2 15 mit 1 2 erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= 1 7 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 1 12 die gesuchte Wahrscheinlichkeit über 85% steigt.
Der Nenner, also die Anzahl der Antwortmöglichkeiten, muss also mindestens 12 sein.