Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
p gesucht (n-te Wurzel)
Beispiel:
Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 2 Versuchen mindestens einmal zu treffen bei 97% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)
P=0.97 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 2 Durchgängen, also ist 1-P=0.03 die Wahrscheinlichkeit für keinen Treffer bei bei 2 Durchgängen.
Es gilt also 0.03=(1-p)2
=>1-p= ≈ 0.1732
Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.1732 ≈ 0.8268
Binomialvert. mit variablem n (mind)
Beispiel:
Beim Biberacher Schützenfest läuft ein 12-köpfiger historischer Spielmannszug mit, der an die Schweden während des 30-Jährigen Kriegs erinnert. Dabei feiern dessen Mitglieder manchmal so ausgelassen, dass die Wahrscheinlichkeit eines Ausfall beim Umzug wegen unverhältnismäßigem Alkoholgenuss bei 13% liegt. Wie viele Schwedenmusiker muss die Schützendirektion mindestens ausbilden, damit beim Umzug mit mindestens 90%-iger Wahrscheinlichkeit mindestens 12 Schweden einsatzfähig sind?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 14 | 0.2708 |
| 15 | 0.1204 |
| 16 | 0.0471 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der einsatzfähigen Schwedenmusiker an und ist im Idealfall binomialverteilt mit p = 0.87 und variablem n.
Es muss gelten: ≥ 0.9
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.9 |+ - 0.9
0.1 ≥ oder ≤ 0.1
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 87% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 14 Versuchen auch ungefähr 12 (≈0.87⋅14) Treffer auftreten.
Wir berechnen also mit unserem ersten n=14:
≈ 0.2708
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.1 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.1 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=16 die gesuchte Wahrscheinlichkeit unter 0.1 ist.
n muss also mindestens 16 sein, damit ≤ 0.1 oder eben ≥ 0.9 gilt.
gesuchtes p (ohne zurücklegen)
Beispiel:
Bei einer Tombola sind 65 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 80% liegen. Wieviel der 65 Lose dürfen höchstens Nieten sein?
| Anzahl der Nieten im Lostopf | P('höchstens eine Niete') |
|---|---|
| ... | ... |
| 7 | 1-⋅=1-≈0.9899 |
| 8 | 1-⋅=1-≈0.9865 |
| 9 | 1-⋅=1-≈0.9827 |
| 10 | 1-⋅=1-≈0.9784 |
| 11 | 1-⋅=1-≈0.9736 |
| 12 | 1-⋅=1-≈0.9683 |
| 13 | 1-⋅=1-≈0.9625 |
| 14 | 1-⋅=1-≈0.9563 |
| 15 | 1-⋅=1-≈0.9495 |
| 16 | 1-⋅=1-≈0.9423 |
| 17 | 1-⋅=1-≈0.9346 |
| 18 | 1-⋅=1-≈0.9264 |
| 19 | 1-⋅=1-≈0.9178 |
| 20 | 1-⋅=1-≈0.9087 |
| 21 | 1-⋅=1-≈0.899 |
| 22 | 1-⋅=1-≈0.8889 |
| 23 | 1-⋅=1-≈0.8784 |
| 24 | 1-⋅=1-≈0.8673 |
| 25 | 1-⋅=1-≈0.8558 |
| 26 | 1-⋅=1-≈0.8438 |
| 27 | 1-⋅=1-≈0.8313 |
| 28 | 1-⋅=1-≈0.8183 |
| 29 | 1-⋅=1-≈0.8048 |
| 30 | 1-⋅=1-≈0.7909 |
| ... | ... |
Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.
Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist): Wenn beispielsweise die Anzahl der Nieten im Lostopf=7 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= ⋅ (beim ersten Zufallsversuch und beim zweiten weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1-⋅
Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=7. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/65*(x-1)/64)
In dieser Tabelle erkennen wir, dass letztmals bei 29 als 'Anzahl der Nieten im Lostopf' die gesuchte
Wahrscheinlichkeit über 80% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 29 sein.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
Eine Schulklasse möchte fürs Schulfest ein Glücksrad entwickeln. Aus optischen Gründen sollen dabei alle Sektoren gleich groß sein. Einer davon soll für den Hauptpreis stehen. Hierfür haben sie insgesamt 9 Preise gesammelt. Sie erwarten, dass das Glücksrad beim Schulfest 75 mal gespielt wird. Mit wie vielen Sektoren müssen sie ihr Glückrad mindestens bestücken damit die 9 Hauptpreise mit einer Wahrscheinlichkeit von mindestens 85% für die 75 Durchgänge reichen?
| p | P(X≤9) |
|---|---|
| ... | ... |
| 0.5349 | |
| 0.6798 | |
| 0.7858 | |
| 0.8586 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Hauptpreise an. X ist binomialverteilt mit n=75 und unbekanntem Parameter p.
Es muss gelten: =0.85 (oder mehr)
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit ('höchstens 9 Treffer bei 75 Versuchen') bei diesen Nennern wird (siehe Tabelle links)
Um einen günstigen Startwert zu finden wählen wir mal als p=. Mit diesem p wäre ja 9=⋅75 der Erwartungswert und somit irgendwo in der nähe von 50%. Wenn wir nun p= mit erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= einen brauchbaren Einstiegswert für dieses Probieren erhalten.
In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 85% steigt.
Der Nenner, also die Anzahl der Sektoren des Glücksrad, muss also mindestens
11 sein.
