nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 4 Versuchen mindestens einmal zu treffen bei 93% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.93 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.07 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.

Es gilt also 0.07=(1-p)4

=>1-p=0.074 ≈ 0.5144

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.5144 ≈ 0.4856

Binomialvert. mit variablem n (höchst.)

Beispiel:

Der Starspieler der gegnerischen Basketballmannschaft hat bei Freiwürfen eine Trefferquote von p=0,9. Wie viele Freiwürfe darf man bei ihm durch Fouls höchstens zulassen, wenn man ihn mit einer Wahrscheinlichkeit von mindestens 70% nicht über 39 Freiwurfpunkte kommen lassen will?

Lösung einblenden
nP(X≤k)
......
420.8049
430.6352
......

Die Zufallsgröße X gibt die Anzahl der getroffenen Freiwürfe an und ist im Idealfall binomialverteilt mit p = 0.9 und variablem n.

Es muss gelten: P0.9n (X39) ≥ 0.7

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 90% der Versuche mit einem Treffer. Also müssten dann doch bei 39 0.9 ≈ 43 Versuchen auch ungefähr 39 (≈0.9⋅43) Treffer auftreten.

Wir berechnen also mit unserem ersten n=43:
P0.9n (X39) ≈ 0.6352 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=42 die gesuchte Wahrscheinlichkeit über 70% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einer Urne sind 35 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?

Lösung einblenden
Anzahl der schwarzen Kugeln in der UrneP('mindestens eine schwarze Kugel')
......
31- 32 35 31 34 =1- 496 595 ≈0.1664
41- 31 35 30 34 =1- 93 119 ≈0.2185
51- 30 35 29 34 =1- 87 119 ≈0.2689
61- 29 35 28 34 =1- 58 85 ≈0.3176
71- 28 35 27 34 =1- 54 85 ≈0.3647
81- 27 35 26 34 =1- 351 595 ≈0.4101
91- 26 35 25 34 =1- 65 119 ≈0.4538
101- 25 35 24 34 =1- 60 119 ≈0.4958
111- 24 35 23 34 =1- 276 595 ≈0.5361
121- 23 35 22 34 =1- 253 595 ≈0.5748
131- 22 35 21 34 =1- 33 85 ≈0.6118
141- 21 35 20 34 =1- 6 17 ≈0.6471
151- 20 35 19 34 =1- 38 119 ≈0.6807
161- 19 35 18 34 =1- 171 595 ≈0.7126
171- 18 35 17 34 =1- 9 35 ≈0.7429
181- 17 35 16 34 =1- 8 35 ≈0.7714
......

Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.

Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= 32 35 31 34 (beim ersten Zufallsversuch 32 35 und beim zweiten 31 34 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1- 32 35 31 34

Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(35-x)/35*(34-x)/34)

In dieser Tabelle erkennen wir, dass erstmals bei 18 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte Wahrscheinlichkeit über 75% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 18 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Eine Schulklasse möchte fürs Schulfest ein Glücksrad entwickeln. Aus optischen Gründen sollen dabei alle Sektoren gleich groß sein. Einer davon soll für den Hauptpreis stehen. Hierfür haben sie insgesamt 6 Preise gesammelt. Sie erwarten, dass das Glücksrad beim Schulfest 55 mal gespielt wird. Mit wie vielen Sektoren müssen sie ihr Glückrad mindestens bestücken damit die 6 Hauptpreise mit einer Wahrscheinlichkeit von mindestens 80% für die 55 Durchgänge reichen?

Lösung einblenden
pP(X≤6)
......
1 9 0.5876
1 10 0.6904
1 11 0.7694
1 12 0.8286
......

Die Zufallsgröße X gibt die Anzahl der Hauptpreise an. X ist binomialverteilt mit n=55 und unbekanntem Parameter p.

Es muss gelten: Pp55 (X6) =0.8 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp55 (X6) ('höchstens 6 Treffer bei 55 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 6 55 . Mit diesem p wäre ja 6= 6 55 ⋅55 der Erwartungswert und somit Pp55 (X6) irgendwo in der nähe von 50%. Wenn wir nun p= 6 55 mit 1 6 erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= 1 9 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 1 12 die gesuchte Wahrscheinlichkeit über 80% steigt.
Der Nenner, also die Anzahl der Sektoren des Glücksrad, muss also mindestens 12 sein.