nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 2 Versuchen mindestens einmal zu treffen bei 81% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.81 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 2 Durchgängen, also ist 1-P=0.19 die Wahrscheinlichkeit für keinen Treffer bei bei 2 Durchgängen.

Es gilt also 0.19=(1-p)2

=>1-p=0.192 ≈ 0.4359

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.4359 ≈ 0.5641

Binomialvert. mit variablem n (mind)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,7.Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 90% Wahrscheinlichkeit, mindestens 25 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
360.3909
370.3017
380.2255
390.1635
400.1151
410.0789
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.7 und variablem n.

Es muss gelten: P0.7n (X25) ≥ 0.9

Weil man ja aber P0.7n (X25) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.7n (X25) = 1 - P0.7n (X24) ≥ 0.9 |+ P0.7n (X24) - 0.9

0.1 ≥ P0.7n (X24) oder P0.7n (X24) ≤ 0.1

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 70% der Versuche mit einem Treffer. Also müssten dann doch bei 25 0.7 ≈ 36 Versuchen auch ungefähr 25 (≈0.7⋅36) Treffer auftreten.

Wir berechnen also mit unserem ersten n=36:
P0.7n (X24) ≈ 0.3909 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.1 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.1 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=41 die gesuchte Wahrscheinlichkeit unter 0.1 ist.

n muss also mindestens 41 sein, damit P0.7n (X24) ≤ 0.1 oder eben P0.7n (X25) ≥ 0.9 gilt.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einem Kartenstapel mit 27 Karten sind auch einige Joker-Karten drin. Wenn man 2 Karten gleichzeitig aus dem Stapel zieht, soll mit 95%-iger Wahrscheinlichkeit höchstens eine Jokerkarte dabei sein liegen. Wie viele Jokerkarten dürfen maximal in dem Stapel drin sein?

Lösung einblenden
Anzahl der Joker im KartenstapelP('höchstens einen Joker')
......
41- 4 27 3 26 =1- 2 117 ≈0.9829
51- 5 27 4 26 =1- 10 351 ≈0.9715
61- 6 27 5 26 =1- 5 117 ≈0.9573
71- 7 27 6 26 =1- 7 117 ≈0.9402
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens einen Joker'.

Das Gegenereignis ('genau zwei Joker') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Joker im Kartenstapel=4 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Joker'= 4 27 3 26 (beim ersten Zufallsversuch 4 27 und beim zweiten 3 26 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens einen Joker'=1- 4 27 3 26

Wir erhöhen nun schrittweise immer die Anzahl der Joker im Kartenstapel um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens einen Joker' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=4. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/27*(x-1)/26)

In dieser Tabelle erkennen wir, dass letztmals bei 6 als 'Anzahl der Joker im Kartenstapel' die gesuchte Wahrscheinlichkeit über 95% auftritt.
Die gesuchte Anzahl der Joker im Kartenstapel darf also höchstens 6 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 5 rote und einige schwarze Kugeln. Es soll 18 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den 18 gezogenen Kugeln nicht mehr als 6 rote sind?

Lösung einblenden
pP(X≤6)
......
5 15 0.6085
5 16 0.6806
5 17 0.7403
5 18 0.7893
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe rot an. X ist binomialverteilt mit n=18 und unbekanntem Parameter p.

Es muss gelten: Pp18 (X6) =0.75 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 5 sein muss, da es ja genau 5 günstige Fälle gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp18 (X6) ('höchstens 6 Treffer bei 18 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 6 18 . Mit diesem p wäre ja 6= 6 18 ⋅18 der Erwartungswert und somit Pp18 (X6) irgendwo in der nähe von 50%. Wenn wir nun p= 6 18 mit 5 6 erweitern (so dass wir auf den Zähler 5 kommen) und den Nenner abrunden, müssten wir mit p= 5 15 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 5 18 die gesuchte Wahrscheinlichkeit über 75% steigt.
Der Nenner, also die Anzahl aller Kugeln, muss also mindestens 18 sein.

Also werden noch 13 zusätzliche Optionen (also schwarze Kugeln) benötigt.