nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Bei einer Tombola werden elektronische Lose so verkauft, dass bei jedem Los jede Preiskategorie immer die gleiche Gewinnwahrscheinlichkeit hat. Aus Marketinggründen wird dabei auch ein Vierer-Pack angeboten. Dabei wird geworben, dass mit einer Wahrscheinlichkeit von 76% bei jedem Viererpack mindestens ein hochwertiger Preis dabei ist. Wie hoch muss man die Einzelwahrscheinlichkeit für einen hochwertigen Preis setzen, damit dieses Versprechen eingehalten wird?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.76 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.24 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.

Es gilt also 0.24=(1-p)4

=>1-p=0.244 ≈ 0.6999

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.6999 ≈ 0.3001

Binomialvert. mit variablem n (höchst.)

Beispiel:

Eine Fluggesellschaft geht davon aus, dass 16% der gekauften Tickets gar nicht eingelöst werden. Wieviel Tickets kann sie für ihre 28-Platzmaschine höchstens verkaufen, so dass es zu mindestens 60% Wahrscheinlichkeit zu keiner Überbelegung kommt.

Lösung einblenden
nP(X≤k)
......
330.6258
340.4673
......

Die Zufallsgröße X gibt die Anzahl der Ticketbesitzer, die tatsächlich fliegen an und ist im Idealfall binomialverteilt mit p = 0.84 und variablem n.

Es muss gelten: P0.84n (X28) ≥ 0.6

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 84% der Versuche mit einem Treffer. Also müssten dann doch bei 28 0.84 ≈ 33 Versuchen auch ungefähr 28 (≈0.84⋅33) Treffer auftreten.

Wir berechnen also mit unserem ersten n=33:
P0.84n (X28) ≈ 0.6258 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=33 die gesuchte Wahrscheinlichkeit über 60% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einer Urne sind 40 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?

Lösung einblenden
Anzahl der schwarzen Kugeln in der UrneP('mindestens eine schwarze Kugel')
......
31- 37 40 36 39 =1- 111 130 ≈0.1462
41- 36 40 35 39 =1- 21 26 ≈0.1923
51- 35 40 34 39 =1- 119 156 ≈0.2372
61- 34 40 33 39 =1- 187 260 ≈0.2808
71- 33 40 32 39 =1- 44 65 ≈0.3231
81- 32 40 31 39 =1- 124 195 ≈0.3641
91- 31 40 30 39 =1- 31 52 ≈0.4038
101- 30 40 29 39 =1- 29 52 ≈0.4423
111- 29 40 28 39 =1- 203 390 ≈0.4795
121- 28 40 27 39 =1- 63 130 ≈0.5154
131- 27 40 26 39 =1- 9 20 ≈0.55
141- 26 40 25 39 =1- 5 12 ≈0.5833
151- 25 40 24 39 =1- 5 13 ≈0.6154
161- 24 40 23 39 =1- 23 65 ≈0.6462
171- 23 40 22 39 =1- 253 780 ≈0.6756
181- 22 40 21 39 =1- 77 260 ≈0.7038
191- 21 40 20 39 =1- 7 26 ≈0.7308
201- 20 40 19 39 =1- 19 78 ≈0.7564
......

Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.

Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= 37 40 36 39 (beim ersten Zufallsversuch 37 40 und beim zweiten 36 39 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1- 37 40 36 39

Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(40-x)/40*(39-x)/39)

In dieser Tabelle erkennen wir, dass erstmals bei 20 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte Wahrscheinlichkeit über 75% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 20 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Eine Firma, die Überraschungseier vertreibt, möchte als Werbegag manche Eier mit Superfiguren bestücken. Aus Angst vor Kundenbeschwerden sollen in einer 5er-Packung mit der mindestens 50% Wahrscheinlichkeit 1 oder mehr Superfiguren enthalten sein. Wenn in jedes n-te Ei eine Superfigur rein soll, wie groß darf dann n höchstens sein?

Lösung einblenden
pP(X≥1)=1-P(X≤0)
......
1 2 0.9687
1 3 0.8683
1 4 0.7627
1 5 0.6723
1 6 0.5981
1 7 0.5373
1 8 0.4871
......

Die Zufallsgröße X gibt die Anzahl der Eier mit einer Superfigur an. X ist binomialverteilt mit n=5 und unbekanntem Parameter p.

Es muss gelten: Pp5 (X1) = 1- Pp5 (X0) = 0.5 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp5 (X1) ('mindestens 1 Treffer bei 5 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Als Startwert wählen wir als p= 1 2 .

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 1 7 die gesuchte Wahrscheinlichkeit über 50% bleibt.
Der Nenner, also die das wievielte Ei eine Superfigur enthält, darf also höchstens 7 sein.