nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Bei einer Tombola werden elektronische Lose so verkauft, dass bei jedem Los jede Preiskategorie immer die gleiche Gewinnwahrscheinlichkeit hat. Aus Marketinggründen wird dabei auch ein Vierer-Pack angeboten. Dabei wird geworben, dass mit einer Wahrscheinlichkeit von 84% bei jedem Viererpack mindestens ein hochwertiger Preis dabei ist. Wie hoch muss man die Einzelwahrscheinlichkeit für einen hochwertigen Preis setzen, damit dieses Versprechen eingehalten wird?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.84 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.16 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.

Es gilt also 0.16=(1-p)4

=>1-p=0.164 ≈ 0.6325

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.6325 ≈ 0.3675

Binomialvert. mit variablem n (mind)

Beispiel:

Wie oft muss man mit einem normalen Würfel mindestens würfeln, um mit einer Wahrscheinlichkeit von mindestens 50% 40 oder mehr 6er zu erzielen?

Lösung einblenden
nP(X≤k)
......
2370.5078
2380.4962
2390.4846
2400.4731
......

Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p = 1 6 und variablem n.

Es muss gelten: P 1 6 n (X40) ≥ 0.5

Weil man ja aber P 1 6 n (X40) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P 1 6 n (X40) = 1 - P 1 6 n (X39) ≥ 0.5 |+ P 1 6 n (X39) - 0.5

0.5 ≥ P 1 6 n (X39) oder P 1 6 n (X39) ≤ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 1 6 der Versuche mit einem Treffer. Also müssten dann doch bei 40 1 6 ≈ 240 Versuchen auch ungefähr 40 (≈ 1 6 ⋅240) Treffer auftreten.

Wir berechnen also mit unserem ersten n=240:
P 1 6 n (X39) ≈ 0.4731 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=238 die gesuchte Wahrscheinlichkeit unter 0.5 ist.

n muss also mindestens 238 sein, damit P 1 6 n (X39) ≤ 0.5 oder eben P 1 6 n (X40) ≥ 0.5 gilt.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einem Kartenstapel mit 25 Karten sind auch einige Joker-Karten drin. Wenn man 2 Karten gleichzeitig aus dem Stapel zieht, soll mit 80%-iger Wahrscheinlichkeit höchstens eine Jokerkarte dabei sein liegen. Wie viele Jokerkarten dürfen maximal in dem Stapel drin sein?

Lösung einblenden
Anzahl der Joker im KartenstapelP('höchstens einen Joker')
......
41- 4 25 3 24 =1- 1 50 ≈0.98
51- 5 25 4 24 =1- 1 30 ≈0.9667
61- 6 25 5 24 =1- 1 20 ≈0.95
71- 7 25 6 24 =1- 7 100 ≈0.93
81- 8 25 7 24 =1- 7 75 ≈0.9067
91- 9 25 8 24 =1- 3 25 ≈0.88
101- 10 25 9 24 =1- 3 20 ≈0.85
111- 11 25 10 24 =1- 11 60 ≈0.8167
121- 12 25 11 24 =1- 11 50 ≈0.78
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens einen Joker'.

Das Gegenereignis ('genau zwei Joker') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Joker im Kartenstapel=4 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Joker'= 4 25 3 24 (beim ersten Zufallsversuch 4 25 und beim zweiten 3 24 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens einen Joker'=1- 4 25 3 24

Wir erhöhen nun schrittweise immer die Anzahl der Joker im Kartenstapel um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens einen Joker' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=4. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/25*(x-1)/24)

In dieser Tabelle erkennen wir, dass letztmals bei 11 als 'Anzahl der Joker im Kartenstapel' die gesuchte Wahrscheinlichkeit über 80% auftritt.
Die gesuchte Anzahl der Joker im Kartenstapel darf also höchstens 11 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Die Homepage-AG einer Schule möchte auf der Startseite der Internetseite der Schule ein Zufallsbild integrieren. Dabei soll bei jedem Aufruf der Startseite ein zufälliges Bild aus einer Bilderdatenbank gezeigt werden. Alle Bilder der Datenbank sind immer gleich wahrscheinlich. Auf 4 Bildern der Datenbank sind Mitglieder der Homepage-AG zu sehen. Es wird geschätzt, dass die Seite täglich 60 mal aufgerufen wird. Die Mitglieder der Homepage-AG wollen dass mit mindestens 75%-iger Wahrscheinlichkiet mindestens 12 mal am Tag eines ihrer eigenen 4 Bilder erscheint. Wie viele andere Bilder dürfen dann höchstens noch in der Datenbank sein?

Lösung einblenden
pP(X≥12)=1-P(X≤11)
......
4 10 0.9997
4 11 0.9981
4 12 0.9923
4 13 0.978
4 14 0.9509
4 15 0.9089
4 16 0.8524
4 17 0.7842
4 18 0.7084
......

Die Zufallsgröße X gibt die Anzahl der Bilder mit Homepage-AG-lern an. X ist binomialverteilt mit n=60 und unbekanntem Parameter p.

Es muss gelten: Pp60 (X12) = 1- Pp60 (X11) = 0.75 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 4 sein muss, da es ja genau 4 günstige Fälle gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp60 (X12) ('mindestens 12 Treffer bei 60 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Als Startwert wählen wir als p= 4 10 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 4 17 die gesuchte Wahrscheinlichkeit über 75% bleibt.
Der Nenner, also die Anzahl aller Bilder in der Datenbank, darf also höchstens 17 sein.

Also wären noch 13 zusätzliche Optionen (also weitere Bilder) zulässig.