Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
p gesucht (n-te Wurzel)
Beispiel:
Bei einer Tombola werden elektronische Lose so verkauft, dass bei jedem Los jede Preiskategorie immer die gleiche Gewinnwahrscheinlichkeit hat. Aus Marketinggründen wird dabei auch ein Vierer-Pack angeboten. Dabei wird geworben, dass mit einer Wahrscheinlichkeit von 83% bei jedem Viererpack mindestens ein hochwertiger Preis dabei ist. Wie hoch muss man die Einzelwahrscheinlichkeit für einen hochwertigen Preis setzen, damit dieses Versprechen eingehalten wird?
(Bitte auf 3 Stellen runden!)
P=0.83 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.17 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.
Es gilt also 0.17=(1-p)4
=>1-p= ≈ 0.6421
Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.6421 ≈ 0.3579
Binomialvert. mit variablem n (mind)
Beispiel:
Beim Biberacher Schützenfest läuft ein 12-köpfiger historischer Spielmannszug mit, der an die Schweden während des 30-Jährigen Kriegs erinnert. Dabei feiern dessen Mitglieder manchmal so ausgelassen, dass die Wahrscheinlichkeit eines Ausfall beim Umzug wegen unverhältnismäßigem Alkoholgenuss bei 17% liegt. Wie viele Schwedenmusiker muss die Schützendirektion mindestens ausbilden, damit beim Umzug mit mindestens 80%-iger Wahrscheinlichkeit mindestens 12 Schweden einsatzfähig sind?
n | P(X≤k) |
---|---|
... | ... |
14 | 0.4341 |
15 | 0.2429 |
16 | 0.1211 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der einsatzfähigen Schwedenmusiker an und ist im Idealfall binomialverteilt mit p = 0.83 und variablem n.
Es muss gelten: ≥ 0.8
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.8 |+ - 0.8
0.2 ≥ oder ≤ 0.2
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 83% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 14 Versuchen auch ungefähr 12 (≈0.83⋅14) Treffer auftreten.
Wir berechnen also mit unserem ersten n=14:
≈ 0.4341
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.2 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.2 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=16 die gesuchte Wahrscheinlichkeit unter 0.2 ist.
n muss also mindestens 16 sein, damit ≤ 0.2 oder eben ≥ 0.8 gilt.
gesuchtes p (ohne zurücklegen)
Beispiel:
Bei einer Tombola sind 60 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 85% liegen. Wieviel der 60 Lose dürfen höchstens Nieten sein?
Anzahl der Nieten im Lostopf | P('höchstens eine Niete') |
---|---|
... | ... |
7 | 1-⋅=1-≈0.9881 |
8 | 1-⋅=1-≈0.9842 |
9 | 1-⋅=1-≈0.9797 |
10 | 1-⋅=1-≈0.9746 |
11 | 1-⋅=1-≈0.9689 |
12 | 1-⋅=1-≈0.9627 |
13 | 1-⋅=1-≈0.9559 |
14 | 1-⋅=1-≈0.9486 |
15 | 1-⋅=1-≈0.9407 |
16 | 1-⋅=1-≈0.9322 |
17 | 1-⋅=1-≈0.9232 |
18 | 1-⋅=1-≈0.9136 |
19 | 1-⋅=1-≈0.9034 |
20 | 1-⋅=1-≈0.8927 |
21 | 1-⋅=1-≈0.8814 |
22 | 1-⋅=1-≈0.8695 |
23 | 1-⋅=1-≈0.8571 |
24 | 1-⋅=1-≈0.8441 |
... | ... |
Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.
Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist): Wenn beispielsweise die Anzahl der Nieten im Lostopf=7 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= ⋅ (beim ersten Zufallsversuch und beim zweiten weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1-⋅
Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=7. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/60*(x-1)/59)
In dieser Tabelle erkennen wir, dass letztmals bei 23 als 'Anzahl der Nieten im Lostopf' die gesuchte
Wahrscheinlichkeit über 85% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 23 sein.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
Eine Schulklasse möchte fürs Schulfest ein Glücksrad entwickeln. Aus optischen Gründen sollen dabei alle Sektoren gleich groß sein. Einer davon soll für den Hauptpreis stehen. Hierfür haben sie insgesamt 9 Preise gesammelt. Sie erwarten, dass das Glücksrad beim Schulfest 65 mal gespielt wird. Mit wie vielen Sektoren müssen sie ihr Glückrad mindestens bestücken damit die 9 Hauptpreise mit einer Wahrscheinlichkeit von mindestens 80% für die 65 Durchgänge reichen?
p | P(X≤9) |
---|---|
... | ... |
0.5471 | |
0.7088 | |
0.8189 | |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Hauptpreise an. X ist binomialverteilt mit n=65 und unbekanntem Parameter p.
Es muss gelten: =0.8 (oder mehr)
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit ('höchstens 9 Treffer bei 65 Versuchen') bei diesen Nennern wird (siehe Tabelle links)
Um einen günstigen Startwert zu finden wählen wir mal als p=. Mit diesem p wäre ja 9=⋅65 der Erwartungswert und somit irgendwo in der nähe von 50%. Wenn wir nun p= mit erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= einen brauchbaren Einstiegswert für dieses Probieren erhalten.
In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 80% steigt.
Der Nenner, also die Anzahl der Sektoren des Glücksrad, muss also mindestens
9 sein.