nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

An einem Glücksrad wird 3 mal gedreht. Die Wahrscheinlichkeit, dass bei allen 3 Durchgängen die Farbe 'blau' kommt, ist 0,1. Wie groß muss bei diesem Glücksrad die Wahrscheinlichkeit für das blaue Feld sein?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.1 ist die Wahrscheinlichkeit, dass 3 mal das Ereignis mit der Wahrscheinlichkeit p eintritt.

Es gilt also 0.1=p3

=>p=0.13 ≈ 0.4642

Binomialvert. mit variablem n (mind)

Beispiel:

In Tschechien gilt absolutes Alkoholverbot in Lokalen für Jugendliche unter 18 Jahren. Ein paar trinkfreudige 17-jährige Jugendliche wollen bei einer Studienfahrt nach Prag trotzdem ihr Glück versuchen. 90% der Gaststätten setzen das Alkoholverbot konsequent um und schenken nur gegen Vorlage einer "ID" (Personalausweis) Bier aus. Wie viele Kneipen müssen die Jugenlichen nun mindestens aufsuchen, damit sie bei einer Kneipentour mit mindestens 60% Wahrscheinlichkeit in mindestens 3 Lokalen nicht mit Nachfragen zu ihrer "ID" gedemütigt werden und in Ruhe ein Bier trinken können?

Lösung einblenden
nP(X≤k)
......
300.4114
310.3886
......

Die Zufallsgröße X gibt die Anzahl der besuchten Kneipen, die keine "ID" (Personalausweis) verlangen an und ist im Idealfall binomialverteilt mit p = 0.1 und variablem n.

Es muss gelten: P0.1n (X3) ≥ 0.6

Weil man ja aber P0.1n (X3) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.1n (X3) = 1 - P0.1n (X2) ≥ 0.6 |+ P0.1n (X2) - 0.6

0.4 ≥ P0.1n (X2) oder P0.1n (X2) ≤ 0.4

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 10% der Versuche mit einem Treffer. Also müssten dann doch bei 3 0.1 ≈ 30 Versuchen auch ungefähr 3 (≈0.1⋅30) Treffer auftreten.

Wir berechnen also mit unserem ersten n=30:
P0.1n (X2) ≈ 0.4114 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.4 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.4 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=31 die gesuchte Wahrscheinlichkeit unter 0.4 ist.

n muss also mindestens 31 sein, damit P0.1n (X2) ≤ 0.4 oder eben P0.1n (X3) ≥ 0.6 gilt.

gesuchtes p (ohne zurücklegen)

Beispiel:

Bei einer Tombola sind 55 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 95% liegen. Wieviel der 55 Lose dürfen höchstens Nieten sein?

Lösung einblenden
Anzahl der Nieten im LostopfP('höchstens eine Niete')
......
61- 6 55 5 54 =1- 1 99 ≈0.9899
71- 7 55 6 54 =1- 7 495 ≈0.9859
81- 8 55 7 54 =1- 28 1485 ≈0.9811
91- 9 55 8 54 =1- 4 165 ≈0.9758
101- 10 55 9 54 =1- 1 33 ≈0.9697
111- 11 55 10 54 =1- 1 27 ≈0.963
121- 12 55 11 54 =1- 2 45 ≈0.9556
131- 13 55 12 54 =1- 26 495 ≈0.9475
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.

Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Nieten im Lostopf=6 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= 6 55 5 54 (beim ersten Zufallsversuch 6 55 und beim zweiten 5 54 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1- 6 55 5 54

Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=6. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/55*(x-1)/54)

In dieser Tabelle erkennen wir, dass letztmals bei 12 als 'Anzahl der Nieten im Lostopf' die gesuchte Wahrscheinlichkeit über 95% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 12 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 4 rote und einige schwarze Kugeln. Es soll 28 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 80% unter den 28 gezogenen Kugeln nicht mehr als 24 schwarze sind?

Lösung einblenden
pP(X≤24)
......
6 10 0.9993
7 11 0.9976
8 12 0.9939
9 13 0.9873
10 14 0.9771
11 15 0.963
12 16 0.9449
13 17 0.923
14 18 0.8978
15 19 0.8699
16 20 0.8398
17 21 0.8082
18 22 0.7756
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=28 und unbekanntem Parameter p.

Es muss gelten: Pp28 (X24) = 0.8 (oder mehr)

Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 4 größer sein muss als der Zähler.

Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit Pp28 (X24) ('höchstens 24 Treffer bei 28 Versuchen') auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p= 6 10 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 17 21 die gesuchte Wahrscheinlichkeit über 80% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 17 sein.