nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

An einem Glücksrad wird 4 mal gedreht. Die Wahrscheinlichkeit, dass bei allen 4 Durchgängen die Farbe 'blau' kommt, ist 0,2. Wie groß muss bei diesem Glücksrad die Wahrscheinlichkeit für das blaue Feld sein?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.2 ist die Wahrscheinlichkeit, dass 4 mal das Ereignis mit der Wahrscheinlichkeit p eintritt.

Es gilt also 0.2=p4

=>p=0.24 ≈ 0.6687

Binomialvert. mit variablem n (mind)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,3.Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 50% Wahrscheinlichkeit, mindestens 31 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
1010.5231
1020.4972
1030.4715
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.3 und variablem n.

Es muss gelten: P0.3n (X31) ≥ 0.5

Weil man ja aber P0.3n (X31) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.3n (X31) = 1 - P0.3n (X30) ≥ 0.5 |+ P0.3n (X30) - 0.5

0.5 ≥ P0.3n (X30) oder P0.3n (X30) ≤ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 30% der Versuche mit einem Treffer. Also müssten dann doch bei 31 0.3 ≈ 103 Versuchen auch ungefähr 31 (≈0.3⋅103) Treffer auftreten.

Wir berechnen also mit unserem ersten n=103:
P0.3n (X30) ≈ 0.4715 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=102 die gesuchte Wahrscheinlichkeit unter 0.5 ist.

n muss also mindestens 102 sein, damit P0.3n (X30) ≤ 0.5 oder eben P0.3n (X31) ≥ 0.5 gilt.

gesuchtes p (ohne zurücklegen)

Beispiel:

Bei einer Tombola sind 55 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 80% liegen. Wieviel der 55 Lose dürfen höchstens Nieten sein?

Lösung einblenden
Anzahl der Nieten im LostopfP('höchstens eine Niete')
......
61- 6 55 5 54 =1- 1 99 ≈0.9899
71- 7 55 6 54 =1- 7 495 ≈0.9859
81- 8 55 7 54 =1- 28 1485 ≈0.9811
91- 9 55 8 54 =1- 4 165 ≈0.9758
101- 10 55 9 54 =1- 1 33 ≈0.9697
111- 11 55 10 54 =1- 1 27 ≈0.963
121- 12 55 11 54 =1- 2 45 ≈0.9556
131- 13 55 12 54 =1- 26 495 ≈0.9475
141- 14 55 13 54 =1- 91 1485 ≈0.9387
151- 15 55 14 54 =1- 7 99 ≈0.9293
161- 16 55 15 54 =1- 8 99 ≈0.9192
171- 17 55 16 54 =1- 136 1485 ≈0.9084
181- 18 55 17 54 =1- 17 165 ≈0.897
191- 19 55 18 54 =1- 19 165 ≈0.8848
201- 20 55 19 54 =1- 38 297 ≈0.8721
211- 21 55 20 54 =1- 14 99 ≈0.8586
221- 22 55 21 54 =1- 7 45 ≈0.8444
231- 23 55 22 54 =1- 23 135 ≈0.8296
241- 24 55 23 54 =1- 92 495 ≈0.8141
251- 25 55 24 54 =1- 20 99 ≈0.798
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.

Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Nieten im Lostopf=6 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= 6 55 5 54 (beim ersten Zufallsversuch 6 55 und beim zweiten 5 54 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1- 6 55 5 54

Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=6. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/55*(x-1)/54)

In dieser Tabelle erkennen wir, dass letztmals bei 24 als 'Anzahl der Nieten im Lostopf' die gesuchte Wahrscheinlichkeit über 80% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 24 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Ein neuer Multiple Choice Test mit 14 verschiedenen Fragen soll entwickelt werden. Dabei muss immer genau eine von mehreren Antwortmöglichkeiten richtig sein. Die Anzahl an Antwortmöglichkeiten soll bei allen Fragen gleich sein. Insgesamt soll der Test so konzipiert sein, dass die Wahrscheinlichkeit mehr als 2 Fragen nur durch Raten zufällig richtig zu beantworten (obwohl man keinerlei Wissen hat) bei höchstens 20% liegt. Bestimme die hierfür notwendige Mindestanzahl an Antwortmöglichkeiten bei jeder Frage.

Lösung einblenden
pP(X≤2)
......
1 7 0.6772
1 8 0.749
1 9 0.802
......

Die Zufallsgröße X gibt die Anzahl der zufällig richtig geratenenen Antworten an. X ist binomialverteilt mit n=14 und unbekanntem Parameter p.

Es muss gelten: Pp14 (X2) =0.8 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp14 (X2) ('höchstens 2 Treffer bei 14 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 2 14 . Mit diesem p wäre ja 2= 2 14 ⋅14 der Erwartungswert und somit Pp14 (X2) irgendwo in der nähe von 50%. Wenn wir nun p= 2 14 mit 1 2 erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= 1 7 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 1 9 die gesuchte Wahrscheinlichkeit über 80% steigt.
Der Nenner, also die Anzahl der Antwortmöglichkeiten, muss also mindestens 9 sein.