Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
p gesucht (n-te Wurzel)
Beispiel:
An einem Glücksrad wird 4 mal gedreht. Die Wahrscheinlichkeit, dass bei allen 4 Durchgängen die Farbe 'blau' kommt, ist 0,1. Wie groß muss bei diesem Glücksrad die Wahrscheinlichkeit für das blaue Feld sein?
(Bitte auf 3 Stellen runden!)
P=0.1 ist die Wahrscheinlichkeit, dass 4 mal das Ereignis mit der Wahrscheinlichkeit p eintritt.
Es gilt also 0.1=p4
=>p= ≈ 0.5623
Binomialvert. mit variablem n (mind)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,6.Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 50% Wahrscheinlichkeit, mindestens 20 Treffer zu erzielen ?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 32 | 0.5382 |
| 33 | 0.453 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.6 und variablem n.
Es muss gelten: ≥ 0.5
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.5 |+ - 0.5
0.5 ≥ oder ≤ 0.5
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 60% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 33 Versuchen auch ungefähr 20 (≈0.6⋅33) Treffer auftreten.
Wir berechnen also mit unserem ersten n=33:
≈ 0.453
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=33 die gesuchte Wahrscheinlichkeit unter 0.5 ist.
n muss also mindestens 33 sein, damit ≤ 0.5 oder eben ≥ 0.5 gilt.
gesuchtes p (ohne zurücklegen)
Beispiel:
In einer Urne sind 35 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?
| Anzahl der schwarzen Kugeln in der Urne | P('mindestens eine schwarze Kugel') |
|---|---|
| ... | ... |
| 3 | 1-⋅=1-≈0.1664 |
| 4 | 1-⋅=1-≈0.2185 |
| 5 | 1-⋅=1-≈0.2689 |
| 6 | 1-⋅=1-≈0.3176 |
| 7 | 1-⋅=1-≈0.3647 |
| 8 | 1-⋅=1-≈0.4101 |
| 9 | 1-⋅=1-≈0.4538 |
| 10 | 1-⋅=1-≈0.4958 |
| 11 | 1-⋅=1-≈0.5361 |
| 12 | 1-⋅=1-≈0.5748 |
| 13 | 1-⋅=1-≈0.6118 |
| 14 | 1-⋅=1-≈0.6471 |
| 15 | 1-⋅=1-≈0.6807 |
| 16 | 1-⋅=1-≈0.7126 |
| 17 | 1-⋅=1-≈0.7429 |
| 18 | 1-⋅=1-≈0.7714 |
| ... | ... |
Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.
Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist): Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= ⋅ (beim ersten Zufallsversuch und beim zweiten weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1-⋅
Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(35-x)/35*(34-x)/34)
In dieser Tabelle erkennen wir, dass erstmals bei 18 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte
Wahrscheinlichkeit über 75% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 18 sein.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
Eine Firma, die Überraschungseier vertreibt, möchte als Werbegag manche Eier mit Superfiguren bestücken. Aus Angst vor Kundenbeschwerden sollen in einer 8er-Packung mit der mindestens 75% Wahrscheinlichkeit 2 oder mehr Superfiguren enthalten sein. Wenn in jedes n-te Ei eine Superfigur rein soll, wie groß darf dann n höchstens sein?
| p | P(X≥2)=1-P(X≤1) |
|---|---|
| ... | ... |
| 0.9648 | |
| 0.8049 | |
| 0.6329 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Eier mit einer Superfigur an. X ist binomialverteilt mit n=8 und unbekanntem Parameter p.
Es muss gelten: = 1- = 0.75 (oder mehr)
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit ('mindestens 2 Treffer bei 8 Versuchen') bei diesen Nennern wird (siehe Tabelle links)
Als Startwert wählen wir als p=.
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 75% bleibt.
Der Nenner, also die das wievielte Ei eine Superfigur enthält, darf also höchstens
3 sein.
