Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
p gesucht (n-te Wurzel)
Beispiel:
Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 2 Versuchen mindestens einmal zu treffen bei 88% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)
P=0.88 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 2 Durchgängen, also ist 1-P=0.12 die Wahrscheinlichkeit für keinen Treffer bei bei 2 Durchgängen.
Es gilt also 0.12=(1-p)2
=>1-p= ≈ 0.3464
Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.3464 ≈ 0.6536
Binomialvert. mit variablem n (höchst.)
Beispiel:
Wie oft darf man mit einem normalen Würfel höchstens würfeln, um mit einer Wahrscheinlichkeit von mindestens 90% nicht mehr als 24 6er zu würfeln?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 115 | 0.906 |
| 116 | 0.8984 |
| 117 | 0.8903 |
| 118 | 0.8819 |
| 119 | 0.8731 |
| 120 | 0.8639 |
| 121 | 0.8544 |
| 122 | 0.8444 |
| 123 | 0.8341 |
| 124 | 0.8234 |
| 125 | 0.8123 |
| 126 | 0.8009 |
| 127 | 0.7892 |
| 128 | 0.7772 |
| 129 | 0.7648 |
| 130 | 0.7521 |
| 131 | 0.7392 |
| 132 | 0.726 |
| 133 | 0.7126 |
| 134 | 0.6989 |
| 135 | 0.685 |
| 136 | 0.671 |
| 137 | 0.6568 |
| 138 | 0.6424 |
| 139 | 0.6279 |
| 140 | 0.6133 |
| 141 | 0.5986 |
| 142 | 0.5838 |
| 143 | 0.569 |
| 144 | 0.5542 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p = und variablem n.
Es muss gelten: ≥ 0.9
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden der Versuche mit einem Treffer.
Also müssten dann doch bei ≈ 144 Versuchen auch ungefähr 24
(≈
Wir berechnen also mit unserem ersten n=144:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.9 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.9 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=115 die gesuchte Wahrscheinlichkeit über 90% ist.
gesuchtes p (ohne zurücklegen)
Beispiel:
In einer Urne sind 40 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 50% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?
| Anzahl der schwarzen Kugeln in der Urne | P('mindestens eine schwarze Kugel') |
|---|---|
| ... | ... |
| 3 | 1- |
| 4 | 1- |
| 5 | 1- |
| 6 | 1- |
| 7 | 1- |
| 8 | 1- |
| 9 | 1- |
| 10 | 1- |
| 11 | 1- |
| 12 | 1- |
| ... | ... |
Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.
Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'=
Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(40-x)/40*(39-x)/39)
In dieser Tabelle erkennen wir, dass erstmals bei 12 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte
Wahrscheinlichkeit über 50% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 12 sein.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
In einer Urne sind 3 rote und einige schwarze Kugeln. Es soll 26 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 70% unter den 26 gezogenen Kugeln nicht mehr als 21 schwarze sind?
| p | P(X≤21) |
|---|---|
| ... | ... |
| 0.9997 | |
| 0.9971 | |
| 0.987 | |
| 0.9642 | |
| 0.9267 | |
| 0.8759 | |
| 0.8156 | |
| 0.75 | |
| 0.6827 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=26 und unbekanntem Parameter p.
Es muss gelten:
Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 3 größer sein muss als der Zähler.
Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus,
wie sich das auf die gesuchte Wahrscheinlichkeit
Als Startwert wählen wir als p=
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p=
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 10 sein.
