nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 4 Versuchen mindestens einmal zu treffen bei 80% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.8 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.2 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.

Es gilt also 0.2=(1-p)4

=>1-p=0.24 ≈ 0.6687

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.6687 ≈ 0.3313

Binomialvert. mit variablem n (höchst.)

Beispiel:

In einer Urne ist der Anteil der grünen Kugeln 50%. Wie oft darf höchstens gezogen werden ( - natürlich mit Zurücklegen - ), so dass mit mind. 90% Wahrscheinlichkeit nicht mehr als 36 grüne Kugeln gezogen werden?

Lösung einblenden
nP(X≤k)
......
620.9191
630.8963
640.8698
650.8395
660.8055
670.7681
680.7277
690.6848
700.6399
710.5937
720.5469
......

Die Zufallsgröße X gibt Anzahl der gezogenen grünen Kugeln an und ist im Idealfall binomialverteilt mit p = 0.5 und variablem n.

Es muss gelten: P0.5n (X36) ≥ 0.9

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 50% der Versuche mit einem Treffer. Also müssten dann doch bei 36 0.5 ≈ 72 Versuchen auch ungefähr 36 (≈0.5⋅72) Treffer auftreten.

Wir berechnen also mit unserem ersten n=72:
P0.5n (X36) ≈ 0.5469 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.9 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.9 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=62 die gesuchte Wahrscheinlichkeit über 90% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

Bei einer Tombola sind 60 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 80% liegen. Wieviel der 60 Lose dürfen höchstens Nieten sein?

Lösung einblenden
Anzahl der Nieten im LostopfP('höchstens eine Niete')
......
71- 7 60 6 59 =1- 7 590 ≈0.9881
81- 8 60 7 59 =1- 14 885 ≈0.9842
91- 9 60 8 59 =1- 6 295 ≈0.9797
101- 10 60 9 59 =1- 3 118 ≈0.9746
111- 11 60 10 59 =1- 11 354 ≈0.9689
121- 12 60 11 59 =1- 11 295 ≈0.9627
131- 13 60 12 59 =1- 13 295 ≈0.9559
141- 14 60 13 59 =1- 91 1770 ≈0.9486
151- 15 60 14 59 =1- 7 118 ≈0.9407
161- 16 60 15 59 =1- 4 59 ≈0.9322
171- 17 60 16 59 =1- 68 885 ≈0.9232
181- 18 60 17 59 =1- 51 590 ≈0.9136
191- 19 60 18 59 =1- 57 590 ≈0.9034
201- 20 60 19 59 =1- 19 177 ≈0.8927
211- 21 60 20 59 =1- 7 59 ≈0.8814
221- 22 60 21 59 =1- 77 590 ≈0.8695
231- 23 60 22 59 =1- 253 1770 ≈0.8571
241- 24 60 23 59 =1- 46 295 ≈0.8441
251- 25 60 24 59 =1- 10 59 ≈0.8305
261- 26 60 25 59 =1- 65 354 ≈0.8164
271- 27 60 26 59 =1- 117 590 ≈0.8017
281- 28 60 27 59 =1- 63 295 ≈0.7864
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.

Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Nieten im Lostopf=7 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= 7 60 6 59 (beim ersten Zufallsversuch 7 60 und beim zweiten 6 59 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1- 7 60 6 59

Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=7. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/60*(x-1)/59)

In dieser Tabelle erkennen wir, dass letztmals bei 27 als 'Anzahl der Nieten im Lostopf' die gesuchte Wahrscheinlichkeit über 80% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 27 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Eine Firma, die Überraschungseier vertreibt, möchte als Werbegag manche Eier mit Superfiguren bestücken. Aus Angst vor Kundenbeschwerden sollen in einer 8er-Packung mit der mindestens 75% Wahrscheinlichkeit 1 oder mehr Superfiguren enthalten sein. Wenn in jedes n-te Ei eine Superfigur rein soll, wie groß darf dann n höchstens sein?

Lösung einblenden
pP(X≥1)=1-P(X≤0)
......
1 2 0.9961
1 3 0.961
1 4 0.8999
1 5 0.8322
1 6 0.7674
1 7 0.7086
......

Die Zufallsgröße X gibt die Anzahl der Eier mit einer Superfigur an. X ist binomialverteilt mit n=8 und unbekanntem Parameter p.

Es muss gelten: Pp8 (X1) = 1- Pp8 (X0) = 0.75 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp8 (X1) ('mindestens 1 Treffer bei 8 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Als Startwert wählen wir als p= 1 2 .

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 1 6 die gesuchte Wahrscheinlichkeit über 75% bleibt.
Der Nenner, also die das wievielte Ei eine Superfigur enthält, darf also höchstens 6 sein.