Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
p gesucht (n-te Wurzel)
Beispiel:
Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 2 Versuchen mindestens einmal zu treffen bei 93% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)
P=0.93 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 2 Durchgängen, also ist 1-P=0.07 die Wahrscheinlichkeit für keinen Treffer bei bei 2 Durchgängen.
Es gilt also 0.07=(1-p)2
=>1-p= ≈ 0.2646
Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.2646 ≈ 0.7354
Binomialvert. mit variablem n (mind)
Beispiel:
In Tschechien gilt absolutes Alkoholverbot in Lokalen für Jugendliche unter 18 Jahren. Ein paar trinkfreudige 17-jährige Jugendliche wollen bei einer Studienfahrt nach Prag trotzdem ihr Glück versuchen. 93% der Gaststätten setzen das Alkoholverbot konsequent um und schenken nur gegen Vorlage einer "ID" (Personalausweis) Bier aus. Wie viele Kneipen müssen die Jugenlichen nun mindestens aufsuchen, damit sie bei einer Kneipentour mit mindestens 70% Wahrscheinlichkeit in mindestens 4 Lokalen nicht mit Nachfragen zu ihrer "ID" gedemütigt werden und in Ruhe ein Bier trinken können?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 63 | 0.3488 |
| 64 | 0.3365 |
| 65 | 0.3246 |
| 66 | 0.3129 |
| 67 | 0.3016 |
| 68 | 0.2905 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der besuchten Kneipen, die keine "ID" (Personalausweis) verlangen an und ist im Idealfall binomialverteilt mit p = 0.07 und variablem n.
Es muss gelten: ≥ 0.7
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.7 |+ - 0.7
0.3 ≥ oder ≤ 0.3
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 7% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 57 Versuchen auch ungefähr 4 (≈0.07⋅57) Treffer auftreten.
Wir berechnen also mit unserem ersten n=57:
≈ 0.4284
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.3 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.3 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=68 die gesuchte Wahrscheinlichkeit unter 0.3 ist.
n muss also mindestens 68 sein, damit ≤ 0.3 oder eben ≥ 0.7 gilt.
gesuchtes p (ohne zurücklegen)
Beispiel:
In einem Kartenstapel mit 26 Karten sind auch einige Joker-Karten drin. Wenn man 2 Karten gleichzeitig aus dem Stapel zieht, soll mit 85%-iger Wahrscheinlichkeit höchstens eine Jokerkarte dabei sein liegen. Wie viele Jokerkarten dürfen maximal in dem Stapel drin sein?
| Anzahl der Joker im Kartenstapel | P('höchstens einen Joker') |
|---|---|
| ... | ... |
| 4 | 1-⋅=1-≈0.9815 |
| 5 | 1-⋅=1-≈0.9692 |
| 6 | 1-⋅=1-≈0.9538 |
| 7 | 1-⋅=1-≈0.9354 |
| 8 | 1-⋅=1-≈0.9138 |
| 9 | 1-⋅=1-≈0.8892 |
| 10 | 1-⋅=1-≈0.8615 |
| 11 | 1-⋅=1-≈0.8308 |
| ... | ... |
Gesucht ist die Wahrscheinlichkeit von 'höchstens einen Joker'.
Das Gegenereignis ('genau zwei Joker') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist): Wenn beispielsweise die Anzahl der Joker im Kartenstapel=4 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Joker'= ⋅ (beim ersten Zufallsversuch und beim zweiten weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens einen Joker'=1-⋅
Wir erhöhen nun schrittweise immer die Anzahl der Joker im Kartenstapel um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens einen Joker' auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=4. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/26*(x-1)/25)
In dieser Tabelle erkennen wir, dass letztmals bei 10 als 'Anzahl der Joker im Kartenstapel' die gesuchte
Wahrscheinlichkeit über 85% auftritt.
Die gesuchte Anzahl der Joker im Kartenstapel darf also höchstens 10 sein.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
Eine Schulklasse möchte fürs Schulfest ein Glücksrad entwickeln. Aus optischen Gründen sollen dabei alle Sektoren gleich groß sein. Einer davon soll für den Hauptpreis stehen. Hierfür haben sie insgesamt 7 Preise gesammelt. Sie erwarten, dass das Glücksrad beim Schulfest 80 mal gespielt wird. Mit wie vielen Sektoren müssen sie ihr Glückrad mindestens bestücken damit die 7 Hauptpreise mit einer Wahrscheinlichkeit von mindestens 85% für die 80 Durchgänge reichen?
| p | P(X≤7) |
|---|---|
| ... | ... |
| 0.5563 | |
| 0.6505 | |
| 0.7275 | |
| 0.7887 | |
| 0.8365 | |
| 0.8735 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Hauptpreise an. X ist binomialverteilt mit n=80 und unbekanntem Parameter p.
Es muss gelten: =0.85 (oder mehr)
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit ('höchstens 7 Treffer bei 80 Versuchen') bei diesen Nennern wird (siehe Tabelle links)
Um einen günstigen Startwert zu finden wählen wir mal als p=. Mit diesem p wäre ja 7=⋅80 der Erwartungswert und somit irgendwo in der nähe von 50%. Wenn wir nun p= mit erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= einen brauchbaren Einstiegswert für dieses Probieren erhalten.
In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 85% steigt.
Der Nenner, also die Anzahl der Sektoren des Glücksrad, muss also mindestens
16 sein.
