nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Bei einer Tombola werden elektronische Lose so verkauft, dass bei jedem Los jede Preiskategorie immer die gleiche Gewinnwahrscheinlichkeit hat. Aus Marketinggründen wird dabei auch ein Vierer-Pack angeboten. Dabei wird geworben, dass mit einer Wahrscheinlichkeit von 63% bei jedem Viererpack mindestens ein hochwertiger Preis dabei ist. Wie hoch muss man die Einzelwahrscheinlichkeit für einen hochwertigen Preis setzen, damit dieses Versprechen eingehalten wird?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.63 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.37 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.

Es gilt also 0.37=(1-p)4

=>1-p=0.374 ≈ 0.7799

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.7799 ≈ 0.2201

Binomialvert. mit variablem n (höchst.)

Beispiel:

In einer Urne ist der Anteil der grünen Kugeln 40%. Wie oft darf höchstens gezogen werden ( - natürlich mit Zurücklegen - ), so dass mit mind. 70% Wahrscheinlichkeit nicht mehr als 24 grüne Kugeln gezogen werden?

Lösung einblenden
nP(X≤k)
......
560.7185
570.6795
580.639
590.5976
600.5558
......

Die Zufallsgröße X gibt Anzahl der gezogenen grünen Kugeln an und ist im Idealfall binomialverteilt mit p = 0.4 und variablem n.

Es muss gelten: P0.4n (X24) ≥ 0.7

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 40% der Versuche mit einem Treffer. Also müssten dann doch bei 24 0.4 ≈ 60 Versuchen auch ungefähr 24 (≈0.4⋅60) Treffer auftreten.

Wir berechnen also mit unserem ersten n=60:
P0.4n (X24) ≈ 0.5558 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=56 die gesuchte Wahrscheinlichkeit über 70% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einer Urne sind 25 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 50% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?

Lösung einblenden
Anzahl der schwarzen Kugeln in der UrneP('mindestens eine schwarze Kugel')
......
31- 22 25 21 24 =1- 77 100 ≈0.23
41- 21 25 20 24 =1- 7 10 ≈0.3
51- 20 25 19 24 =1- 19 30 ≈0.3667
61- 19 25 18 24 =1- 57 100 ≈0.43
71- 18 25 17 24 =1- 51 100 ≈0.49
81- 17 25 16 24 =1- 34 75 ≈0.5467
......

Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.

Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= 22 25 21 24 (beim ersten Zufallsversuch 22 25 und beim zweiten 21 24 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1- 22 25 21 24

Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(25-x)/25*(24-x)/24)

In dieser Tabelle erkennen wir, dass erstmals bei 8 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte Wahrscheinlichkeit über 50% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 8 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 5 rote und einige schwarze Kugeln. Es soll 15 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 80% unter den 15 gezogenen Kugeln nicht mehr als 6 rote sind?

Lösung einblenden
pP(X≤6)
......
5 12 0.5576
5 13 0.6568
5 14 0.7357
5 15 0.797
5 16 0.8439
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe rot an. X ist binomialverteilt mit n=15 und unbekanntem Parameter p.

Es muss gelten: Pp15 (X6) =0.8 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 5 sein muss, da es ja genau 5 günstige Fälle gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp15 (X6) ('höchstens 6 Treffer bei 15 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 6 15 . Mit diesem p wäre ja 6= 6 15 ⋅15 der Erwartungswert und somit Pp15 (X6) irgendwo in der nähe von 50%. Wenn wir nun p= 6 15 mit 5 6 erweitern (so dass wir auf den Zähler 5 kommen) und den Nenner abrunden, müssten wir mit p= 5 12 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 5 16 die gesuchte Wahrscheinlichkeit über 80% steigt.
Der Nenner, also die Anzahl aller Kugeln, muss also mindestens 16 sein.

Also werden noch 11 zusätzliche Optionen (also schwarze Kugeln) benötigt.