nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 4 Versuchen mindestens einmal zu treffen bei 80% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.8 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.2 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.

Es gilt also 0.2=(1-p)4

=>1-p=0.24 ≈ 0.6687

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.6687 ≈ 0.3313

Binomialvert. mit variablem n (höchst.)

Beispiel:

Der Starspieler der gegnerischen Basketballmannschaft hat bei Freiwürfen eine Trefferquote von p=0,9. Wie viele Freiwürfe darf man bei ihm durch Fouls höchstens zulassen, wenn man ihn mit einer Wahrscheinlichkeit von mindestens 50% nicht über 23 Freiwurfpunkte kommen lassen will?

Lösung einblenden
nP(X≤k)
......
250.7288
260.4895
......

Die Zufallsgröße X gibt die Anzahl der getroffenen Freiwürfe an und ist im Idealfall binomialverteilt mit p = 0.9 und variablem n.

Es muss gelten: P0.9n (X23) ≥ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 90% der Versuche mit einem Treffer. Also müssten dann doch bei 23 0.9 ≈ 26 Versuchen auch ungefähr 23 (≈0.9⋅26) Treffer auftreten.

Wir berechnen also mit unserem ersten n=26:
P0.9n (X23) ≈ 0.4895 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=25 die gesuchte Wahrscheinlichkeit über 50% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einem Kartenstapel mit 20 Karten sind auch einige Joker-Karten drin. Wenn man 2 Karten gleichzeitig aus dem Stapel zieht, soll mit 85%-iger Wahrscheinlichkeit höchstens eine Jokerkarte dabei sein liegen. Wie viele Jokerkarten dürfen maximal in dem Stapel drin sein?

Lösung einblenden
Anzahl der Joker im KartenstapelP('höchstens einen Joker')
......
31- 3 20 2 19 =1- 3 190 ≈0.9842
41- 4 20 3 19 =1- 3 95 ≈0.9684
51- 5 20 4 19 =1- 1 19 ≈0.9474
61- 6 20 5 19 =1- 3 38 ≈0.9211
71- 7 20 6 19 =1- 21 190 ≈0.8895
81- 8 20 7 19 =1- 14 95 ≈0.8526
91- 9 20 8 19 =1- 18 95 ≈0.8105
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens einen Joker'.

Das Gegenereignis ('genau zwei Joker') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Joker im Kartenstapel=3 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Joker'= 3 20 2 19 (beim ersten Zufallsversuch 3 20 und beim zweiten 2 19 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens einen Joker'=1- 3 20 2 19

Wir erhöhen nun schrittweise immer die Anzahl der Joker im Kartenstapel um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens einen Joker' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/20*(x-1)/19)

In dieser Tabelle erkennen wir, dass letztmals bei 8 als 'Anzahl der Joker im Kartenstapel' die gesuchte Wahrscheinlichkeit über 85% auftritt.
Die gesuchte Anzahl der Joker im Kartenstapel darf also höchstens 8 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 2 rote und einige schwarze Kugeln. Es soll 25 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 85% unter den 25 gezogenen Kugeln nicht mehr als 24 schwarze sind?

Lösung einblenden
pP(X≤24)
......
5 7 0.9998
6 8 0.9992
7 9 0.9981
8 10 0.9962
9 11 0.9934
10 12 0.9895
11 13 0.9846
12 14 0.9788
13 15 0.9721
14 16 0.9645
15 17 0.9562
16 18 0.9474
17 19 0.938
18 20 0.9282
19 21 0.9181
20 22 0.9077
21 23 0.8971
22 24 0.8864
23 25 0.8756
24 26 0.8648
25 27 0.854
26 28 0.8432
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=25 und unbekanntem Parameter p.

Es muss gelten: Pp25 (X24) = 0.85 (oder mehr)

Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 2 größer sein muss als der Zähler.

Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit Pp25 (X24) ('höchstens 24 Treffer bei 25 Versuchen') auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p= 5 7 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 25 27 die gesuchte Wahrscheinlichkeit über 85% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 25 sein.