Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
p gesucht (n-te Wurzel)
Beispiel:
Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 4 Versuchen mindestens einmal zu treffen bei 91% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)
P=0.91 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.09 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.
Es gilt also 0.09=(1-p)4
=>1-p= ≈ 0.5477
Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.5477 ≈ 0.4523
Binomialvert. mit variablem n (höchst.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,85.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 80% Wahrscheinlichkeit, höchstens 21 Treffer zu erzielen ?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 23 | 0.8796 |
| 24 | 0.7202 |
| 25 | 0.5289 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.85 und variablem n.
Es muss gelten: ≥ 0.8
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 85% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 25 Versuchen auch ungefähr 21 (≈0.85⋅25) Treffer auftreten.
Wir berechnen also mit unserem ersten n=25:
≈ 0.5289
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.8 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.8 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=23 die gesuchte Wahrscheinlichkeit über 80% ist.
gesuchtes p (ohne zurücklegen)
Beispiel:
In einem Kartenstapel mit 24 Karten sind auch einige Joker-Karten drin. Wenn man 2 Karten gleichzeitig aus dem Stapel zieht, soll mit 80%-iger Wahrscheinlichkeit höchstens eine Jokerkarte dabei sein liegen. Wie viele Jokerkarten dürfen maximal in dem Stapel drin sein?
| Anzahl der Joker im Kartenstapel | P('höchstens einen Joker') |
|---|---|
| ... | ... |
| 3 | 1-⋅=1-≈0.9891 |
| 4 | 1-⋅=1-≈0.9783 |
| 5 | 1-⋅=1-≈0.9638 |
| 6 | 1-⋅=1-≈0.9457 |
| 7 | 1-⋅=1-≈0.9239 |
| 8 | 1-⋅=1-≈0.8986 |
| 9 | 1-⋅=1-≈0.8696 |
| 10 | 1-⋅=1-≈0.837 |
| 11 | 1-⋅=1-≈0.8007 |
| 12 | 1-⋅=1-≈0.7609 |
| ... | ... |
Gesucht ist die Wahrscheinlichkeit von 'höchstens einen Joker'.
Das Gegenereignis ('genau zwei Joker') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist): Wenn beispielsweise die Anzahl der Joker im Kartenstapel=3 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Joker'= ⋅ (beim ersten Zufallsversuch und beim zweiten weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens einen Joker'=1-⋅
Wir erhöhen nun schrittweise immer die Anzahl der Joker im Kartenstapel um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens einen Joker' auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/24*(x-1)/23)
In dieser Tabelle erkennen wir, dass letztmals bei 11 als 'Anzahl der Joker im Kartenstapel' die gesuchte
Wahrscheinlichkeit über 80% auftritt.
Die gesuchte Anzahl der Joker im Kartenstapel darf also höchstens 11 sein.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
In einer Urne sind 2 rote und einige schwarze Kugeln. Es soll 27 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den 27 gezogenen Kugeln nicht mehr als 24 schwarze sind?
| p | P(X≤24) |
|---|---|
| ... | ... |
| 0.9998 | |
| 0.9982 | |
| 0.9923 | |
| 0.9793 | |
| 0.9578 | |
| 0.9282 | |
| 0.8921 | |
| 0.8512 | |
| 0.8075 | |
| 0.7625 | |
| 0.7174 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=27 und unbekanntem Parameter p.
Es muss gelten: = 0.75 (oder mehr)
Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 2 größer sein muss als der Zähler.
Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit ('höchstens 24 Treffer bei 27 Versuchen') auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=. (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 75% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 12 sein.
