Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
p gesucht (n-te Wurzel)
Beispiel:
Bei einer Tombola werden elektronische Lose so verkauft, dass bei jedem Los jede Preiskategorie immer die gleiche Gewinnwahrscheinlichkeit hat. Aus Marketinggründen wird dabei auch ein Vierer-Pack angeboten. Dabei wird geworben, dass mit einer Wahrscheinlichkeit von 55% bei jedem Viererpack mindestens ein hochwertiger Preis dabei ist. Wie hoch muss man die Einzelwahrscheinlichkeit für einen hochwertigen Preis setzen, damit dieses Versprechen eingehalten wird?
(Bitte auf 3 Stellen runden!)
P=0.55 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.45 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.
Es gilt also 0.45=(1-p)4
=>1-p= ≈ 0.819
Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.819 ≈ 0.181
Binomialvert. mit variablem n (mind)
Beispiel:
Ein Lebensmittelhersteller wirbt damit, dass sich in jeder 7. Verpackung eine Überraschung befindet. Wie viele Packungen muss man mindestens kaufen, um mit einer Wahrscheinlichkeit von mindestens 50% mindestens 3 Überraschung(en) zu erhalten.
| n | P(X≤k) |
|---|---|
| ... | ... |
| 18 | 0.5145 |
| 19 | 0.4767 |
| 20 | 0.4404 |
| 21 | 0.4058 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Überraschungen an und ist im Idealfall binomialverteilt mit p = und variablem n.
Es muss gelten: ≥ 0.5
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.5 |+ - 0.5
0.5 ≥ oder ≤ 0.5
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden der Versuche mit einem Treffer.
Also müssten dann doch bei ≈ 21 Versuchen auch ungefähr 3
(≈
Wir berechnen also mit unserem ersten n=21:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=19 die gesuchte Wahrscheinlichkeit unter 0.5 ist.
n muss also mindestens 19 sein, damit
gesuchtes p (ohne zurücklegen)
Beispiel:
In einer Urne sind 45 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 50% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?
| Anzahl der schwarzen Kugeln in der Urne | P('mindestens eine schwarze Kugel') |
|---|---|
| ... | ... |
| 3 | 1- |
| 4 | 1- |
| 5 | 1- |
| 6 | 1- |
| 7 | 1- |
| 8 | 1- |
| 9 | 1- |
| 10 | 1- |
| 11 | 1- |
| 12 | 1- |
| 13 | 1- |
| 14 | 1- |
| ... | ... |
Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.
Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'=
Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(45-x)/45*(44-x)/44)
In dieser Tabelle erkennen wir, dass erstmals bei 14 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte
Wahrscheinlichkeit über 50% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 14 sein.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
In einer Urne sind 5 rote und einige schwarze Kugeln. Es soll 26 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 85% unter den 26 gezogenen Kugeln nicht mehr als 21 schwarze sind?
| p | P(X≤21) |
|---|---|
| ... | ... |
| 0.9997 | |
| 0.9987 | |
| 0.9959 | |
| 0.9899 | |
| 0.9796 | |
| 0.9642 | |
| 0.9435 | |
| 0.9175 | |
| 0.887 | |
| 0.8527 | |
| 0.8156 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=26 und unbekanntem Parameter p.
Es muss gelten:
Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 5 größer sein muss als der Zähler.
Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus,
wie sich das auf die gesuchte Wahrscheinlichkeit
Als Startwert wählen wir als p=
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p=
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 14 sein.
