nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Bei einer Tombola werden elektronische Lose so verkauft, dass bei jedem Los jede Preiskategorie immer die gleiche Gewinnwahrscheinlichkeit hat. Aus Marketinggründen wird dabei auch ein Vierer-Pack angeboten. Dabei wird geworben, dass mit einer Wahrscheinlichkeit von 59% bei jedem Viererpack mindestens ein hochwertiger Preis dabei ist. Wie hoch muss man die Einzelwahrscheinlichkeit für einen hochwertigen Preis setzen, damit dieses Versprechen eingehalten wird?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.59 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.41 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.

Es gilt also 0.41=(1-p)4

=>1-p=0.414 ≈ 0.8002

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.8002 ≈ 0.1998

Binomialvert. mit variablem n (höchst.)

Beispiel:

Ein Mathelehrer möchte neue Taschenrechner für seine Klasse bestellen. Die Wahrscheinlichkeit, dass einer der Taschenrechner ein Decepticon (bekannt aus dem Transformers-Filmen) ist, liegt bei p=0,02. Wie viele Rechner können bestellt werden, dass zu einer Wahrscheinlichkeit von 50% kein Descepticon unter ihnen ist?

Lösung einblenden
nP(X≤k)
......
290.5566
300.5455
310.5346
320.5239
330.5134
340.5031
350.4931
......

Die Zufallsgröße X gibt Anzahl der Descepticons unter den Taschenrechnern an und ist im Idealfall binomialverteilt mit p = 0.02 und variablem n.

Es muss gelten: P0.02n (X0) ≥ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 2% der Versuche mit einem Treffer. Also müssten dann doch bei 0 0.02 ≈ 0 Versuchen auch ungefähr 0 (≈0.02⋅0) Treffer auftreten.

Wir berechnen also mit unserem ersten n=0:
P0.02n (X0) ≈ 1 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=34 die gesuchte Wahrscheinlichkeit über 50% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einer Urne sind 20 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?

Lösung einblenden
Anzahl der schwarzen Kugeln in der UrneP('mindestens eine schwarze Kugel')
......
31- 17 20 16 19 =1- 68 95 ≈0.2842
41- 16 20 15 19 =1- 12 19 ≈0.3684
51- 15 20 14 19 =1- 21 38 ≈0.4474
61- 14 20 13 19 =1- 91 190 ≈0.5211
71- 13 20 12 19 =1- 39 95 ≈0.5895
81- 12 20 11 19 =1- 33 95 ≈0.6526
91- 11 20 10 19 =1- 11 38 ≈0.7105
101- 10 20 9 19 =1- 9 38 ≈0.7632
......

Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.

Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= 17 20 16 19 (beim ersten Zufallsversuch 17 20 und beim zweiten 16 19 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1- 17 20 16 19

Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(20-x)/20*(19-x)/19)

In dieser Tabelle erkennen wir, dass erstmals bei 10 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte Wahrscheinlichkeit über 75% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 10 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Eine Firma, die Überraschungseier vertreibt, möchte als Werbegag manche Eier mit Superfiguren bestücken. Aus Angst vor Kundenbeschwerden sollen in einer 10er-Packung mit der mindestens 50% Wahrscheinlichkeit 1 oder mehr Superfiguren enthalten sein. Wenn in jedes n-te Ei eine Superfigur rein soll, wie groß darf dann n höchstens sein?

Lösung einblenden
pP(X≥1)=1-P(X≤0)
......
1 2 0.999
1 3 0.9827
1 4 0.9437
1 5 0.8926
1 6 0.8385
1 7 0.7859
1 8 0.7369
1 9 0.6921
1 10 0.6513
1 11 0.6145
1 12 0.5811
1 13 0.5509
1 14 0.5234
1 15 0.4984
......

Die Zufallsgröße X gibt die Anzahl der Eier mit einer Superfigur an. X ist binomialverteilt mit n=10 und unbekanntem Parameter p.

Es muss gelten: Pp10 (X1) = 1- Pp10 (X0) = 0.5 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp10 (X1) ('mindestens 1 Treffer bei 10 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Als Startwert wählen wir als p= 1 2 .

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 1 14 die gesuchte Wahrscheinlichkeit über 50% bleibt.
Der Nenner, also die das wievielte Ei eine Superfigur enthält, darf also höchstens 14 sein.