nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

An einem Glücksrad wird 2 mal gedreht. Die Wahrscheinlichkeit, dass bei allen 2 Durchgängen die Farbe 'blau' kommt, ist 0,2. Wie groß muss bei diesem Glücksrad die Wahrscheinlichkeit für das blaue Feld sein?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.2 ist die Wahrscheinlichkeit, dass 2 mal das Ereignis mit der Wahrscheinlichkeit p eintritt.

Es gilt also 0.2=p2

=>p=0.22 ≈ 0.4472

Binomialvert. mit variablem n (mind)

Beispiel:

Ein Lebensmittelhersteller wirbt damit, dass sich in jeder 7. Verpackung eine Überraschung befindet. Wie viele Packungen muss man mindestens kaufen, um mit einer Wahrscheinlichkeit von mindestens 60% mindestens 3 Überraschung(en) zu erhalten.

Lösung einblenden
nP(X≤k)
......
210.4058
220.3731
......

Die Zufallsgröße X gibt die Anzahl der Überraschungen an und ist im Idealfall binomialverteilt mit p = 1 7 und variablem n.

Es muss gelten: P 1 7 n (X3) ≥ 0.6

Weil man ja aber P 1 7 n (X3) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P 1 7 n (X3) = 1 - P 1 7 n (X2) ≥ 0.6 |+ P 1 7 n (X2) - 0.6

0.4 ≥ P 1 7 n (X2) oder P 1 7 n (X2) ≤ 0.4

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 1 7 der Versuche mit einem Treffer. Also müssten dann doch bei 3 1 7 ≈ 21 Versuchen auch ungefähr 3 (≈ 1 7 ⋅21) Treffer auftreten.

Wir berechnen also mit unserem ersten n=21:
P 1 7 n (X2) ≈ 0.4058 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.4 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.4 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=22 die gesuchte Wahrscheinlichkeit unter 0.4 ist.

n muss also mindestens 22 sein, damit P 1 7 n (X2) ≤ 0.4 oder eben P 1 7 n (X3) ≥ 0.6 gilt.

gesuchtes p (ohne zurücklegen)

Beispiel:

Bei einer Tombola sind 65 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 90% liegen. Wieviel der 65 Lose dürfen höchstens Nieten sein?

Lösung einblenden
Anzahl der Nieten im LostopfP('höchstens eine Niete')
......
71- 7 65 6 64 =1- 21 2080 ≈0.9899
81- 8 65 7 64 =1- 7 520 ≈0.9865
91- 9 65 8 64 =1- 9 520 ≈0.9827
101- 10 65 9 64 =1- 9 416 ≈0.9784
111- 11 65 10 64 =1- 11 416 ≈0.9736
121- 12 65 11 64 =1- 33 1040 ≈0.9683
131- 13 65 12 64 =1- 3 80 ≈0.9625
141- 14 65 13 64 =1- 7 160 ≈0.9563
151- 15 65 14 64 =1- 21 416 ≈0.9495
161- 16 65 15 64 =1- 3 52 ≈0.9423
171- 17 65 16 64 =1- 17 260 ≈0.9346
181- 18 65 17 64 =1- 153 2080 ≈0.9264
191- 19 65 18 64 =1- 171 2080 ≈0.9178
201- 20 65 19 64 =1- 19 208 ≈0.9087
211- 21 65 20 64 =1- 21 208 ≈0.899
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.

Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Nieten im Lostopf=7 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= 7 65 6 64 (beim ersten Zufallsversuch 7 65 und beim zweiten 6 64 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1- 7 65 6 64

Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=7. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/65*(x-1)/64)

In dieser Tabelle erkennen wir, dass letztmals bei 20 als 'Anzahl der Nieten im Lostopf' die gesuchte Wahrscheinlichkeit über 90% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 20 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Eine Schulklasse möchte fürs Schulfest ein Glücksrad entwickeln. Aus optischen Gründen sollen dabei alle Sektoren gleich groß sein. Einer davon soll für den Hauptpreis stehen. Hierfür haben sie insgesamt 8 Preise gesammelt. Sie erwarten, dass das Glücksrad beim Schulfest 55 mal gespielt wird. Mit wie vielen Sektoren müssen sie ihr Glückrad mindestens bestücken damit die 8 Hauptpreise mit einer Wahrscheinlichkeit von mindestens 85% für die 55 Durchgänge reichen?

Lösung einblenden
pP(X≤8)
......
1 6 0.42
1 7 0.6144
1 8 0.7553
1 9 0.8478
1 10 0.9056
......

Die Zufallsgröße X gibt die Anzahl der Hauptpreise an. X ist binomialverteilt mit n=55 und unbekanntem Parameter p.

Es muss gelten: Pp55 (X8) =0.85 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp55 (X8) ('höchstens 8 Treffer bei 55 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 8 55 . Mit diesem p wäre ja 8= 8 55 ⋅55 der Erwartungswert und somit Pp55 (X8) irgendwo in der nähe von 50%. Wenn wir nun p= 8 55 mit 1 8 erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= 1 6 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 1 10 die gesuchte Wahrscheinlichkeit über 85% steigt.
Der Nenner, also die Anzahl der Sektoren des Glücksrad, muss also mindestens 10 sein.