nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 2 Versuchen mindestens einmal zu treffen bei 96% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.96 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 2 Durchgängen, also ist 1-P=0.04 die Wahrscheinlichkeit für keinen Treffer bei bei 2 Durchgängen.

Es gilt also 0.04=(1-p)2

=>1-p=0.042 ≈ 0.2

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.2 ≈ 0.8

Binomialvert. mit variablem n (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,15.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 90% Wahrscheinlichkeit, höchstens 40 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
2230.9046
2240.8995
2250.8942
2260.8888
2270.8832
2280.8774
2290.8714
2300.8652
2310.8589
2320.8524
2330.8457
2340.8389
2350.8318
2360.8246
2370.8172
2380.8097
2390.802
2400.7941
2410.7861
2420.7779
2430.7696
2440.7611
2450.7525
2460.7438
2470.7349
2480.7259
2490.7167
2500.7075
2510.6981
2520.6887
2530.6791
2540.6695
2550.6597
2560.6499
2570.64
2580.6301
2590.6201
2600.61
2610.5999
2620.5897
2630.5796
2640.5693
2650.5591
2660.5489
2670.5386
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.15 und variablem n.

Es muss gelten: P0.15n (X40) ≥ 0.9

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 15% der Versuche mit einem Treffer. Also müssten dann doch bei 40 0.15 ≈ 267 Versuchen auch ungefähr 40 (≈0.15⋅267) Treffer auftreten.

Wir berechnen also mit unserem ersten n=267:
P0.15n (X40) ≈ 0.5386 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.9 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.9 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=223 die gesuchte Wahrscheinlichkeit über 90% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

Bei einer Tombola sind 65 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 90% liegen. Wieviel der 65 Lose dürfen höchstens Nieten sein?

Lösung einblenden
Anzahl der Nieten im LostopfP('höchstens eine Niete')
......
71- 7 65 6 64 =1- 21 2080 ≈0.9899
81- 8 65 7 64 =1- 7 520 ≈0.9865
91- 9 65 8 64 =1- 9 520 ≈0.9827
101- 10 65 9 64 =1- 9 416 ≈0.9784
111- 11 65 10 64 =1- 11 416 ≈0.9736
121- 12 65 11 64 =1- 33 1040 ≈0.9683
131- 13 65 12 64 =1- 3 80 ≈0.9625
141- 14 65 13 64 =1- 7 160 ≈0.9563
151- 15 65 14 64 =1- 21 416 ≈0.9495
161- 16 65 15 64 =1- 3 52 ≈0.9423
171- 17 65 16 64 =1- 17 260 ≈0.9346
181- 18 65 17 64 =1- 153 2080 ≈0.9264
191- 19 65 18 64 =1- 171 2080 ≈0.9178
201- 20 65 19 64 =1- 19 208 ≈0.9087
211- 21 65 20 64 =1- 21 208 ≈0.899
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.

Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Nieten im Lostopf=7 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= 7 65 6 64 (beim ersten Zufallsversuch 7 65 und beim zweiten 6 64 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1- 7 65 6 64

Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=7. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/65*(x-1)/64)

In dieser Tabelle erkennen wir, dass letztmals bei 20 als 'Anzahl der Nieten im Lostopf' die gesuchte Wahrscheinlichkeit über 90% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 20 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 4 rote und einige schwarze Kugeln. Es soll 18 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 80% unter den 18 gezogenen Kugeln nicht mehr als 3 rote sind?

Lösung einblenden
pP(X≤3)
......
4 24 0.6479
4 25 0.6771
4 26 0.7038
4 27 0.7281
4 28 0.7501
4 29 0.7702
4 30 0.7885
4 31 0.805
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe rot an. X ist binomialverteilt mit n=18 und unbekanntem Parameter p.

Es muss gelten: Pp18 (X3) =0.8 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 4 sein muss, da es ja genau 4 günstige Fälle gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp18 (X3) ('höchstens 3 Treffer bei 18 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 3 18 . Mit diesem p wäre ja 3= 3 18 ⋅18 der Erwartungswert und somit Pp18 (X3) irgendwo in der nähe von 50%. Wenn wir nun p= 3 18 mit 4 3 erweitern (so dass wir auf den Zähler 4 kommen) und den Nenner abrunden, müssten wir mit p= 4 24 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 4 31 die gesuchte Wahrscheinlichkeit über 80% steigt.
Der Nenner, also die Anzahl aller Kugeln, muss also mindestens 31 sein.

Also werden noch 27 zusätzliche Optionen (also schwarze Kugeln) benötigt.