nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 2 Versuchen mindestens einmal zu treffen bei 86% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.86 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 2 Durchgängen, also ist 1-P=0.14 die Wahrscheinlichkeit für keinen Treffer bei bei 2 Durchgängen.

Es gilt also 0.14=(1-p)2

=>1-p=0.142 ≈ 0.3742

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.3742 ≈ 0.6258

Binomialvert. mit variablem n (mind)

Beispiel:

Beim Biberacher Schützenfest läuft ein 12-köpfiger historischer Spielmannszug mit, der an die Schweden während des 30-Jährigen Kriegs erinnert. Dabei feiern dessen Mitglieder manchmal so ausgelassen, dass die Wahrscheinlichkeit eines Ausfall beim Umzug wegen unverhältnismäßigem Alkoholgenuss bei 8% liegt. Wie viele Schwedenmusiker muss die Schützendirektion mindestens ausbilden, damit beim Umzug mit mindestens 80%-iger Wahrscheinlichkeit mindestens 12 Schweden einsatzfähig sind?

Lösung einblenden
nP(X≤k)
......
130.2794
140.0958
......

Die Zufallsgröße X gibt die Anzahl der einsatzfähigen Schwedenmusiker an und ist im Idealfall binomialverteilt mit p = 0.92 und variablem n.

Es muss gelten: P0.92n (X12) ≥ 0.8

Weil man ja aber P0.92n (X12) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.92n (X12) = 1 - P0.92n (X11) ≥ 0.8 |+ P0.92n (X11) - 0.8

0.2 ≥ P0.92n (X11) oder P0.92n (X11) ≤ 0.2

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 92% der Versuche mit einem Treffer. Also müssten dann doch bei 12 0.92 ≈ 13 Versuchen auch ungefähr 12 (≈0.92⋅13) Treffer auftreten.

Wir berechnen also mit unserem ersten n=13:
P0.92n (X11) ≈ 0.2794 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.2 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.2 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=14 die gesuchte Wahrscheinlichkeit unter 0.2 ist.

n muss also mindestens 14 sein, damit P0.92n (X11) ≤ 0.2 oder eben P0.92n (X12) ≥ 0.8 gilt.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einem Kartenstapel mit 20 Karten sind auch einige Joker-Karten drin. Wenn man 2 Karten gleichzeitig aus dem Stapel zieht, soll mit 80%-iger Wahrscheinlichkeit höchstens eine Jokerkarte dabei sein liegen. Wie viele Jokerkarten dürfen maximal in dem Stapel drin sein?

Lösung einblenden
Anzahl der Joker im KartenstapelP('höchstens einen Joker')
......
31- 3 20 2 19 =1- 3 190 ≈0.9842
41- 4 20 3 19 =1- 3 95 ≈0.9684
51- 5 20 4 19 =1- 1 19 ≈0.9474
61- 6 20 5 19 =1- 3 38 ≈0.9211
71- 7 20 6 19 =1- 21 190 ≈0.8895
81- 8 20 7 19 =1- 14 95 ≈0.8526
91- 9 20 8 19 =1- 18 95 ≈0.8105
101- 10 20 9 19 =1- 9 38 ≈0.7632
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens einen Joker'.

Das Gegenereignis ('genau zwei Joker') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Joker im Kartenstapel=3 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Joker'= 3 20 2 19 (beim ersten Zufallsversuch 3 20 und beim zweiten 2 19 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens einen Joker'=1- 3 20 2 19

Wir erhöhen nun schrittweise immer die Anzahl der Joker im Kartenstapel um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens einen Joker' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/20*(x-1)/19)

In dieser Tabelle erkennen wir, dass letztmals bei 9 als 'Anzahl der Joker im Kartenstapel' die gesuchte Wahrscheinlichkeit über 80% auftritt.
Die gesuchte Anzahl der Joker im Kartenstapel darf also höchstens 9 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Eine Schulklasse möchte fürs Schulfest ein Glücksrad entwickeln. Aus optischen Gründen sollen dabei alle Sektoren gleich groß sein. Einer davon soll für den Hauptpreis stehen. Hierfür haben sie insgesamt 8 Preise gesammelt. Sie erwarten, dass das Glücksrad beim Schulfest 70 mal gespielt wird. Mit wie vielen Sektoren müssen sie ihr Glückrad mindestens bestücken damit die 8 Hauptpreise mit einer Wahrscheinlichkeit von mindestens 95% für die 70 Durchgänge reichen?

Lösung einblenden
pP(X≤8)
......
1 8 0.4822
1 9 0.6256
1 10 0.7363
1 11 0.8167
1 12 0.8733
1 13 0.9123
1 14 0.9391
1 15 0.9575
......

Die Zufallsgröße X gibt die Anzahl der Hauptpreise an. X ist binomialverteilt mit n=70 und unbekanntem Parameter p.

Es muss gelten: Pp70 (X8) =0.95 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp70 (X8) ('höchstens 8 Treffer bei 70 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 8 70 . Mit diesem p wäre ja 8= 8 70 ⋅70 der Erwartungswert und somit Pp70 (X8) irgendwo in der nähe von 50%. Wenn wir nun p= 8 70 mit 1 8 erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= 1 8 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 1 15 die gesuchte Wahrscheinlichkeit über 95% steigt.
Der Nenner, also die Anzahl der Sektoren des Glücksrad, muss also mindestens 15 sein.