nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Bei einer Tombola werden elektronische Lose so verkauft, dass bei jedem Los jede Preiskategorie immer die gleiche Gewinnwahrscheinlichkeit hat. Aus Marketinggründen wird dabei auch ein Vierer-Pack angeboten. Dabei wird geworben, dass mit einer Wahrscheinlichkeit von 72% bei jedem Viererpack mindestens ein hochwertiger Preis dabei ist. Wie hoch muss man die Einzelwahrscheinlichkeit für einen hochwertigen Preis setzen, damit dieses Versprechen eingehalten wird?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.72 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.28 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.

Es gilt also 0.28=(1-p)4

=>1-p=0.284 ≈ 0.7274

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.7274 ≈ 0.2726

Binomialvert. mit variablem n (höchst.)

Beispiel:

Ein Mathelehrer möchte neue Taschenrechner für seine Klasse bestellen. Die Wahrscheinlichkeit, dass einer der Taschenrechner ein Decepticon (bekannt aus dem Transformers-Filmen) ist, liegt bei p=0,09. Wie viele Rechner können bestellt werden, dass zu einer Wahrscheinlichkeit von 50% kein Descepticon unter ihnen ist?

Lösung einblenden
nP(X≤k)
......
20.8281
30.7536
40.6857
50.624
60.5679
70.5168
80.4703
......

Die Zufallsgröße X gibt Anzahl der Descepticons unter den Taschenrechnern an und ist im Idealfall binomialverteilt mit p = 0.09 und variablem n.

Es muss gelten: P0.09n (X0) ≥ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 9% der Versuche mit einem Treffer. Also müssten dann doch bei 0 0.09 ≈ 0 Versuchen auch ungefähr 0 (≈0.09⋅0) Treffer auftreten.

Wir berechnen also mit unserem ersten n=0:
P0.09n (X0) ≈ 1 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=7 die gesuchte Wahrscheinlichkeit über 50% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einer Urne sind 35 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?

Lösung einblenden
Anzahl der schwarzen Kugeln in der UrneP('mindestens eine schwarze Kugel')
......
31- 32 35 31 34 =1- 496 595 ≈0.1664
41- 31 35 30 34 =1- 93 119 ≈0.2185
51- 30 35 29 34 =1- 87 119 ≈0.2689
61- 29 35 28 34 =1- 58 85 ≈0.3176
71- 28 35 27 34 =1- 54 85 ≈0.3647
81- 27 35 26 34 =1- 351 595 ≈0.4101
91- 26 35 25 34 =1- 65 119 ≈0.4538
101- 25 35 24 34 =1- 60 119 ≈0.4958
111- 24 35 23 34 =1- 276 595 ≈0.5361
121- 23 35 22 34 =1- 253 595 ≈0.5748
131- 22 35 21 34 =1- 33 85 ≈0.6118
141- 21 35 20 34 =1- 6 17 ≈0.6471
151- 20 35 19 34 =1- 38 119 ≈0.6807
161- 19 35 18 34 =1- 171 595 ≈0.7126
171- 18 35 17 34 =1- 9 35 ≈0.7429
181- 17 35 16 34 =1- 8 35 ≈0.7714
......

Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.

Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= 32 35 31 34 (beim ersten Zufallsversuch 32 35 und beim zweiten 31 34 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1- 32 35 31 34

Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(35-x)/35*(34-x)/34)

In dieser Tabelle erkennen wir, dass erstmals bei 18 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte Wahrscheinlichkeit über 75% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 18 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 5 rote und einige schwarze Kugeln. Es soll 28 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 90% unter den 28 gezogenen Kugeln nicht mehr als 21 schwarze sind?

Lösung einblenden
pP(X≤21)
......
4 9 0.9998
5 10 0.9981
6 11 0.9924
7 12 0.9791
8 13 0.9552
9 14 0.9198
10 15 0.8738
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=28 und unbekanntem Parameter p.

Es muss gelten: Pp28 (X21) = 0.9 (oder mehr)

Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 5 größer sein muss als der Zähler.

Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit Pp28 (X21) ('höchstens 21 Treffer bei 28 Versuchen') auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p= 4 9 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 9 14 die gesuchte Wahrscheinlichkeit über 90% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 9 sein.