nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 2 Versuchen mindestens einmal zu treffen bei 88% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.88 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 2 Durchgängen, also ist 1-P=0.12 die Wahrscheinlichkeit für keinen Treffer bei bei 2 Durchgängen.

Es gilt also 0.12=(1-p)2

=>1-p=0.122 ≈ 0.3464

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.3464 ≈ 0.6536

Binomialvert. mit variablem n (höchst.)

Beispiel:

Wie oft darf man mit einem normalen Würfel höchstens würfeln, um mit einer Wahrscheinlichkeit von mindestens 90% nicht mehr als 24 6er zu würfeln?

Lösung einblenden
nP(X≤k)
......
1150.906
1160.8984
1170.8903
1180.8819
1190.8731
1200.8639
1210.8544
1220.8444
1230.8341
1240.8234
1250.8123
1260.8009
1270.7892
1280.7772
1290.7648
1300.7521
1310.7392
1320.726
1330.7126
1340.6989
1350.685
1360.671
1370.6568
1380.6424
1390.6279
1400.6133
1410.5986
1420.5838
1430.569
1440.5542
......

Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p = 1 6 und variablem n.

Es muss gelten: P 1 6 n (X24) ≥ 0.9

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 1 6 der Versuche mit einem Treffer. Also müssten dann doch bei 24 1 6 ≈ 144 Versuchen auch ungefähr 24 (≈ 1 6 ⋅144) Treffer auftreten.

Wir berechnen also mit unserem ersten n=144:
P 1 6 n (X24) ≈ 0.5542 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.9 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.9 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=115 die gesuchte Wahrscheinlichkeit über 90% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einer Urne sind 40 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 50% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?

Lösung einblenden
Anzahl der schwarzen Kugeln in der UrneP('mindestens eine schwarze Kugel')
......
31- 37 40 36 39 =1- 111 130 ≈0.1462
41- 36 40 35 39 =1- 21 26 ≈0.1923
51- 35 40 34 39 =1- 119 156 ≈0.2372
61- 34 40 33 39 =1- 187 260 ≈0.2808
71- 33 40 32 39 =1- 44 65 ≈0.3231
81- 32 40 31 39 =1- 124 195 ≈0.3641
91- 31 40 30 39 =1- 31 52 ≈0.4038
101- 30 40 29 39 =1- 29 52 ≈0.4423
111- 29 40 28 39 =1- 203 390 ≈0.4795
121- 28 40 27 39 =1- 63 130 ≈0.5154
......

Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.

Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= 37 40 36 39 (beim ersten Zufallsversuch 37 40 und beim zweiten 36 39 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1- 37 40 36 39

Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(40-x)/40*(39-x)/39)

In dieser Tabelle erkennen wir, dass erstmals bei 12 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte Wahrscheinlichkeit über 50% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 12 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 3 rote und einige schwarze Kugeln. Es soll 26 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 70% unter den 26 gezogenen Kugeln nicht mehr als 21 schwarze sind?

Lösung einblenden
pP(X≤21)
......
3 6 0.9997
4 7 0.9971
5 8 0.987
6 9 0.9642
7 10 0.9267
8 11 0.8759
9 12 0.8156
10 13 0.75
11 14 0.6827
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=26 und unbekanntem Parameter p.

Es muss gelten: Pp26 (X21) = 0.7 (oder mehr)

Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 3 größer sein muss als der Zähler.

Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit Pp26 (X21) ('höchstens 21 Treffer bei 26 Versuchen') auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p= 3 6 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 10 13 die gesuchte Wahrscheinlichkeit über 70% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 10 sein.