Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
p gesucht (n-te Wurzel)
Beispiel:
Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 3 Versuchen mindestens einmal zu treffen bei 96% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)
P=0.96 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 3 Durchgängen, also ist 1-P=0.04 die Wahrscheinlichkeit für keinen Treffer bei bei 3 Durchgängen.
Es gilt also 0.04=(1-p)3
=>1-p= ≈ 0.342
Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.342 ≈ 0.658
Binomialvert. mit variablem n (höchst.)
Beispiel:
Wie oft darf man mit einem normalen Würfel höchstens würfeln, um mit einer Wahrscheinlichkeit von mindestens 50% nicht mehr als 35 6er zu würfeln?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 210 | 0.545 |
| 211 | 0.5327 |
| 212 | 0.5204 |
| 213 | 0.5082 |
| 214 | 0.496 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p = und variablem n.
Es muss gelten: ≥ 0.5
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden der Versuche mit einem Treffer.
Also müssten dann doch bei ≈ 210 Versuchen auch ungefähr 35
(≈
Wir berechnen also mit unserem ersten n=210:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=213 die gesuchte Wahrscheinlichkeit über 50% ist.
gesuchtes p (ohne zurücklegen)
Beispiel:
Bei einer Tombola sind 50 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 80% liegen. Wieviel der 50 Lose dürfen höchstens Nieten sein?
| Anzahl der Nieten im Lostopf | P('höchstens eine Niete') |
|---|---|
| ... | ... |
| 6 | 1- |
| 7 | 1- |
| 8 | 1- |
| 9 | 1- |
| 10 | 1- |
| 11 | 1- |
| 12 | 1- |
| 13 | 1- |
| 14 | 1- |
| 15 | 1- |
| 16 | 1- |
| 17 | 1- |
| 18 | 1- |
| 19 | 1- |
| 20 | 1- |
| 21 | 1- |
| 22 | 1- |
| 23 | 1- |
| ... | ... |
Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.
Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Nieten im Lostopf=6 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'=
Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=6. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/50*(x-1)/49)
In dieser Tabelle erkennen wir, dass letztmals bei 22 als 'Anzahl der Nieten im Lostopf' die gesuchte
Wahrscheinlichkeit über 80% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 22 sein.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
Eine Schulklasse möchte fürs Schulfest ein Glücksrad entwickeln. Aus optischen Gründen sollen dabei alle Sektoren gleich groß sein. Einer davon soll für den Hauptpreis stehen. Hierfür haben sie insgesamt 9 Preise gesammelt. Sie erwarten, dass das Glücksrad beim Schulfest 95 mal gespielt wird. Mit wie vielen Sektoren müssen sie ihr Glückrad mindestens bestücken damit die 9 Hauptpreise mit einer Wahrscheinlichkeit von mindestens 80% für die 95 Durchgänge reichen?
| p | P(X≤9) |
|---|---|
| ... | ... |
| 0.5184 | |
| 0.6376 | |
| 0.7329 | |
| 0.8056 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Hauptpreise an. X ist binomialverteilt mit n=95 und unbekanntem Parameter p.
Es muss gelten:
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit
Um einen günstigen Startwert zu finden wählen wir mal als p=
In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p=
Der Nenner, also die Anzahl der Sektoren des Glücksrad, muss also mindestens
13 sein.
