nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 4 Versuchen mindestens einmal zu treffen bei 89% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.89 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.11 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.

Es gilt also 0.11=(1-p)4

=>1-p=0.114 ≈ 0.5759

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.5759 ≈ 0.4241

Binomialvert. mit variablem n (höchst.)

Beispiel:

Eine Fluggesellschaft geht davon aus, dass 10% der gekauften Tickets gar nicht eingelöst werden. Wieviel Tickets kann sie für ihre 36-Platzmaschine höchstens verkaufen, so dass es zu mindestens 90% Wahrscheinlichkeit zu keiner Überbelegung kommt.

Lösung einblenden
nP(X≤k)
......
380.9047
390.7622
400.5769
......

Die Zufallsgröße X gibt die Anzahl der Ticketbesitzer, die tatsächlich fliegen an und ist im Idealfall binomialverteilt mit p = 0.9 und variablem n.

Es muss gelten: P0.9n (X36) ≥ 0.9

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 90% der Versuche mit einem Treffer. Also müssten dann doch bei 36 0.9 ≈ 40 Versuchen auch ungefähr 36 (≈0.9⋅40) Treffer auftreten.

Wir berechnen also mit unserem ersten n=40:
P0.9n (X36) ≈ 0.5769 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.9 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.9 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=38 die gesuchte Wahrscheinlichkeit über 90% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einem Kartenstapel mit 20 Karten sind auch einige Joker-Karten drin. Wenn man 2 Karten gleichzeitig aus dem Stapel zieht, soll mit 95%-iger Wahrscheinlichkeit höchstens eine Jokerkarte dabei sein liegen. Wie viele Jokerkarten dürfen maximal in dem Stapel drin sein?

Lösung einblenden
Anzahl der Joker im KartenstapelP('höchstens einen Joker')
......
31- 3 20 2 19 =1- 3 190 ≈0.9842
41- 4 20 3 19 =1- 3 95 ≈0.9684
51- 5 20 4 19 =1- 1 19 ≈0.9474
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens einen Joker'.

Das Gegenereignis ('genau zwei Joker') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Joker im Kartenstapel=3 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Joker'= 3 20 2 19 (beim ersten Zufallsversuch 3 20 und beim zweiten 2 19 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens einen Joker'=1- 3 20 2 19

Wir erhöhen nun schrittweise immer die Anzahl der Joker im Kartenstapel um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens einen Joker' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/20*(x-1)/19)

In dieser Tabelle erkennen wir, dass letztmals bei 4 als 'Anzahl der Joker im Kartenstapel' die gesuchte Wahrscheinlichkeit über 95% auftritt.
Die gesuchte Anzahl der Joker im Kartenstapel darf also höchstens 4 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 3 rote und einige schwarze Kugeln. Es soll 25 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 80% unter den 25 gezogenen Kugeln nicht mehr als 21 schwarze sind?

Lösung einblenden
pP(X≤21)
......
4 7 0.999
5 8 0.9951
6 9 0.9851
7 10 0.9668
8 11 0.9394
9 12 0.9038
10 13 0.8617
11 14 0.8151
12 15 0.766
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=25 und unbekanntem Parameter p.

Es muss gelten: Pp25 (X21) = 0.8 (oder mehr)

Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 3 größer sein muss als der Zähler.

Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit Pp25 (X21) ('höchstens 21 Treffer bei 25 Versuchen') auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p= 4 7 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 11 14 die gesuchte Wahrscheinlichkeit über 80% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 11 sein.