nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

An einem Glücksrad wird 4 mal gedreht. Die Wahrscheinlichkeit, dass bei allen 4 Durchgängen die Farbe 'blau' kommt, ist 0,5. Wie groß muss bei diesem Glücksrad die Wahrscheinlichkeit für das blaue Feld sein?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.5 ist die Wahrscheinlichkeit, dass 4 mal das Ereignis mit der Wahrscheinlichkeit p eintritt.

Es gilt also 0.5=p4

=>p=0.54 ≈ 0.8409

Binomialvert. mit variablem n (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,65.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 70% Wahrscheinlichkeit, höchstens 21 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
300.7753
310.689
320.5953
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.65 und variablem n.

Es muss gelten: P0.65n (X21) ≥ 0.7

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 65% der Versuche mit einem Treffer. Also müssten dann doch bei 21 0.65 ≈ 32 Versuchen auch ungefähr 21 (≈0.65⋅32) Treffer auftreten.

Wir berechnen also mit unserem ersten n=32:
P0.65n (X21) ≈ 0.5953 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=30 die gesuchte Wahrscheinlichkeit über 70% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

Bei einer Tombola sind 50 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 80% liegen. Wieviel der 50 Lose dürfen höchstens Nieten sein?

Lösung einblenden
Anzahl der Nieten im LostopfP('höchstens eine Niete')
......
61- 6 50 5 49 =1- 3 245 ≈0.9878
71- 7 50 6 49 =1- 3 175 ≈0.9829
81- 8 50 7 49 =1- 4 175 ≈0.9771
91- 9 50 8 49 =1- 36 1225 ≈0.9706
101- 10 50 9 49 =1- 9 245 ≈0.9633
111- 11 50 10 49 =1- 11 245 ≈0.9551
121- 12 50 11 49 =1- 66 1225 ≈0.9461
131- 13 50 12 49 =1- 78 1225 ≈0.9363
141- 14 50 13 49 =1- 13 175 ≈0.9257
151- 15 50 14 49 =1- 3 35 ≈0.9143
161- 16 50 15 49 =1- 24 245 ≈0.902
171- 17 50 16 49 =1- 136 1225 ≈0.889
181- 18 50 17 49 =1- 153 1225 ≈0.8751
191- 19 50 18 49 =1- 171 1225 ≈0.8604
201- 20 50 19 49 =1- 38 245 ≈0.8449
211- 21 50 20 49 =1- 6 35 ≈0.8286
221- 22 50 21 49 =1- 33 175 ≈0.8114
231- 23 50 22 49 =1- 253 1225 ≈0.7935
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.

Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Nieten im Lostopf=6 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= 6 50 5 49 (beim ersten Zufallsversuch 6 50 und beim zweiten 5 49 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1- 6 50 5 49

Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=6. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/50*(x-1)/49)

In dieser Tabelle erkennen wir, dass letztmals bei 22 als 'Anzahl der Nieten im Lostopf' die gesuchte Wahrscheinlichkeit über 80% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 22 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Ein neuer Multiple Choice Test mit 16 verschiedenen Fragen soll entwickelt werden. Dabei muss immer genau eine von mehreren Antwortmöglichkeiten richtig sein. Die Anzahl an Antwortmöglichkeiten soll bei allen Fragen gleich sein. Insgesamt soll der Test so konzipiert sein, dass die Wahrscheinlichkeit mehr als 2 Fragen nur durch Raten zufällig richtig zu beantworten (obwohl man keinerlei Wissen hat) bei höchstens 15% liegt. Bestimme die hierfür notwendige Mindestanzahl an Antwortmöglichkeiten bei jeder Frage.

Lösung einblenden
pP(X≤2)
......
1 8 0.6771
1 9 0.7405
1 10 0.7892
1 11 0.827
1 12 0.8565
......

Die Zufallsgröße X gibt die Anzahl der zufällig richtig geratenenen Antworten an. X ist binomialverteilt mit n=16 und unbekanntem Parameter p.

Es muss gelten: Pp16 (X2) =0.85 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp16 (X2) ('höchstens 2 Treffer bei 16 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 2 16 . Mit diesem p wäre ja 2= 2 16 ⋅16 der Erwartungswert und somit Pp16 (X2) irgendwo in der nähe von 50%. Wenn wir nun p= 2 16 mit 1 2 erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= 1 8 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 1 12 die gesuchte Wahrscheinlichkeit über 85% steigt.
Der Nenner, also die Anzahl der Antwortmöglichkeiten, muss also mindestens 12 sein.