Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
p gesucht (n-te Wurzel)
Beispiel:
Bei einer Tombola werden elektronische Lose so verkauft, dass bei jedem Los jede Preiskategorie immer die gleiche Gewinnwahrscheinlichkeit hat. Aus Marketinggründen wird dabei auch ein Vierer-Pack angeboten. Dabei wird geworben, dass mit einer Wahrscheinlichkeit von 90% bei jedem Viererpack mindestens ein hochwertiger Preis dabei ist. Wie hoch muss man die Einzelwahrscheinlichkeit für einen hochwertigen Preis setzen, damit dieses Versprechen eingehalten wird?
(Bitte auf 3 Stellen runden!)
P=0.9 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.1 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.
Es gilt also 0.1=(1-p)4
=>1-p= ≈ 0.5623
Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.5623 ≈ 0.4377
Binomialvert. mit variablem n (mind)
Beispiel:
Ein Lebensmittelhersteller wirbt damit, dass sich in jeder 7. Verpackung eine Überraschung befindet. Wie viele Packungen muss man mindestens kaufen, um mit einer Wahrscheinlichkeit von mindestens 60% mindestens 2 Überraschung(en) zu erhalten.
| n | P(X≤k) |
|---|---|
| ... | ... |
| 13 | 0.4269 |
| 14 | 0.3851 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Überraschungen an und ist im Idealfall binomialverteilt mit p = und variablem n.
Es muss gelten: ≥ 0.6
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.6 |+ - 0.6
0.4 ≥ oder ≤ 0.4
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden der Versuche mit einem Treffer.
Also müssten dann doch bei ≈ 14 Versuchen auch ungefähr 2
(≈
Wir berechnen also mit unserem ersten n=14:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.4 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.4 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=14 die gesuchte Wahrscheinlichkeit unter 0.4 ist.
n muss also mindestens 14 sein, damit
gesuchtes p (ohne zurücklegen)
Beispiel:
In einem Kartenstapel mit 25 Karten sind auch einige Joker-Karten drin. Wenn man 2 Karten gleichzeitig aus dem Stapel zieht, soll mit 90%-iger Wahrscheinlichkeit höchstens eine Jokerkarte dabei sein liegen. Wie viele Jokerkarten dürfen maximal in dem Stapel drin sein?
| Anzahl der Joker im Kartenstapel | P('höchstens einen Joker') |
|---|---|
| ... | ... |
| 4 | 1- |
| 5 | 1- |
| 6 | 1- |
| 7 | 1- |
| 8 | 1- |
| 9 | 1- |
| ... | ... |
Gesucht ist die Wahrscheinlichkeit von 'höchstens einen Joker'.
Das Gegenereignis ('genau zwei Joker') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Joker im Kartenstapel=4 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Joker'=
Wir erhöhen nun schrittweise immer die Anzahl der Joker im Kartenstapel um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens einen Joker' auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=4. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/25*(x-1)/24)
In dieser Tabelle erkennen wir, dass letztmals bei 8 als 'Anzahl der Joker im Kartenstapel' die gesuchte
Wahrscheinlichkeit über 90% auftritt.
Die gesuchte Anzahl der Joker im Kartenstapel darf also höchstens 8 sein.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
Die Homepage-AG einer Schule möchte auf der Startseite der Internetseite der Schule ein Zufallsbild integrieren. Dabei soll bei jedem Aufruf der Startseite ein zufälliges Bild aus einer Bilderdatenbank gezeigt werden. Alle Bilder der Datenbank sind immer gleich wahrscheinlich. Auf 2 Bildern der Datenbank sind Mitglieder der Homepage-AG zu sehen. Es wird geschätzt, dass die Seite täglich 150 mal aufgerufen wird. Die Mitglieder der Homepage-AG wollen dass mit mindestens 70%-iger Wahrscheinlichkiet mindestens 16 mal am Tag eines ihrer eigenen 2 Bilder erscheint. Wie viele andere Bilder dürfen dann höchstens noch in der Datenbank sein?
| p | P(X≥16)=1-P(X≤15) |
|---|---|
| ... | ... |
| 0.9992 | |
| 0.9959 | |
| 0.9855 | |
| 0.9622 | |
| 0.9213 | |
| 0.8616 | |
| 0.7857 | |
| 0.6987 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Bilder mit Homepage-AG-lern an. X ist binomialverteilt mit n=150 und unbekanntem Parameter p.
Es muss gelten:
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 2 sein muss, da es ja genau 2 günstige Fälle gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit
Als Startwert wählen wir als p=
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p=
Der Nenner, also die Anzahl aller Bilder in der Datenbank, darf also höchstens
16 sein.
Also wären noch 14 zusätzliche Optionen (also weitere Bilder) zulässig.
