Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
p gesucht (n-te Wurzel)
Beispiel:
An einem Glücksrad wird 4 mal gedreht. Die Wahrscheinlichkeit, dass bei allen 4 Durchgängen die Farbe 'blau' kommt, ist 0,3. Wie groß muss bei diesem Glücksrad die Wahrscheinlichkeit für das blaue Feld sein?
(Bitte auf 3 Stellen runden!)
P=0.3 ist die Wahrscheinlichkeit, dass 4 mal das Ereignis mit der Wahrscheinlichkeit p eintritt.
Es gilt also 0.3=p4
=>p= ≈ 0.7401
Binomialvert. mit variablem n (mind)
Beispiel:
Beim Biberacher Schützenfest läuft ein 12-köpfiger historischer Spielmannszug mit, der an die Schweden während des 30-Jährigen Kriegs erinnert. Dabei feiern dessen Mitglieder manchmal so ausgelassen, dass die Wahrscheinlichkeit eines Ausfall beim Umzug wegen unverhältnismäßigem Alkoholgenuss bei 13% liegt. Wie viele Schwedenmusiker muss die Schützendirektion mindestens ausbilden, damit beim Umzug mit mindestens 50%-iger Wahrscheinlichkeit mindestens 12 Schweden einsatzfähig sind?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 13 | 0.5186 |
| 14 | 0.2708 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der einsatzfähigen Schwedenmusiker an und ist im Idealfall binomialverteilt mit p = 0.87 und variablem n.
Es muss gelten: ≥ 0.5
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.5 |+ - 0.5
0.5 ≥ oder ≤ 0.5
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 87% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 14 Versuchen auch ungefähr 12 (≈0.87⋅14) Treffer auftreten.
Wir berechnen also mit unserem ersten n=14:
≈ 0.2708
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=14 die gesuchte Wahrscheinlichkeit unter 0.5 ist.
n muss also mindestens 14 sein, damit ≤ 0.5 oder eben ≥ 0.5 gilt.
gesuchtes p (ohne zurücklegen)
Beispiel:
Bei einer Tombola sind 45 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 90% liegen. Wieviel der 45 Lose dürfen höchstens Nieten sein?
| Anzahl der Nieten im Lostopf | P('höchstens eine Niete') |
|---|---|
| ... | ... |
| 5 | 1-⋅=1-≈0.9899 |
| 6 | 1-⋅=1-≈0.9848 |
| 7 | 1-⋅=1-≈0.9788 |
| 8 | 1-⋅=1-≈0.9717 |
| 9 | 1-⋅=1-≈0.9636 |
| 10 | 1-⋅=1-≈0.9545 |
| 11 | 1-⋅=1-≈0.9444 |
| 12 | 1-⋅=1-≈0.9333 |
| 13 | 1-⋅=1-≈0.9212 |
| 14 | 1-⋅=1-≈0.9081 |
| 15 | 1-⋅=1-≈0.8939 |
| ... | ... |
Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.
Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist): Wenn beispielsweise die Anzahl der Nieten im Lostopf=5 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= ⋅ (beim ersten Zufallsversuch und beim zweiten weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1-⋅
Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=5. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/45*(x-1)/44)
In dieser Tabelle erkennen wir, dass letztmals bei 14 als 'Anzahl der Nieten im Lostopf' die gesuchte
Wahrscheinlichkeit über 90% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 14 sein.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
Eine Firma, die Überraschungseier vertreibt, möchte als Werbegag manche Eier mit Superfiguren bestücken. Aus Angst vor Kundenbeschwerden sollen in einer 12er-Packung mit der mindestens 50% Wahrscheinlichkeit 1 oder mehr Superfiguren enthalten sein. Wenn in jedes n-te Ei eine Superfigur rein soll, wie groß darf dann n höchstens sein?
| p | P(X≥1)=1-P(X≤0) |
|---|---|
| ... | ... |
| 0.9998 | |
| 0.9923 | |
| 0.9683 | |
| 0.9313 | |
| 0.8878 | |
| 0.8427 | |
| 0.7986 | |
| 0.7567 | |
| 0.7176 | |
| 0.6814 | |
| 0.648 | |
| 0.6173 | |
| 0.5891 | |
| 0.563 | |
| 0.539 | |
| 0.5169 | |
| 0.4964 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Eier mit einer Superfigur an. X ist binomialverteilt mit n=12 und unbekanntem Parameter p.
Es muss gelten: = 1- = 0.5 (oder mehr)
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit ('mindestens 1 Treffer bei 12 Versuchen') bei diesen Nennern wird (siehe Tabelle links)
Als Startwert wählen wir als p=.
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 50% bleibt.
Der Nenner, also die das wievielte Ei eine Superfigur enthält, darf also höchstens
17 sein.
