Processing math: 0%


nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Bei einer Tombola werden elektronische Lose so verkauft, dass bei jedem Los jede Preiskategorie immer die gleiche Gewinnwahrscheinlichkeit hat. Aus Marketinggründen wird dabei auch ein Vierer-Pack angeboten. Dabei wird geworben, dass mit einer Wahrscheinlichkeit von 87% bei jedem Viererpack mindestens ein hochwertiger Preis dabei ist. Wie hoch muss man die Einzelwahrscheinlichkeit für einen hochwertigen Preis setzen, damit dieses Versprechen eingehalten wird?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.87 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.13 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.

Es gilt also 0.13=(1-p)4

=>1-p=0.13 ≈ 0.6005

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.6005 ≈ 0.3995

Binomialvert. mit variablem n (höchst.)

Beispiel:

Wie oft darf man mit einem normalen Würfel höchstens würfeln, um mit einer Wahrscheinlichkeit von mindestens 80% nicht mehr als 26 6er zu würfeln?

Lösung einblenden
nP(X≤k)
......
1370.8019
1380.7907
1390.7792
1400.7674
1410.7554
1420.743
1430.7305
1440.7177
1450.7046
1460.6914
1470.678
1480.6645
1490.6507
1500.6369
1510.6229
1520.6089
1530.5948
1540.5806
1550.5664
1560.5521
......

Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p = 1 6 und variablem n.

Es muss gelten: P 1 6 n (X26) ≥ 0.8

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 1 6 der Versuche mit einem Treffer. Also müssten dann doch bei 26 1 6 ≈ 156 Versuchen auch ungefähr 26 (≈ 1 6 ⋅156) Treffer auftreten.

Wir berechnen also mit unserem ersten n=156:
P 1 6 n (X26) ≈ 0.5521 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.8 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.8 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=137 die gesuchte Wahrscheinlichkeit über 80% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einer Urne sind 45 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?

Lösung einblenden
Anzahl der schwarzen Kugeln in der UrneP('mindestens eine schwarze Kugel')
......
31- 42 45 41 44 =1- 287 330 ≈0.1303
41- 41 45 40 44 =1- 82 99 ≈0.1717
51- 40 45 39 44 =1- 26 33 ≈0.2121
61- 39 45 38 44 =1- 247 330 ≈0.2515
71- 38 45 37 44 =1- 703 990 ≈0.2899
81- 37 45 36 44 =1- 37 55 ≈0.3273
91- 36 45 35 44 =1- 7 11 ≈0.3636
101- 35 45 34 44 =1- 119 198 ≈0.399
111- 34 45 33 44 =1- 17 30 ≈0.4333
121- 33 45 32 44 =1- 8 15 ≈0.4667
131- 32 45 31 44 =1- 248 495 ≈0.499
141- 31 45 30 44 =1- 31 66 ≈0.5303
151- 30 45 29 44 =1- 29 66 ≈0.5606
161- 29 45 28 44 =1- 203 495 ≈0.5899
171- 28 45 27 44 =1- 21 55 ≈0.6182
181- 27 45 26 44 =1- 39 110 ≈0.6455
191- 26 45 25 44 =1- 65 198 ≈0.6717
201- 25 45 24 44 =1- 10 33 ≈0.697
211- 24 45 23 44 =1- 46 165 ≈0.7212
221- 23 45 22 44 =1- 23 90 ≈0.7444
231- 22 45 21 44 =1- 7 30 ≈0.7667
......

Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.

Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= 42 45 41 44 (beim ersten Zufallsversuch 42 45 und beim zweiten 41 44 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1- 42 45 41 44

Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(45-x)/45*(44-x)/44)

In dieser Tabelle erkennen wir, dass erstmals bei 23 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte Wahrscheinlichkeit über 75% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 23 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 3 rote und einige schwarze Kugeln. Es soll 17 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 85% unter den 17 gezogenen Kugeln nicht mehr als 3 rote sind?

Lösung einblenden
pP(X≤3)
......
3 17 0.6479
3 18 0.6887
3 19 0.7244
3 20 0.7556
3 21 0.7829
3 22 0.8067
3 23 0.8275
3 24 0.8457
3 25 0.8617
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe rot an. X ist binomialverteilt mit n=17 und unbekanntem Parameter p.

Es muss gelten: Pp17 (X3) =0.85 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 3 sein muss, da es ja genau 3 günstige Fälle gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp17 (X3) ('höchstens 3 Treffer bei 17 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 3 17 . Mit diesem p wäre ja 3= 3 17 ⋅17 der Erwartungswert und somit Pp17 (X3) irgendwo in der nähe von 50%. Wenn wir nun p= 3 17 mit 3 3 erweitern (so dass wir auf den Zähler 3 kommen) und den Nenner abrunden, müssten wir mit p= 3 17 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 3 25 die gesuchte Wahrscheinlichkeit über 85% steigt.
Der Nenner, also die Anzahl aller Kugeln, muss also mindestens 25 sein.

Also werden noch 22 zusätzliche Optionen (also schwarze Kugeln) benötigt.