nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 3 Versuchen mindestens einmal zu treffen bei 93% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.93 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 3 Durchgängen, also ist 1-P=0.07 die Wahrscheinlichkeit für keinen Treffer bei bei 3 Durchgängen.

Es gilt also 0.07=(1-p)3

=>1-p=0.073 ≈ 0.4121

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.4121 ≈ 0.5879

Binomialvert. mit variablem n (mind)

Beispiel:

Die Firma Apple hat ein neues geniales Produkt, die iYacht, auf den Markt gebracht (wenn auch nicht ganz günstig). Die hierfür beauftragte Marketingagentur garantiert, dass unter denen, denen sie die Yacht vorgeführt hat, der Anteil der späteren Käufer bei 17% liegt. Wie vielen Personen muss nun dieses Produkt vorgeführt werden, damit sich mit mind. 70% Wahrscheinlichkeit, 21 oder mehr Käufer für dieses Produkt finden?

Lösung einblenden
nP(X≤k)
......
1300.3628
1310.3483
1320.3341
1330.3202
1340.3066
1350.2934
......

Die Zufallsgröße X gibt Anzahl der Käufer an und ist im Idealfall binomialverteilt mit p = 0.17 und variablem n.

Es muss gelten: P0.17n (X21) ≥ 0.7

Weil man ja aber P0.17n (X21) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.17n (X21) = 1 - P0.17n (X20) ≥ 0.7 |+ P0.17n (X20) - 0.7

0.3 ≥ P0.17n (X20) oder P0.17n (X20) ≤ 0.3

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 17% der Versuche mit einem Treffer. Also müssten dann doch bei 21 0.17 ≈ 124 Versuchen auch ungefähr 21 (≈0.17⋅124) Treffer auftreten.

Wir berechnen also mit unserem ersten n=124:
P0.17n (X20) ≈ 0.4552 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.3 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.3 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=135 die gesuchte Wahrscheinlichkeit unter 0.3 ist.

n muss also mindestens 135 sein, damit P0.17n (X20) ≤ 0.3 oder eben P0.17n (X21) ≥ 0.7 gilt.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einem Kartenstapel mit 21 Karten sind auch einige Joker-Karten drin. Wenn man 2 Karten gleichzeitig aus dem Stapel zieht, soll mit 85%-iger Wahrscheinlichkeit höchstens eine Jokerkarte dabei sein liegen. Wie viele Jokerkarten dürfen maximal in dem Stapel drin sein?

Lösung einblenden
Anzahl der Joker im KartenstapelP('höchstens einen Joker')
......
31- 3 21 2 20 =1- 1 70 ≈0.9857
41- 4 21 3 20 =1- 1 35 ≈0.9714
51- 5 21 4 20 =1- 1 21 ≈0.9524
61- 6 21 5 20 =1- 1 14 ≈0.9286
71- 7 21 6 20 =1- 1 10 ≈0.9
81- 8 21 7 20 =1- 2 15 ≈0.8667
91- 9 21 8 20 =1- 6 35 ≈0.8286
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens einen Joker'.

Das Gegenereignis ('genau zwei Joker') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Joker im Kartenstapel=3 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Joker'= 3 21 2 20 (beim ersten Zufallsversuch 3 21 und beim zweiten 2 20 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens einen Joker'=1- 3 21 2 20

Wir erhöhen nun schrittweise immer die Anzahl der Joker im Kartenstapel um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens einen Joker' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/21*(x-1)/20)

In dieser Tabelle erkennen wir, dass letztmals bei 8 als 'Anzahl der Joker im Kartenstapel' die gesuchte Wahrscheinlichkeit über 85% auftritt.
Die gesuchte Anzahl der Joker im Kartenstapel darf also höchstens 8 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Eine Firma, die Überraschungseier vertreibt, möchte als Werbegag manche Eier mit Superfiguren bestücken. Aus Angst vor Kundenbeschwerden sollen in einer 7er-Packung mit der mindestens 50% Wahrscheinlichkeit 2 oder mehr Superfiguren enthalten sein. Wenn in jedes n-te Ei eine Superfigur rein soll, wie groß darf dann n höchstens sein?

Lösung einblenden
pP(X≥2)=1-P(X≤1)
......
1 2 0.9375
1 3 0.7366
1 4 0.5551
1 5 0.4233
......

Die Zufallsgröße X gibt die Anzahl der Eier mit einer Superfigur an. X ist binomialverteilt mit n=7 und unbekanntem Parameter p.

Es muss gelten: Pp7 (X2) = 1- Pp7 (X1) = 0.5 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp7 (X2) ('mindestens 2 Treffer bei 7 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Als Startwert wählen wir als p= 1 2 .

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 1 4 die gesuchte Wahrscheinlichkeit über 50% bleibt.
Der Nenner, also die das wievielte Ei eine Superfigur enthält, darf also höchstens 4 sein.