nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Bei einer Tombola werden elektronische Lose so verkauft, dass bei jedem Los jede Preiskategorie immer die gleiche Gewinnwahrscheinlichkeit hat. Aus Marketinggründen wird dabei auch ein Vierer-Pack angeboten. Dabei wird geworben, dass mit einer Wahrscheinlichkeit von 81% bei jedem Viererpack mindestens ein hochwertiger Preis dabei ist. Wie hoch muss man die Einzelwahrscheinlichkeit für einen hochwertigen Preis setzen, damit dieses Versprechen eingehalten wird?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.81 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.19 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.

Es gilt also 0.19=(1-p)4

=>1-p=0.194 ≈ 0.6602

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.6602 ≈ 0.3398

Binomialvert. mit variablem n (höchst.)

Beispiel:

Eine Fluggesellschaft geht davon aus, dass 18% der gekauften Tickets gar nicht eingelöst werden. Wieviel Tickets kann sie für ihre 26-Platzmaschine höchstens verkaufen, so dass es zu mindestens 70% Wahrscheinlichkeit zu keiner Überbelegung kommt.

Lösung einblenden
nP(X≤k)
......
300.8144
310.6789
320.5277
......

Die Zufallsgröße X gibt die Anzahl der Ticketbesitzer, die tatsächlich fliegen an und ist im Idealfall binomialverteilt mit p = 0.82 und variablem n.

Es muss gelten: P0.82n (X26) ≥ 0.7

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 82% der Versuche mit einem Treffer. Also müssten dann doch bei 26 0.82 ≈ 32 Versuchen auch ungefähr 26 (≈0.82⋅32) Treffer auftreten.

Wir berechnen also mit unserem ersten n=32:
P0.82n (X26) ≈ 0.5277 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=30 die gesuchte Wahrscheinlichkeit über 70% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einer Urne sind 30 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 50% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?

Lösung einblenden
Anzahl der schwarzen Kugeln in der UrneP('mindestens eine schwarze Kugel')
......
31- 27 30 26 29 =1- 117 145 ≈0.1931
41- 26 30 25 29 =1- 65 87 ≈0.2529
51- 25 30 24 29 =1- 20 29 ≈0.3103
61- 24 30 23 29 =1- 92 145 ≈0.3655
71- 23 30 22 29 =1- 253 435 ≈0.4184
81- 22 30 21 29 =1- 77 145 ≈0.469
91- 21 30 20 29 =1- 14 29 ≈0.5172
......

Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.

Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= 27 30 26 29 (beim ersten Zufallsversuch 27 30 und beim zweiten 26 29 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1- 27 30 26 29

Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(30-x)/30*(29-x)/29)

In dieser Tabelle erkennen wir, dass erstmals bei 9 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte Wahrscheinlichkeit über 50% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 9 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 4 rote und einige schwarze Kugeln. Es soll 12 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 80% unter den 12 gezogenen Kugeln nicht mehr als 3 rote sind?

Lösung einblenden
pP(X≤3)
......
4 16 0.6488
4 17 0.6938
4 18 0.7325
4 19 0.7659
4 20 0.7946
4 21 0.8193
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe rot an. X ist binomialverteilt mit n=12 und unbekanntem Parameter p.

Es muss gelten: Pp12 (X3) =0.8 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 4 sein muss, da es ja genau 4 günstige Fälle gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp12 (X3) ('höchstens 3 Treffer bei 12 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 3 12 . Mit diesem p wäre ja 3= 3 12 ⋅12 der Erwartungswert und somit Pp12 (X3) irgendwo in der nähe von 50%. Wenn wir nun p= 3 12 mit 4 3 erweitern (so dass wir auf den Zähler 4 kommen) und den Nenner abrunden, müssten wir mit p= 4 16 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 4 21 die gesuchte Wahrscheinlichkeit über 80% steigt.
Der Nenner, also die Anzahl aller Kugeln, muss also mindestens 21 sein.

Also werden noch 17 zusätzliche Optionen (also schwarze Kugeln) benötigt.