nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

An einem Glücksrad wird 2 mal gedreht. Die Wahrscheinlichkeit, dass bei allen 2 Durchgängen die Farbe 'blau' kommt, ist 0,3. Wie groß muss bei diesem Glücksrad die Wahrscheinlichkeit für das blaue Feld sein?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.3 ist die Wahrscheinlichkeit, dass 2 mal das Ereignis mit der Wahrscheinlichkeit p eintritt.

Es gilt also 0.3=p2

=>p=0.32 ≈ 0.5477

Binomialvert. mit variablem n (mind)

Beispiel:

Beim Biberacher Schützenfest läuft ein 12-köpfiger historischer Spielmannszug mit, der an die Schweden während des 30-Jährigen Kriegs erinnert. Dabei feiern dessen Mitglieder manchmal so ausgelassen, dass die Wahrscheinlichkeit eines Ausfall beim Umzug wegen unverhältnismäßigem Alkoholgenuss bei 8% liegt. Wie viele Schwedenmusiker muss die Schützendirektion mindestens ausbilden, damit beim Umzug mit mindestens 90%-iger Wahrscheinlichkeit mindestens 12 Schweden einsatzfähig sind?

Lösung einblenden
nP(X≤k)
......
130.2794
140.0958
......

Die Zufallsgröße X gibt die Anzahl der einsatzfähigen Schwedenmusiker an und ist im Idealfall binomialverteilt mit p = 0.92 und variablem n.

Es muss gelten: P0.92n (X12) ≥ 0.9

Weil man ja aber P0.92n (X12) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.92n (X12) = 1 - P0.92n (X11) ≥ 0.9 |+ P0.92n (X11) - 0.9

0.1 ≥ P0.92n (X11) oder P0.92n (X11) ≤ 0.1

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 92% der Versuche mit einem Treffer. Also müssten dann doch bei 12 0.92 ≈ 13 Versuchen auch ungefähr 12 (≈0.92⋅13) Treffer auftreten.

Wir berechnen also mit unserem ersten n=13:
P0.92n (X11) ≈ 0.2794 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.1 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.1 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=14 die gesuchte Wahrscheinlichkeit unter 0.1 ist.

n muss also mindestens 14 sein, damit P0.92n (X11) ≤ 0.1 oder eben P0.92n (X12) ≥ 0.9 gilt.

gesuchtes p (ohne zurücklegen)

Beispiel:

Bei einer Tombola sind 65 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 90% liegen. Wieviel der 65 Lose dürfen höchstens Nieten sein?

Lösung einblenden
Anzahl der Nieten im LostopfP('höchstens eine Niete')
......
71- 7 65 6 64 =1- 21 2080 ≈0.9899
81- 8 65 7 64 =1- 7 520 ≈0.9865
91- 9 65 8 64 =1- 9 520 ≈0.9827
101- 10 65 9 64 =1- 9 416 ≈0.9784
111- 11 65 10 64 =1- 11 416 ≈0.9736
121- 12 65 11 64 =1- 33 1040 ≈0.9683
131- 13 65 12 64 =1- 3 80 ≈0.9625
141- 14 65 13 64 =1- 7 160 ≈0.9563
151- 15 65 14 64 =1- 21 416 ≈0.9495
161- 16 65 15 64 =1- 3 52 ≈0.9423
171- 17 65 16 64 =1- 17 260 ≈0.9346
181- 18 65 17 64 =1- 153 2080 ≈0.9264
191- 19 65 18 64 =1- 171 2080 ≈0.9178
201- 20 65 19 64 =1- 19 208 ≈0.9087
211- 21 65 20 64 =1- 21 208 ≈0.899
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.

Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Nieten im Lostopf=7 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= 7 65 6 64 (beim ersten Zufallsversuch 7 65 und beim zweiten 6 64 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1- 7 65 6 64

Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=7. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/65*(x-1)/64)

In dieser Tabelle erkennen wir, dass letztmals bei 20 als 'Anzahl der Nieten im Lostopf' die gesuchte Wahrscheinlichkeit über 90% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 20 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Eine Firma, die Überraschungseier vertreibt, möchte als Werbegag manche Eier mit Superfiguren bestücken. Aus Angst vor Kundenbeschwerden sollen in einer 5er-Packung mit der mindestens 50% Wahrscheinlichkeit 2 oder mehr Superfiguren enthalten sein. Wenn in jedes n-te Ei eine Superfigur rein soll, wie groß darf dann n höchstens sein?

Lösung einblenden
pP(X≥2)=1-P(X≤1)
......
1 2 0.8125
1 3 0.5391
1 4 0.3672
......

Die Zufallsgröße X gibt die Anzahl der Eier mit einer Superfigur an. X ist binomialverteilt mit n=5 und unbekanntem Parameter p.

Es muss gelten: Pp5 (X2) = 1- Pp5 (X1) = 0.5 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp5 (X2) ('mindestens 2 Treffer bei 5 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Als Startwert wählen wir als p= 1 2 .

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 1 3 die gesuchte Wahrscheinlichkeit über 50% bleibt.
Der Nenner, also die das wievielte Ei eine Superfigur enthält, darf also höchstens 3 sein.