nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 2 Versuchen mindestens einmal zu treffen bei 88% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.88 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 2 Durchgängen, also ist 1-P=0.12 die Wahrscheinlichkeit für keinen Treffer bei bei 2 Durchgängen.

Es gilt also 0.12=(1-p)2

=>1-p=0.122 ≈ 0.3464

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.3464 ≈ 0.6536

Binomialvert. mit variablem n (höchst.)

Beispiel:

Wie oft darf man mit einem normalen Würfel höchstens würfeln, um mit einer Wahrscheinlichkeit von mindestens 50% nicht mehr als 23 6er zu würfeln?

Lösung einblenden
nP(X≤k)
......
1380.5554
1390.5402
1400.5251
1410.5101
1420.4951
......

Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p = 1 6 und variablem n.

Es muss gelten: P 1 6 n (X23) ≥ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 1 6 der Versuche mit einem Treffer. Also müssten dann doch bei 23 1 6 ≈ 138 Versuchen auch ungefähr 23 (≈ 1 6 ⋅138) Treffer auftreten.

Wir berechnen also mit unserem ersten n=138:
P 1 6 n (X23) ≈ 0.5554 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=141 die gesuchte Wahrscheinlichkeit über 50% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

Bei einer Tombola sind 55 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 90% liegen. Wieviel der 55 Lose dürfen höchstens Nieten sein?

Lösung einblenden
Anzahl der Nieten im LostopfP('höchstens eine Niete')
......
61- 6 55 5 54 =1- 1 99 ≈0.9899
71- 7 55 6 54 =1- 7 495 ≈0.9859
81- 8 55 7 54 =1- 28 1485 ≈0.9811
91- 9 55 8 54 =1- 4 165 ≈0.9758
101- 10 55 9 54 =1- 1 33 ≈0.9697
111- 11 55 10 54 =1- 1 27 ≈0.963
121- 12 55 11 54 =1- 2 45 ≈0.9556
131- 13 55 12 54 =1- 26 495 ≈0.9475
141- 14 55 13 54 =1- 91 1485 ≈0.9387
151- 15 55 14 54 =1- 7 99 ≈0.9293
161- 16 55 15 54 =1- 8 99 ≈0.9192
171- 17 55 16 54 =1- 136 1485 ≈0.9084
181- 18 55 17 54 =1- 17 165 ≈0.897
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.

Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Nieten im Lostopf=6 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= 6 55 5 54 (beim ersten Zufallsversuch 6 55 und beim zweiten 5 54 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1- 6 55 5 54

Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=6. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/55*(x-1)/54)

In dieser Tabelle erkennen wir, dass letztmals bei 17 als 'Anzahl der Nieten im Lostopf' die gesuchte Wahrscheinlichkeit über 90% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 17 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Eine Schulklasse möchte fürs Schulfest ein Glücksrad entwickeln. Aus optischen Gründen sollen dabei alle Sektoren gleich groß sein. Einer davon soll für den Hauptpreis stehen. Hierfür haben sie insgesamt 9 Preise gesammelt. Sie erwarten, dass das Glücksrad beim Schulfest 60 mal gespielt wird. Mit wie vielen Sektoren müssen sie ihr Glückrad mindestens bestücken damit die 9 Hauptpreise mit einer Wahrscheinlichkeit von mindestens 80% für die 60 Durchgänge reichen?

Lösung einblenden
pP(X≤9)
......
1 6 0.4464
1 7 0.6484
1 8 0.7884
1 9 0.8754
......

Die Zufallsgröße X gibt die Anzahl der Hauptpreise an. X ist binomialverteilt mit n=60 und unbekanntem Parameter p.

Es muss gelten: Pp60 (X9) =0.8 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp60 (X9) ('höchstens 9 Treffer bei 60 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 9 60 . Mit diesem p wäre ja 9= 9 60 ⋅60 der Erwartungswert und somit Pp60 (X9) irgendwo in der nähe von 50%. Wenn wir nun p= 9 60 mit 1 9 erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= 1 6 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 1 9 die gesuchte Wahrscheinlichkeit über 80% steigt.
Der Nenner, also die Anzahl der Sektoren des Glücksrad, muss also mindestens 9 sein.