Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
p gesucht (n-te Wurzel)
Beispiel:
Bei einer Tombola werden elektronische Lose so verkauft, dass bei jedem Los jede Preiskategorie immer die gleiche Gewinnwahrscheinlichkeit hat. Aus Marketinggründen wird dabei auch ein Vierer-Pack angeboten. Dabei wird geworben, dass mit einer Wahrscheinlichkeit von 59% bei jedem Viererpack mindestens ein hochwertiger Preis dabei ist. Wie hoch muss man die Einzelwahrscheinlichkeit für einen hochwertigen Preis setzen, damit dieses Versprechen eingehalten wird?
(Bitte auf 3 Stellen runden!)
P=0.59 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.41 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.
Es gilt also 0.41=(1-p)4
=>1-p= ≈ 0.8002
Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.8002 ≈ 0.1998
Binomialvert. mit variablem n (höchst.)
Beispiel:
Ein Mathelehrer möchte neue Taschenrechner für seine Klasse bestellen. Die Wahrscheinlichkeit, dass einer der Taschenrechner ein Decepticon (bekannt aus dem Transformers-Filmen) ist, liegt bei p=0,02. Wie viele Rechner können bestellt werden, dass zu einer Wahrscheinlichkeit von 50% kein Descepticon unter ihnen ist?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 29 | 0.5566 |
| 30 | 0.5455 |
| 31 | 0.5346 |
| 32 | 0.5239 |
| 33 | 0.5134 |
| 34 | 0.5031 |
| 35 | 0.4931 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der Descepticons unter den Taschenrechnern an und ist im Idealfall binomialverteilt mit p = 0.02 und variablem n.
Es muss gelten: ≥ 0.5
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 2% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 0 Versuchen auch ungefähr 0 (≈0.02⋅0) Treffer auftreten.
Wir berechnen also mit unserem ersten n=0:
≈ 1
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=34 die gesuchte Wahrscheinlichkeit über 50% ist.
gesuchtes p (ohne zurücklegen)
Beispiel:
In einer Urne sind 20 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?
| Anzahl der schwarzen Kugeln in der Urne | P('mindestens eine schwarze Kugel') |
|---|---|
| ... | ... |
| 3 | 1-⋅=1-≈0.2842 |
| 4 | 1-⋅=1-≈0.3684 |
| 5 | 1-⋅=1-≈0.4474 |
| 6 | 1-⋅=1-≈0.5211 |
| 7 | 1-⋅=1-≈0.5895 |
| 8 | 1-⋅=1-≈0.6526 |
| 9 | 1-⋅=1-≈0.7105 |
| 10 | 1-⋅=1-≈0.7632 |
| ... | ... |
Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.
Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist): Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= ⋅ (beim ersten Zufallsversuch und beim zweiten weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1-⋅
Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(20-x)/20*(19-x)/19)
In dieser Tabelle erkennen wir, dass erstmals bei 10 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte
Wahrscheinlichkeit über 75% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 10 sein.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
Eine Firma, die Überraschungseier vertreibt, möchte als Werbegag manche Eier mit Superfiguren bestücken. Aus Angst vor Kundenbeschwerden sollen in einer 10er-Packung mit der mindestens 50% Wahrscheinlichkeit 1 oder mehr Superfiguren enthalten sein. Wenn in jedes n-te Ei eine Superfigur rein soll, wie groß darf dann n höchstens sein?
| p | P(X≥1)=1-P(X≤0) |
|---|---|
| ... | ... |
| 0.999 | |
| 0.9827 | |
| 0.9437 | |
| 0.8926 | |
| 0.8385 | |
| 0.7859 | |
| 0.7369 | |
| 0.6921 | |
| 0.6513 | |
| 0.6145 | |
| 0.5811 | |
| 0.5509 | |
| 0.5234 | |
| 0.4984 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Eier mit einer Superfigur an. X ist binomialverteilt mit n=10 und unbekanntem Parameter p.
Es muss gelten: = 1- = 0.5 (oder mehr)
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit ('mindestens 1 Treffer bei 10 Versuchen') bei diesen Nennern wird (siehe Tabelle links)
Als Startwert wählen wir als p=.
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 50% bleibt.
Der Nenner, also die das wievielte Ei eine Superfigur enthält, darf also höchstens
14 sein.
