Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
p gesucht (n-te Wurzel)
Beispiel:
Bei einer Tombola werden elektronische Lose so verkauft, dass bei jedem Los jede Preiskategorie immer die gleiche Gewinnwahrscheinlichkeit hat. Aus Marketinggründen wird dabei auch ein Vierer-Pack angeboten. Dabei wird geworben, dass mit einer Wahrscheinlichkeit von 72% bei jedem Viererpack mindestens ein hochwertiger Preis dabei ist. Wie hoch muss man die Einzelwahrscheinlichkeit für einen hochwertigen Preis setzen, damit dieses Versprechen eingehalten wird?
(Bitte auf 3 Stellen runden!)
P=0.72 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.28 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.
Es gilt also 0.28=(1-p)4
=>1-p= ≈ 0.7274
Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.7274 ≈ 0.2726
Binomialvert. mit variablem n (höchst.)
Beispiel:
Ein Mathelehrer möchte neue Taschenrechner für seine Klasse bestellen. Die Wahrscheinlichkeit, dass einer der Taschenrechner ein Decepticon (bekannt aus dem Transformers-Filmen) ist, liegt bei p=0,09. Wie viele Rechner können bestellt werden, dass zu einer Wahrscheinlichkeit von 50% kein Descepticon unter ihnen ist?
n | P(X≤k) |
---|---|
... | ... |
2 | 0.8281 |
3 | 0.7536 |
4 | 0.6857 |
5 | 0.624 |
6 | 0.5679 |
7 | 0.5168 |
8 | 0.4703 |
... | ... |
Die Zufallsgröße X gibt Anzahl der Descepticons unter den Taschenrechnern an und ist im Idealfall binomialverteilt mit p = 0.09 und variablem n.
Es muss gelten: ≥ 0.5
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 9% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 0 Versuchen auch ungefähr 0 (≈0.09⋅0) Treffer auftreten.
Wir berechnen also mit unserem ersten n=0:
≈ 1
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=7 die gesuchte Wahrscheinlichkeit über 50% ist.
gesuchtes p (ohne zurücklegen)
Beispiel:
In einer Urne sind 35 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?
Anzahl der schwarzen Kugeln in der Urne | P('mindestens eine schwarze Kugel') |
---|---|
... | ... |
3 | 1-⋅=1-≈0.1664 |
4 | 1-⋅=1-≈0.2185 |
5 | 1-⋅=1-≈0.2689 |
6 | 1-⋅=1-≈0.3176 |
7 | 1-⋅=1-≈0.3647 |
8 | 1-⋅=1-≈0.4101 |
9 | 1-⋅=1-≈0.4538 |
10 | 1-⋅=1-≈0.4958 |
11 | 1-⋅=1-≈0.5361 |
12 | 1-⋅=1-≈0.5748 |
13 | 1-⋅=1-≈0.6118 |
14 | 1-⋅=1-≈0.6471 |
15 | 1-⋅=1-≈0.6807 |
16 | 1-⋅=1-≈0.7126 |
17 | 1-⋅=1-≈0.7429 |
18 | 1-⋅=1-≈0.7714 |
... | ... |
Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.
Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist): Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= ⋅ (beim ersten Zufallsversuch und beim zweiten weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1-⋅
Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(35-x)/35*(34-x)/34)
In dieser Tabelle erkennen wir, dass erstmals bei 18 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte
Wahrscheinlichkeit über 75% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 18 sein.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
In einer Urne sind 5 rote und einige schwarze Kugeln. Es soll 28 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 90% unter den 28 gezogenen Kugeln nicht mehr als 21 schwarze sind?
p | P(X≤21) |
---|---|
... | ... |
0.9998 | |
0.9981 | |
0.9924 | |
0.9791 | |
0.9552 | |
0.9198 | |
0.8738 | |
... | ... |
Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=28 und unbekanntem Parameter p.
Es muss gelten: = 0.9 (oder mehr)
Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 5 größer sein muss als der Zähler.
Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit ('höchstens 21 Treffer bei 28 Versuchen') auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=. (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 90% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 9 sein.