nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

An einem Glücksrad wird 2 mal gedreht. Die Wahrscheinlichkeit, dass bei allen 2 Durchgängen die Farbe 'blau' kommt, ist 0,1. Wie groß muss bei diesem Glücksrad die Wahrscheinlichkeit für das blaue Feld sein?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.1 ist die Wahrscheinlichkeit, dass 2 mal das Ereignis mit der Wahrscheinlichkeit p eintritt.

Es gilt also 0.1=p2

=>p=0.12 ≈ 0.3162

Binomialvert. mit variablem n (mind)

Beispiel:

In einer Urne ist der Anteil der grünen Kugeln 60%. Wie oft muss mindestens gezogen werden ( - natürlich mit Zurücklegen - ), so dass mit mind. 90% Wahrscheinlichkeit 37 oder mehr grüne Kugeln gezogen werden?

Lösung einblenden
nP(X≤k)
......
650.2619
660.2171
670.1778
680.1438
690.1148
700.0906
......

Die Zufallsgröße X gibt Anzahl der gezogenen grünen Kugeln an und ist im Idealfall binomialverteilt mit p = 0.6 und variablem n.

Es muss gelten: P0.6n (X37) ≥ 0.9

Weil man ja aber P0.6n (X37) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.6n (X37) = 1 - P0.6n (X36) ≥ 0.9 |+ P0.6n (X36) - 0.9

0.1 ≥ P0.6n (X36) oder P0.6n (X36) ≤ 0.1

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 60% der Versuche mit einem Treffer. Also müssten dann doch bei 37 0.6 ≈ 62 Versuchen auch ungefähr 37 (≈0.6⋅62) Treffer auftreten.

Wir berechnen also mit unserem ersten n=62:
P0.6n (X36) ≈ 0.4248 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.1 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.1 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=70 die gesuchte Wahrscheinlichkeit unter 0.1 ist.

n muss also mindestens 70 sein, damit P0.6n (X36) ≤ 0.1 oder eben P0.6n (X37) ≥ 0.9 gilt.

gesuchtes p (ohne zurücklegen)

Beispiel:

Bei einer Tombola sind 65 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 80% liegen. Wieviel der 65 Lose dürfen höchstens Nieten sein?

Lösung einblenden
Anzahl der Nieten im LostopfP('höchstens eine Niete')
......
71- 7 65 6 64 =1- 21 2080 ≈0.9899
81- 8 65 7 64 =1- 7 520 ≈0.9865
91- 9 65 8 64 =1- 9 520 ≈0.9827
101- 10 65 9 64 =1- 9 416 ≈0.9784
111- 11 65 10 64 =1- 11 416 ≈0.9736
121- 12 65 11 64 =1- 33 1040 ≈0.9683
131- 13 65 12 64 =1- 3 80 ≈0.9625
141- 14 65 13 64 =1- 7 160 ≈0.9563
151- 15 65 14 64 =1- 21 416 ≈0.9495
161- 16 65 15 64 =1- 3 52 ≈0.9423
171- 17 65 16 64 =1- 17 260 ≈0.9346
181- 18 65 17 64 =1- 153 2080 ≈0.9264
191- 19 65 18 64 =1- 171 2080 ≈0.9178
201- 20 65 19 64 =1- 19 208 ≈0.9087
211- 21 65 20 64 =1- 21 208 ≈0.899
221- 22 65 21 64 =1- 231 2080 ≈0.8889
231- 23 65 22 64 =1- 253 2080 ≈0.8784
241- 24 65 23 64 =1- 69 520 ≈0.8673
251- 25 65 24 64 =1- 15 104 ≈0.8558
261- 26 65 25 64 =1- 5 32 ≈0.8438
271- 27 65 26 64 =1- 27 160 ≈0.8313
281- 28 65 27 64 =1- 189 1040 ≈0.8183
291- 29 65 28 64 =1- 203 1040 ≈0.8048
301- 30 65 29 64 =1- 87 416 ≈0.7909
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.

Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Nieten im Lostopf=7 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= 7 65 6 64 (beim ersten Zufallsversuch 7 65 und beim zweiten 6 64 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1- 7 65 6 64

Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=7. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/65*(x-1)/64)

In dieser Tabelle erkennen wir, dass letztmals bei 29 als 'Anzahl der Nieten im Lostopf' die gesuchte Wahrscheinlichkeit über 80% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 29 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Die Homepage-AG einer Schule möchte auf der Startseite der Internetseite der Schule ein Zufallsbild integrieren. Dabei soll bei jedem Aufruf der Startseite ein zufälliges Bild aus einer Bilderdatenbank gezeigt werden. Alle Bilder der Datenbank sind immer gleich wahrscheinlich. Auf 3 Bildern der Datenbank sind Mitglieder der Homepage-AG zu sehen. Es wird geschätzt, dass die Seite täglich 120 mal aufgerufen wird. Die Mitglieder der Homepage-AG wollen dass mit mindestens 90%-iger Wahrscheinlichkiet mindestens 16 mal am Tag eines ihrer eigenen 3 Bilder erscheint. Wie viele andere Bilder dürfen dann höchstens noch in der Datenbank sein?

Lösung einblenden
pP(X≥16)=1-P(X≤15)
......
3 12 0.9994
3 13 0.9974
3 14 0.9915
3 15 0.9782
3 16 0.9542
3 17 0.9171
3 18 0.8665
......

Die Zufallsgröße X gibt die Anzahl der Bilder mit Homepage-AG-lern an. X ist binomialverteilt mit n=120 und unbekanntem Parameter p.

Es muss gelten: Pp120 (X16) = 1- Pp120 (X15) = 0.9 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 3 sein muss, da es ja genau 3 günstige Fälle gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp120 (X16) ('mindestens 16 Treffer bei 120 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Als Startwert wählen wir als p= 3 12 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 3 17 die gesuchte Wahrscheinlichkeit über 90% bleibt.
Der Nenner, also die Anzahl aller Bilder in der Datenbank, darf also höchstens 17 sein.

Also wären noch 14 zusätzliche Optionen (also weitere Bilder) zulässig.