Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
p gesucht (n-te Wurzel)
Beispiel:
Bei einer Tombola werden elektronische Lose so verkauft, dass bei jedem Los jede Preiskategorie immer die gleiche Gewinnwahrscheinlichkeit hat. Aus Marketinggründen wird dabei auch ein Vierer-Pack angeboten. Dabei wird geworben, dass mit einer Wahrscheinlichkeit von 75% bei jedem Viererpack mindestens ein hochwertiger Preis dabei ist. Wie hoch muss man die Einzelwahrscheinlichkeit für einen hochwertigen Preis setzen, damit dieses Versprechen eingehalten wird?
(Bitte auf 3 Stellen runden!)
P=0.75 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.25 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.
Es gilt also 0.25=(1-p)4
=>1-p= ≈ 0.7071
Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.7071 ≈ 0.2929
Binomialvert. mit variablem n (mind)
Beispiel:
Ein Lebensmittelhersteller wirbt damit, dass sich in jeder 7. Verpackung eine Überraschung befindet. Wie viele Packungen muss man mindestens kaufen, um mit einer Wahrscheinlichkeit von mindestens 50% mindestens 2 Überraschung(en) zu erhalten.
| n | P(X≤k) |
|---|---|
| ... | ... |
| 11 | 0.5199 |
| 12 | 0.4718 |
| 13 | 0.4269 |
| 14 | 0.3851 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Überraschungen an und ist im Idealfall binomialverteilt mit p = und variablem n.
Es muss gelten: ≥ 0.5
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.5 |+ - 0.5
0.5 ≥ oder ≤ 0.5
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden der Versuche mit einem Treffer.
Also müssten dann doch bei ≈ 14 Versuchen auch ungefähr 2
(≈
Wir berechnen also mit unserem ersten n=14:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=12 die gesuchte Wahrscheinlichkeit unter 0.5 ist.
n muss also mindestens 12 sein, damit
gesuchtes p (ohne zurücklegen)
Beispiel:
Bei einer Tombola sind 65 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 80% liegen. Wieviel der 65 Lose dürfen höchstens Nieten sein?
| Anzahl der Nieten im Lostopf | P('höchstens eine Niete') |
|---|---|
| ... | ... |
| 7 | 1- |
| 8 | 1- |
| 9 | 1- |
| 10 | 1- |
| 11 | 1- |
| 12 | 1- |
| 13 | 1- |
| 14 | 1- |
| 15 | 1- |
| 16 | 1- |
| 17 | 1- |
| 18 | 1- |
| 19 | 1- |
| 20 | 1- |
| 21 | 1- |
| 22 | 1- |
| 23 | 1- |
| 24 | 1- |
| 25 | 1- |
| 26 | 1- |
| 27 | 1- |
| 28 | 1- |
| 29 | 1- |
| 30 | 1- |
| ... | ... |
Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.
Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Nieten im Lostopf=7 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'=
Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=7. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/65*(x-1)/64)
In dieser Tabelle erkennen wir, dass letztmals bei 29 als 'Anzahl der Nieten im Lostopf' die gesuchte
Wahrscheinlichkeit über 80% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 29 sein.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
In einer Urne sind 5 rote und einige schwarze Kugeln. Es soll 13 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 80% unter den 13 gezogenen Kugeln nicht mehr als 6 rote sind?
| p | P(X≤6) |
|---|---|
| ... | ... |
| 0.5 | |
| 0.6311 | |
| 0.7314 | |
| 0.8051 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe rot an. X ist binomialverteilt mit n=13 und unbekanntem Parameter p.
Es muss gelten:
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 5 sein muss, da es ja genau 5 günstige Fälle gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit
Um einen günstigen Startwert zu finden wählen wir mal als p=
In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p=
Der Nenner, also die Anzahl aller Kugeln, muss also mindestens
13 sein.
Also werden noch 8 zusätzliche Optionen (also schwarze Kugeln) benötigt.
