nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

An einem Glücksrad wird 4 mal gedreht. Die Wahrscheinlichkeit, dass bei allen 4 Durchgängen die Farbe 'blau' kommt, ist 0,4. Wie groß muss bei diesem Glücksrad die Wahrscheinlichkeit für das blaue Feld sein?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.4 ist die Wahrscheinlichkeit, dass 4 mal das Ereignis mit der Wahrscheinlichkeit p eintritt.

Es gilt also 0.4=p4

=>p=0.44 ≈ 0.7953

Binomialvert. mit variablem n (mind)

Beispiel:

Bei einem Glücksrad, ist die Wahrscheinlichkeit in den grünen Bereich zu kommen p=0,5. Wie oft muss man dieses Glückrad mindestens drehen, um mit einer Wahrscheinlichkeit von mindestens 80% 36 mal oder öfters in den grünen Bereich zu kommen?

Lösung einblenden
nP(X≤k)
......
740.3638
750.3222
760.2833
770.2472
780.2141
790.1841
......

Die Zufallsgröße X gibt Anzahl der Drehungen, die im grünen Bereich landen an und ist im Idealfall binomialverteilt mit p = 0.5 und variablem n.

Es muss gelten: P0.5n (X36) ≥ 0.8

Weil man ja aber P0.5n (X36) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.5n (X36) = 1 - P0.5n (X35) ≥ 0.8 |+ P0.5n (X35) - 0.8

0.2 ≥ P0.5n (X35) oder P0.5n (X35) ≤ 0.2

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 50% der Versuche mit einem Treffer. Also müssten dann doch bei 36 0.5 ≈ 72 Versuchen auch ungefähr 36 (≈0.5⋅72) Treffer auftreten.

Wir berechnen also mit unserem ersten n=72:
P0.5n (X35) ≈ 0.4531 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.2 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.2 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=79 die gesuchte Wahrscheinlichkeit unter 0.2 ist.

n muss also mindestens 79 sein, damit P0.5n (X35) ≤ 0.2 oder eben P0.5n (X36) ≥ 0.8 gilt.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einer Urne sind 25 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?

Lösung einblenden
Anzahl der schwarzen Kugeln in der UrneP('mindestens eine schwarze Kugel')
......
31- 22 25 21 24 =1- 77 100 ≈0.23
41- 21 25 20 24 =1- 7 10 ≈0.3
51- 20 25 19 24 =1- 19 30 ≈0.3667
61- 19 25 18 24 =1- 57 100 ≈0.43
71- 18 25 17 24 =1- 51 100 ≈0.49
81- 17 25 16 24 =1- 34 75 ≈0.5467
91- 16 25 15 24 =1- 2 5 ≈0.6
101- 15 25 14 24 =1- 7 20 ≈0.65
111- 14 25 13 24 =1- 91 300 ≈0.6967
121- 13 25 12 24 =1- 13 50 ≈0.74
131- 12 25 11 24 =1- 11 50 ≈0.78
......

Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.

Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= 22 25 21 24 (beim ersten Zufallsversuch 22 25 und beim zweiten 21 24 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1- 22 25 21 24

Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(25-x)/25*(24-x)/24)

In dieser Tabelle erkennen wir, dass erstmals bei 13 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte Wahrscheinlichkeit über 75% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 13 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Eine Firma, die Überraschungseier vertreibt, möchte als Werbegag manche Eier mit Superfiguren bestücken. Aus Angst vor Kundenbeschwerden sollen in einer 7er-Packung mit der mindestens 75% Wahrscheinlichkeit 1 oder mehr Superfiguren enthalten sein. Wenn in jedes n-te Ei eine Superfigur rein soll, wie groß darf dann n höchstens sein?

Lösung einblenden
pP(X≥1)=1-P(X≤0)
......
1 2 0.9922
1 3 0.9415
1 4 0.8665
1 5 0.7903
1 6 0.7209
......

Die Zufallsgröße X gibt die Anzahl der Eier mit einer Superfigur an. X ist binomialverteilt mit n=7 und unbekanntem Parameter p.

Es muss gelten: Pp7 (X1) = 1- Pp7 (X0) = 0.75 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp7 (X1) ('mindestens 1 Treffer bei 7 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Als Startwert wählen wir als p= 1 2 .

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 1 5 die gesuchte Wahrscheinlichkeit über 75% bleibt.
Der Nenner, also die das wievielte Ei eine Superfigur enthält, darf also höchstens 5 sein.