Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
p gesucht (n-te Wurzel)
Beispiel:
Bei einer Tombola werden elektronische Lose so verkauft, dass bei jedem Los jede Preiskategorie immer die gleiche Gewinnwahrscheinlichkeit hat. Aus Marketinggründen wird dabei auch ein Vierer-Pack angeboten. Dabei wird geworben, dass mit einer Wahrscheinlichkeit von 65% bei jedem Viererpack mindestens ein hochwertiger Preis dabei ist. Wie hoch muss man die Einzelwahrscheinlichkeit für einen hochwertigen Preis setzen, damit dieses Versprechen eingehalten wird?
(Bitte auf 3 Stellen runden!)
P=0.65 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.35 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.
Es gilt also 0.35=(1-p)4
=>1-p= ≈ 0.7692
Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.7692 ≈ 0.2308
Binomialvert. mit variablem n (mind)
Beispiel:
Beim Biberacher Schützenfest läuft ein 12-köpfiger historischer Spielmannszug mit, der an die Schweden während des 30-Jährigen Kriegs erinnert. Dabei feiern dessen Mitglieder manchmal so ausgelassen, dass die Wahrscheinlichkeit eines Ausfall beim Umzug wegen unverhältnismäßigem Alkoholgenuss bei 13% liegt. Wie viele Schwedenmusiker muss die Schützendirektion mindestens ausbilden, damit beim Umzug mit mindestens 80%-iger Wahrscheinlichkeit mindestens 12 Schweden einsatzfähig sind?
n | P(X≤k) |
---|---|
... | ... |
14 | 0.2708 |
15 | 0.1204 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der einsatzfähigen Schwedenmusiker an und ist im Idealfall binomialverteilt mit p = 0.87 und variablem n.
Es muss gelten: ≥ 0.8
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.8 |+ - 0.8
0.2 ≥ oder ≤ 0.2
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 87% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 14 Versuchen auch ungefähr 12 (≈0.87⋅14) Treffer auftreten.
Wir berechnen also mit unserem ersten n=14:
≈ 0.2708
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.2 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.2 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=15 die gesuchte Wahrscheinlichkeit unter 0.2 ist.
n muss also mindestens 15 sein, damit ≤ 0.2 oder eben ≥ 0.8 gilt.
gesuchtes p (ohne zurücklegen)
Beispiel:
Bei einer Tombola sind 50 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 85% liegen. Wieviel der 50 Lose dürfen höchstens Nieten sein?
Anzahl der Nieten im Lostopf | P('höchstens eine Niete') |
---|---|
... | ... |
6 | 1-⋅=1-≈0.9878 |
7 | 1-⋅=1-≈0.9829 |
8 | 1-⋅=1-≈0.9771 |
9 | 1-⋅=1-≈0.9706 |
10 | 1-⋅=1-≈0.9633 |
11 | 1-⋅=1-≈0.9551 |
12 | 1-⋅=1-≈0.9461 |
13 | 1-⋅=1-≈0.9363 |
14 | 1-⋅=1-≈0.9257 |
15 | 1-⋅=1-≈0.9143 |
16 | 1-⋅=1-≈0.902 |
17 | 1-⋅=1-≈0.889 |
18 | 1-⋅=1-≈0.8751 |
19 | 1-⋅=1-≈0.8604 |
20 | 1-⋅=1-≈0.8449 |
... | ... |
Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.
Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist): Wenn beispielsweise die Anzahl der Nieten im Lostopf=6 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= ⋅ (beim ersten Zufallsversuch und beim zweiten weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1-⋅
Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=6. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/50*(x-1)/49)
In dieser Tabelle erkennen wir, dass letztmals bei 19 als 'Anzahl der Nieten im Lostopf' die gesuchte
Wahrscheinlichkeit über 85% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 19 sein.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
Ein neuer Multiple Choice Test mit 15 verschiedenen Fragen soll entwickelt werden. Dabei muss immer genau eine von mehreren Antwortmöglichkeiten richtig sein. Die Anzahl an Antwortmöglichkeiten soll bei allen Fragen gleich sein. Insgesamt soll der Test so konzipiert sein, dass die Wahrscheinlichkeit mehr als 3 Fragen nur durch Raten zufällig richtig zu beantworten (obwohl man keinerlei Wissen hat) bei höchstens 15% liegt. Bestimme die hierfür notwendige Mindestanzahl an Antwortmöglichkeiten bei jeder Frage.
p | P(X≤3) |
---|---|
... | ... |
0.6482 | |
0.7685 | |
0.8441 | |
0.8922 | |
... | ... |
Die Zufallsgröße X gibt die Anzahl der zufällig richtig geratenenen Antworten an. X ist binomialverteilt mit n=15 und unbekanntem Parameter p.
Es muss gelten: =0.85 (oder mehr)
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit ('höchstens 3 Treffer bei 15 Versuchen') bei diesen Nennern wird (siehe Tabelle links)
Um einen günstigen Startwert zu finden wählen wir mal als p=. Mit diesem p wäre ja 3=⋅15 der Erwartungswert und somit irgendwo in der nähe von 50%. Wenn wir nun p= mit erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= einen brauchbaren Einstiegswert für dieses Probieren erhalten.
In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 85% steigt.
Der Nenner, also die Anzahl der Antwortmöglichkeiten, muss also mindestens
8 sein.