Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
p gesucht (n-te Wurzel)
Beispiel:
Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 4 Versuchen mindestens einmal zu treffen bei 93% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)
P=0.93 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.07 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.
Es gilt also 0.07=(1-p)4
=>1-p= ≈ 0.5144
Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.5144 ≈ 0.4856
Binomialvert. mit variablem n (höchst.)
Beispiel:
Der Starspieler der gegnerischen Basketballmannschaft hat bei Freiwürfen eine Trefferquote von p=0,9. Wie viele Freiwürfe darf man bei ihm durch Fouls höchstens zulassen, wenn man ihn mit einer Wahrscheinlichkeit von mindestens 70% nicht über 39 Freiwurfpunkte kommen lassen will?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 42 | 0.8049 |
| 43 | 0.6352 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der getroffenen Freiwürfe an und ist im Idealfall binomialverteilt mit p = 0.9 und variablem n.
Es muss gelten: ≥ 0.7
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 90% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 43 Versuchen auch ungefähr 39 (≈0.9⋅43) Treffer auftreten.
Wir berechnen also mit unserem ersten n=43:
≈ 0.6352
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=42 die gesuchte Wahrscheinlichkeit über 70% ist.
gesuchtes p (ohne zurücklegen)
Beispiel:
In einer Urne sind 35 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?
| Anzahl der schwarzen Kugeln in der Urne | P('mindestens eine schwarze Kugel') |
|---|---|
| ... | ... |
| 3 | 1-⋅=1-≈0.1664 |
| 4 | 1-⋅=1-≈0.2185 |
| 5 | 1-⋅=1-≈0.2689 |
| 6 | 1-⋅=1-≈0.3176 |
| 7 | 1-⋅=1-≈0.3647 |
| 8 | 1-⋅=1-≈0.4101 |
| 9 | 1-⋅=1-≈0.4538 |
| 10 | 1-⋅=1-≈0.4958 |
| 11 | 1-⋅=1-≈0.5361 |
| 12 | 1-⋅=1-≈0.5748 |
| 13 | 1-⋅=1-≈0.6118 |
| 14 | 1-⋅=1-≈0.6471 |
| 15 | 1-⋅=1-≈0.6807 |
| 16 | 1-⋅=1-≈0.7126 |
| 17 | 1-⋅=1-≈0.7429 |
| 18 | 1-⋅=1-≈0.7714 |
| ... | ... |
Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.
Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist): Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= ⋅ (beim ersten Zufallsversuch und beim zweiten weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1-⋅
Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(35-x)/35*(34-x)/34)
In dieser Tabelle erkennen wir, dass erstmals bei 18 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte
Wahrscheinlichkeit über 75% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 18 sein.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
Eine Schulklasse möchte fürs Schulfest ein Glücksrad entwickeln. Aus optischen Gründen sollen dabei alle Sektoren gleich groß sein. Einer davon soll für den Hauptpreis stehen. Hierfür haben sie insgesamt 6 Preise gesammelt. Sie erwarten, dass das Glücksrad beim Schulfest 55 mal gespielt wird. Mit wie vielen Sektoren müssen sie ihr Glückrad mindestens bestücken damit die 6 Hauptpreise mit einer Wahrscheinlichkeit von mindestens 80% für die 55 Durchgänge reichen?
| p | P(X≤6) |
|---|---|
| ... | ... |
| 0.5876 | |
| 0.6904 | |
| 0.7694 | |
| 0.8286 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Hauptpreise an. X ist binomialverteilt mit n=55 und unbekanntem Parameter p.
Es muss gelten: =0.8 (oder mehr)
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit ('höchstens 6 Treffer bei 55 Versuchen') bei diesen Nennern wird (siehe Tabelle links)
Um einen günstigen Startwert zu finden wählen wir mal als p=. Mit diesem p wäre ja 6=⋅55 der Erwartungswert und somit irgendwo in der nähe von 50%. Wenn wir nun p= mit erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= einen brauchbaren Einstiegswert für dieses Probieren erhalten.
In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 80% steigt.
Der Nenner, also die Anzahl der Sektoren des Glücksrad, muss also mindestens
12 sein.
