nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

An einem Glücksrad wird 4 mal gedreht. Die Wahrscheinlichkeit, dass bei allen 4 Durchgängen die Farbe 'blau' kommt, ist 0,3. Wie groß muss bei diesem Glücksrad die Wahrscheinlichkeit für das blaue Feld sein?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.3 ist die Wahrscheinlichkeit, dass 4 mal das Ereignis mit der Wahrscheinlichkeit p eintritt.

Es gilt also 0.3=p4

=>p=0.34 ≈ 0.7401

Binomialvert. mit variablem n (mind)

Beispiel:

Beim Biberacher Schützenfest läuft ein 12-köpfiger historischer Spielmannszug mit, der an die Schweden während des 30-Jährigen Kriegs erinnert. Dabei feiern dessen Mitglieder manchmal so ausgelassen, dass die Wahrscheinlichkeit eines Ausfall beim Umzug wegen unverhältnismäßigem Alkoholgenuss bei 13% liegt. Wie viele Schwedenmusiker muss die Schützendirektion mindestens ausbilden, damit beim Umzug mit mindestens 50%-iger Wahrscheinlichkeit mindestens 12 Schweden einsatzfähig sind?

Lösung einblenden
nP(X≤k)
......
130.5186
140.2708
......

Die Zufallsgröße X gibt die Anzahl der einsatzfähigen Schwedenmusiker an und ist im Idealfall binomialverteilt mit p = 0.87 und variablem n.

Es muss gelten: P0.87n (X12) ≥ 0.5

Weil man ja aber P0.87n (X12) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.87n (X12) = 1 - P0.87n (X11) ≥ 0.5 |+ P0.87n (X11) - 0.5

0.5 ≥ P0.87n (X11) oder P0.87n (X11) ≤ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 87% der Versuche mit einem Treffer. Also müssten dann doch bei 12 0.87 ≈ 14 Versuchen auch ungefähr 12 (≈0.87⋅14) Treffer auftreten.

Wir berechnen also mit unserem ersten n=14:
P0.87n (X11) ≈ 0.2708 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=14 die gesuchte Wahrscheinlichkeit unter 0.5 ist.

n muss also mindestens 14 sein, damit P0.87n (X11) ≤ 0.5 oder eben P0.87n (X12) ≥ 0.5 gilt.

gesuchtes p (ohne zurücklegen)

Beispiel:

Bei einer Tombola sind 45 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 90% liegen. Wieviel der 45 Lose dürfen höchstens Nieten sein?

Lösung einblenden
Anzahl der Nieten im LostopfP('höchstens eine Niete')
......
51- 5 45 4 44 =1- 1 99 ≈0.9899
61- 6 45 5 44 =1- 1 66 ≈0.9848
71- 7 45 6 44 =1- 7 330 ≈0.9788
81- 8 45 7 44 =1- 14 495 ≈0.9717
91- 9 45 8 44 =1- 2 55 ≈0.9636
101- 10 45 9 44 =1- 1 22 ≈0.9545
111- 11 45 10 44 =1- 1 18 ≈0.9444
121- 12 45 11 44 =1- 1 15 ≈0.9333
131- 13 45 12 44 =1- 13 165 ≈0.9212
141- 14 45 13 44 =1- 91 990 ≈0.9081
151- 15 45 14 44 =1- 7 66 ≈0.8939
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.

Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Nieten im Lostopf=5 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= 5 45 4 44 (beim ersten Zufallsversuch 5 45 und beim zweiten 4 44 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1- 5 45 4 44

Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=5. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/45*(x-1)/44)

In dieser Tabelle erkennen wir, dass letztmals bei 14 als 'Anzahl der Nieten im Lostopf' die gesuchte Wahrscheinlichkeit über 90% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 14 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Eine Firma, die Überraschungseier vertreibt, möchte als Werbegag manche Eier mit Superfiguren bestücken. Aus Angst vor Kundenbeschwerden sollen in einer 12er-Packung mit der mindestens 50% Wahrscheinlichkeit 1 oder mehr Superfiguren enthalten sein. Wenn in jedes n-te Ei eine Superfigur rein soll, wie groß darf dann n höchstens sein?

Lösung einblenden
pP(X≥1)=1-P(X≤0)
......
1 2 0.9998
1 3 0.9923
1 4 0.9683
1 5 0.9313
1 6 0.8878
1 7 0.8427
1 8 0.7986
1 9 0.7567
1 10 0.7176
1 11 0.6814
1 12 0.648
1 13 0.6173
1 14 0.5891
1 15 0.563
1 16 0.539
1 17 0.5169
1 18 0.4964
......

Die Zufallsgröße X gibt die Anzahl der Eier mit einer Superfigur an. X ist binomialverteilt mit n=12 und unbekanntem Parameter p.

Es muss gelten: Pp12 (X1) = 1- Pp12 (X0) = 0.5 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp12 (X1) ('mindestens 1 Treffer bei 12 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Als Startwert wählen wir als p= 1 2 .

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 1 17 die gesuchte Wahrscheinlichkeit über 50% bleibt.
Der Nenner, also die das wievielte Ei eine Superfigur enthält, darf also höchstens 17 sein.