Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
p gesucht (n-te Wurzel)
Beispiel:
An einem Glücksrad wird 3 mal gedreht. Die Wahrscheinlichkeit, dass bei allen 3 Durchgängen die Farbe 'blau' kommt, ist 0,2. Wie groß muss bei diesem Glücksrad die Wahrscheinlichkeit für das blaue Feld sein?
(Bitte auf 3 Stellen runden!)
P=0.2 ist die Wahrscheinlichkeit, dass 3 mal das Ereignis mit der Wahrscheinlichkeit p eintritt.
Es gilt also 0.2=p3
=>p= ≈ 0.5848
Binomialvert. mit variablem n (höchst.)
Beispiel:
Ein Mathelehrer möchte neue Taschenrechner für seine Klasse bestellen. Die Wahrscheinlichkeit, dass einer der Taschenrechner ein Decepticon (bekannt aus dem Transformers-Filmen) ist, liegt bei p=0,05. Wie viele Rechner können bestellt werden, dass zu einer Wahrscheinlichkeit von 70% kein Descepticon unter ihnen ist?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 1 | 0.95 |
| 2 | 0.9025 |
| 3 | 0.8574 |
| 4 | 0.8145 |
| 5 | 0.7738 |
| 6 | 0.7351 |
| 7 | 0.6983 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der Descepticons unter den Taschenrechnern an und ist im Idealfall binomialverteilt mit p = 0.05 und variablem n.
Es muss gelten: ≥ 0.7
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 5% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 0 Versuchen auch ungefähr 0 (≈0.05⋅0) Treffer auftreten.
Wir berechnen also mit unserem ersten n=0:
≈ 1
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=6 die gesuchte Wahrscheinlichkeit über 70% ist.
gesuchtes p (ohne zurücklegen)
Beispiel:
In einer Urne sind 45 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?
| Anzahl der schwarzen Kugeln in der Urne | P('mindestens eine schwarze Kugel') |
|---|---|
| ... | ... |
| 3 | 1-⋅=1-≈0.1303 |
| 4 | 1-⋅=1-≈0.1717 |
| 5 | 1-⋅=1-≈0.2121 |
| 6 | 1-⋅=1-≈0.2515 |
| 7 | 1-⋅=1-≈0.2899 |
| 8 | 1-⋅=1-≈0.3273 |
| 9 | 1-⋅=1-≈0.3636 |
| 10 | 1-⋅=1-≈0.399 |
| 11 | 1-⋅=1-≈0.4333 |
| 12 | 1-⋅=1-≈0.4667 |
| 13 | 1-⋅=1-≈0.499 |
| 14 | 1-⋅=1-≈0.5303 |
| 15 | 1-⋅=1-≈0.5606 |
| 16 | 1-⋅=1-≈0.5899 |
| 17 | 1-⋅=1-≈0.6182 |
| 18 | 1-⋅=1-≈0.6455 |
| 19 | 1-⋅=1-≈0.6717 |
| 20 | 1-⋅=1-≈0.697 |
| 21 | 1-⋅=1-≈0.7212 |
| 22 | 1-⋅=1-≈0.7444 |
| 23 | 1-⋅=1-≈0.7667 |
| ... | ... |
Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.
Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist): Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= ⋅ (beim ersten Zufallsversuch und beim zweiten weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1-⋅
Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(45-x)/45*(44-x)/44)
In dieser Tabelle erkennen wir, dass erstmals bei 23 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte
Wahrscheinlichkeit über 75% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 23 sein.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
In einer Urne sind 2 rote und einige schwarze Kugeln. Es soll 25 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 80% unter den 25 gezogenen Kugeln nicht mehr als 21 schwarze sind?
| p | P(X≤21) |
|---|---|
| ... | ... |
| 0.9976 | |
| 0.9851 | |
| 0.9542 | |
| 0.9038 | |
| 0.8388 | |
| 0.766 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=25 und unbekanntem Parameter p.
Es muss gelten: = 0.8 (oder mehr)
Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 2 größer sein muss als der Zähler.
Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit ('höchstens 21 Treffer bei 25 Versuchen') auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=. (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 80% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 7 sein.
