nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 2 Versuchen mindestens einmal zu treffen bei 88% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.88 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 2 Durchgängen, also ist 1-P=0.12 die Wahrscheinlichkeit für keinen Treffer bei bei 2 Durchgängen.

Es gilt also 0.12=(1-p)2

=>1-p=0.122 ≈ 0.3464

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.3464 ≈ 0.6536

Binomialvert. mit variablem n (höchst.)

Beispiel:

Ein Mathelehrer möchte neue Taschenrechner für seine Klasse bestellen. Die Wahrscheinlichkeit, dass einer der Taschenrechner ein Decepticon (bekannt aus dem Transformers-Filmen) ist, liegt bei p=0,02. Wie viele Rechner können bestellt werden, dass zu einer Wahrscheinlichkeit von 60% kein Descepticon unter ihnen ist?

Lösung einblenden
nP(X≤k)
......
200.6676
210.6543
220.6412
230.6283
240.6158
250.6035
260.5914
......

Die Zufallsgröße X gibt Anzahl der Descepticons unter den Taschenrechnern an und ist im Idealfall binomialverteilt mit p = 0.02 und variablem n.

Es muss gelten: P0.02n (X0) ≥ 0.6

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 2% der Versuche mit einem Treffer. Also müssten dann doch bei 0 0.02 ≈ 0 Versuchen auch ungefähr 0 (≈0.02⋅0) Treffer auftreten.

Wir berechnen also mit unserem ersten n=0:
P0.02n (X0) ≈ 1 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=25 die gesuchte Wahrscheinlichkeit über 60% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

Bei einer Tombola sind 50 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 80% liegen. Wieviel der 50 Lose dürfen höchstens Nieten sein?

Lösung einblenden
Anzahl der Nieten im LostopfP('höchstens eine Niete')
......
61- 6 50 5 49 =1- 3 245 ≈0.9878
71- 7 50 6 49 =1- 3 175 ≈0.9829
81- 8 50 7 49 =1- 4 175 ≈0.9771
91- 9 50 8 49 =1- 36 1225 ≈0.9706
101- 10 50 9 49 =1- 9 245 ≈0.9633
111- 11 50 10 49 =1- 11 245 ≈0.9551
121- 12 50 11 49 =1- 66 1225 ≈0.9461
131- 13 50 12 49 =1- 78 1225 ≈0.9363
141- 14 50 13 49 =1- 13 175 ≈0.9257
151- 15 50 14 49 =1- 3 35 ≈0.9143
161- 16 50 15 49 =1- 24 245 ≈0.902
171- 17 50 16 49 =1- 136 1225 ≈0.889
181- 18 50 17 49 =1- 153 1225 ≈0.8751
191- 19 50 18 49 =1- 171 1225 ≈0.8604
201- 20 50 19 49 =1- 38 245 ≈0.8449
211- 21 50 20 49 =1- 6 35 ≈0.8286
221- 22 50 21 49 =1- 33 175 ≈0.8114
231- 23 50 22 49 =1- 253 1225 ≈0.7935
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.

Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Nieten im Lostopf=6 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= 6 50 5 49 (beim ersten Zufallsversuch 6 50 und beim zweiten 5 49 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1- 6 50 5 49

Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=6. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/50*(x-1)/49)

In dieser Tabelle erkennen wir, dass letztmals bei 22 als 'Anzahl der Nieten im Lostopf' die gesuchte Wahrscheinlichkeit über 80% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 22 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 4 rote und einige schwarze Kugeln. Es soll 25 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 85% unter den 25 gezogenen Kugeln nicht mehr als 24 schwarze sind?

Lösung einblenden
pP(X≤24)
......
10 14 0.9998
11 15 0.9996
12 16 0.9992
13 17 0.9988
14 18 0.9981
15 19 0.9973
16 20 0.9962
17 21 0.9949
18 22 0.9934
19 23 0.9916
20 24 0.9895
21 25 0.9872
22 26 0.9846
23 27 0.9818
24 28 0.9788
25 29 0.9755
26 30 0.9721
27 31 0.9684
28 32 0.9645
29 33 0.9605
30 34 0.9562
31 35 0.9519
32 36 0.9474
33 37 0.9427
34 38 0.938
35 39 0.9332
36 40 0.9282
37 41 0.9232
38 42 0.9181
39 43 0.9129
40 44 0.9077
41 45 0.9024
42 46 0.8971
43 47 0.8918
44 48 0.8864
45 49 0.881
46 50 0.8756
47 51 0.8702
48 52 0.8648
49 53 0.8594
50 54 0.854
51 55 0.8486
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=25 und unbekanntem Parameter p.

Es muss gelten: Pp25 (X24) = 0.85 (oder mehr)

Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 4 größer sein muss als der Zähler.

Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit Pp25 (X24) ('höchstens 24 Treffer bei 25 Versuchen') auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p= 10 14 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 50 54 die gesuchte Wahrscheinlichkeit über 85% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 50 sein.