nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Bei einer Tombola werden elektronische Lose so verkauft, dass bei jedem Los jede Preiskategorie immer die gleiche Gewinnwahrscheinlichkeit hat. Aus Marketinggründen wird dabei auch ein Vierer-Pack angeboten. Dabei wird geworben, dass mit einer Wahrscheinlichkeit von 71% bei jedem Viererpack mindestens ein hochwertiger Preis dabei ist. Wie hoch muss man die Einzelwahrscheinlichkeit für einen hochwertigen Preis setzen, damit dieses Versprechen eingehalten wird?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.71 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.29 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.

Es gilt also 0.29=(1-p)4

=>1-p=0.294 ≈ 0.7338

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.7338 ≈ 0.2662

Binomialvert. mit variablem n (höchst.)

Beispiel:

Eine Fluggesellschaft geht davon aus, dass 11% der gekauften Tickets gar nicht eingelöst werden. Wieviel Tickets kann sie für ihre 26-Platzmaschine höchstens verkaufen, so dass es zu mindestens 60% Wahrscheinlichkeit zu keiner Überbelegung kommt.

Lösung einblenden
nP(X≤k)
......
290.6326
300.4234
......

Die Zufallsgröße X gibt die Anzahl der Ticketbesitzer, die tatsächlich fliegen an und ist im Idealfall binomialverteilt mit p = 0.89 und variablem n.

Es muss gelten: P0.89n (X26) ≥ 0.6

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 89% der Versuche mit einem Treffer. Also müssten dann doch bei 26 0.89 ≈ 29 Versuchen auch ungefähr 26 (≈0.89⋅29) Treffer auftreten.

Wir berechnen also mit unserem ersten n=29:
P0.89n (X26) ≈ 0.6326 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=29 die gesuchte Wahrscheinlichkeit über 60% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

Bei einer Tombola sind 45 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 85% liegen. Wieviel der 45 Lose dürfen höchstens Nieten sein?

Lösung einblenden
Anzahl der Nieten im LostopfP('höchstens eine Niete')
......
51- 5 45 4 44 =1- 1 99 ≈0.9899
61- 6 45 5 44 =1- 1 66 ≈0.9848
71- 7 45 6 44 =1- 7 330 ≈0.9788
81- 8 45 7 44 =1- 14 495 ≈0.9717
91- 9 45 8 44 =1- 2 55 ≈0.9636
101- 10 45 9 44 =1- 1 22 ≈0.9545
111- 11 45 10 44 =1- 1 18 ≈0.9444
121- 12 45 11 44 =1- 1 15 ≈0.9333
131- 13 45 12 44 =1- 13 165 ≈0.9212
141- 14 45 13 44 =1- 91 990 ≈0.9081
151- 15 45 14 44 =1- 7 66 ≈0.8939
161- 16 45 15 44 =1- 4 33 ≈0.8788
171- 17 45 16 44 =1- 68 495 ≈0.8626
181- 18 45 17 44 =1- 17 110 ≈0.8455
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.

Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Nieten im Lostopf=5 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= 5 45 4 44 (beim ersten Zufallsversuch 5 45 und beim zweiten 4 44 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1- 5 45 4 44

Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=5. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/45*(x-1)/44)

In dieser Tabelle erkennen wir, dass letztmals bei 17 als 'Anzahl der Nieten im Lostopf' die gesuchte Wahrscheinlichkeit über 85% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 17 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 5 rote und einige schwarze Kugeln. Es soll 11 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 70% unter den 11 gezogenen Kugeln nicht mehr als 6 rote sind?

Lösung einblenden
pP(X≤6)
......
5 9 0.5882
5 10 0.7256
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe rot an. X ist binomialverteilt mit n=11 und unbekanntem Parameter p.

Es muss gelten: Pp11 (X6) =0.7 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 5 sein muss, da es ja genau 5 günstige Fälle gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp11 (X6) ('höchstens 6 Treffer bei 11 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 6 11 . Mit diesem p wäre ja 6= 6 11 ⋅11 der Erwartungswert und somit Pp11 (X6) irgendwo in der nähe von 50%. Wenn wir nun p= 6 11 mit 5 6 erweitern (so dass wir auf den Zähler 5 kommen) und den Nenner abrunden, müssten wir mit p= 5 9 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 5 10 die gesuchte Wahrscheinlichkeit über 70% steigt.
Der Nenner, also die Anzahl aller Kugeln, muss also mindestens 10 sein.

Also werden noch 5 zusätzliche Optionen (also schwarze Kugeln) benötigt.