nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 +3x -23 . Berechne alle Stellen für die gilt: f(x) = -5.

Lösung einblenden

Es gilt f(x) = -5, also x 2 +3x -23 = -5.

x 2 +3x -23 = -5 | +5

x 2 +3x -18 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -3 ± 3 2 -4 · 1 · ( -18 ) 21

x1,2 = -3 ± 9 +72 2

x1,2 = -3 ± 81 2

x1 = -3 + 81 2 = -3 +9 2 = 6 2 = 3

x2 = -3 - 81 2 = -3 -9 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -18 ) = 9 4 + 18 = 9 4 + 72 4 = 81 4

x1,2 = - 3 2 ± 81 4

x1 = - 3 2 - 9 2 = - 12 2 = -6

x2 = - 3 2 + 9 2 = 6 2 = 3

An den Stellen x1 = -6 und x2 = 3 gilt also f(x)= -5.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 ( x 2 -13 ) 3 -52 . Berechne alle Stellen für die gilt: f(x) = 2.

Lösung einblenden

Es gilt f(x) = 2, also 2 ( x 2 -13 ) 3 -52 = 2.

2 ( x 2 -13 ) 3 -52 = 2 | +52
2 ( x 2 -13 ) 3 = 54 |:2
( x 2 -13 ) 3 = 27 | 3
x 2 -13 = 27 3 = 3
x 2 -13 = 3 | +13
x 2 = 16 | 2
x1 = - 16 = -4
x2 = 16 = 4

An den Stellen x1 = -4 und x2 = 4 gilt also f(x)= 2.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= -5 x 4 -5 x 3 +210 x 2 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

-5 x 4 -5 x 3 +210 x 2 = 0
-5 x 2 ( x 2 + x -42 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 2 + x -42 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x2,3 = -1 ± 1 2 -4 · 1 · ( -42 ) 21

x2,3 = -1 ± 1 +168 2

x2,3 = -1 ± 169 2

x2 = -1 + 169 2 = -1 +13 2 = 12 2 = 6

x3 = -1 - 169 2 = -1 -13 2 = -14 2 = -7

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -42 ) = 1 4 + 42 = 1 4 + 168 4 = 169 4

x1,2 = - 1 2 ± 169 4

x1 = - 1 2 - 13 2 = - 14 2 = -7

x2 = - 1 2 + 13 2 = 12 2 = 6

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -7 |0), S2(0|0), S3( 6 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= x 4 -3 x 3 +5 x 2 +81 und g(x)= -3 x 3 +5 x 2 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

x 4 -3 x 3 +5 x 2 +81 = -3 x 3 +5 x 2 | -81 +3 x 3 -5 x 2
x 4 = -81 | 4

Diese Gleichung hat keine (reele) Lösung!

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).