nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -5x -10 . Berechne alle Stellen für die gilt: f(x) = -4.

Lösung einblenden

Es gilt f(x) = -4, also x 2 -5x -10 = -4.

x 2 -5x -10 = -4 | +4

x 2 -5x -6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +5 ± ( -5 ) 2 -4 · 1 · ( -6 ) 21

x1,2 = +5 ± 25 +24 2

x1,2 = +5 ± 49 2

x1 = 5 + 49 2 = 5 +7 2 = 12 2 = 6

x2 = 5 - 49 2 = 5 -7 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 2 ) 2 - ( -6 ) = 25 4 + 6 = 25 4 + 24 4 = 49 4

x1,2 = 5 2 ± 49 4

x1 = 5 2 - 7 2 = - 2 2 = -1

x2 = 5 2 + 7 2 = 12 2 = 6

An den Stellen x1 = -1 und x2 = 6 gilt also f(x)= -4.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 ( x 2 -21 ) 3 +124 . Berechne alle Stellen für die gilt: f(x) = -4.

Lösung einblenden

Es gilt f(x) = -4, also -2 ( x 2 -21 ) 3 +124 = -4.

-2 ( x 2 -21 ) 3 +124 = -4 | -124
-2 ( x 2 -21 ) 3 = -128 |: ( -2 )
( x 2 -21 ) 3 = 64 | 3
x 2 -21 = 64 3 = 4
x 2 -21 = 4 | +21
x 2 = 25 | 2
x1 = - 25 = -5
x2 = 25 = 5

An den Stellen x1 = -5 und x2 = 5 gilt also f(x)= -4.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= -2 x 4 +16 x 3 -14 x 2 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

-2 x 4 +16 x 3 -14 x 2 = 0
2 x 2 ( - x 2 +8x -7 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

- x 2 +8x -7 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x2,3 = -8 ± 8 2 -4 · ( -1 ) · ( -7 ) 2( -1 )

x2,3 = -8 ± 64 -28 -2

x2,3 = -8 ± 36 -2

x2 = -8 + 36 -2 = -8 +6 -2 = -2 -2 = 1

x3 = -8 - 36 -2 = -8 -6 -2 = -14 -2 = 7

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +8x -7 = 0 |: -1

x 2 -8x +7 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -4 ) 2 - 7 = 16 - 7 = 9

x1,2 = 4 ± 9

x1 = 4 - 3 = 1

x2 = 4 + 3 = 7

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1(0|0), S2( 1 |0), S3( 7 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= x 4 + x 3 -4 x 2 - x und g(x)= x 3 -4 x 2 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

x 4 + x 3 -4 x 2 - x = x 3 -4 x 2 | - ( x 3 -4 x 2 )
x 4 + x 3 - x 3 -4 x 2 +4 x 2 - x = 0
x 4 - x = 0
x ( x 3 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 3 -1 = 0 | +1
x 3 = 1 | 3
x2 = 1 3 = 1

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g(0) = 0 3 -4 0 2 = 0 S1(0|0)

g( 1 ) = 1 3 -4 1 2 = -3 S2( 1 | -3 )