nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 +3x -22 . Berechne alle Stellen für die gilt: f(x) = -4.

Lösung einblenden

Es gilt f(x) = -4, also x 2 +3x -22 = -4.

x 2 +3x -22 = -4 | +4

x 2 +3x -18 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -3 ± 3 2 -4 · 1 · ( -18 ) 21

x1,2 = -3 ± 9 +72 2

x1,2 = -3 ± 81 2

x1 = -3 + 81 2 = -3 +9 2 = 6 2 = 3

x2 = -3 - 81 2 = -3 -9 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -18 ) = 9 4 + 18 = 9 4 + 72 4 = 81 4

x1,2 = - 3 2 ± 81 4

x1 = - 3 2 - 9 2 = - 12 2 = -6

x2 = - 3 2 + 9 2 = 6 2 = 3

An den Stellen x1 = -6 und x2 = 3 gilt also f(x)= -4.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 ( x 2 -5 ) 3 +127 . Berechne alle Stellen für die gilt: f(x) = -1.

Lösung einblenden

Es gilt f(x) = -1, also -2 ( x 2 -5 ) 3 +127 = -1.

-2 ( x 2 -5 ) 3 +127 = -1 | -127
-2 ( x 2 -5 ) 3 = -128 |: ( -2 )
( x 2 -5 ) 3 = 64 | 3
x 2 -5 = 64 3 = 4
x 2 -5 = 4 | +5
x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

An den Stellen x1 = -3 und x2 = 3 gilt also f(x)= -1.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= x 3 -4x mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

x 3 -4x = 0
x ( x 2 -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 2 -4 = 0 | +4
x 2 = 4 | 2
x2 = - 4 = -2
x3 = 4 = 2

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -2 |0), S2(0|0), S3( 2 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= -9 x 2 -25x +71 und g(x)= -4 x 2 +1 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

-9 x 2 -25x +71 = -4 x 2 +1 | +4 x 2 -1
-5 x 2 -25x +70 = 0 |:5

- x 2 -5x +14 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +5 ± ( -5 ) 2 -4 · ( -1 ) · 14 2( -1 )

x1,2 = +5 ± 25 +56 -2

x1,2 = +5 ± 81 -2

x1 = 5 + 81 -2 = 5 +9 -2 = 14 -2 = -7

x2 = 5 - 81 -2 = 5 -9 -2 = -4 -2 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -5x +14 = 0 |: -1

x 2 +5x -14 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - ( -14 ) = 25 4 + 14 = 25 4 + 56 4 = 81 4

x1,2 = - 5 2 ± 81 4

x1 = - 5 2 - 9 2 = - 14 2 = -7

x2 = - 5 2 + 9 2 = 4 2 = 2

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( -7 ) = -4 ( -7 ) 2 +1 = -195 S1( -7 | -195 )

g( 2 ) = -4 2 2 +1 = -15 S2( 2 | -15 )