nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -15 . Berechne alle Stellen für die gilt: f(x) = 1.

Lösung einblenden

Es gilt f(x) = 1, also x 2 -15 = 1.

x 2 -15 = 1 | +15
x 2 = 16 | 2
x1 = - 16 = -4
x2 = 16 = 4

An den Stellen x1 = -4 und x2 = 4 gilt also f(x)= 1.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 3 -252 . Berechne alle Stellen für die gilt: f(x) = -2.

Lösung einblenden

Es gilt f(x) = -2, also -2 x 3 -252 = -2.

-2 x 3 -252 = -2 | +252
-2 x 3 = 250 |: ( -2 )
x 3 = -125 | 3
x = - 125 3 = -5

An der Stelle x1 = -5 gilt also f(x)= -2.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= 3 x 2 -39x +126 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

3 x 2 -39x +126 = 0 |:3

x 2 -13x +42 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +13 ± ( -13 ) 2 -4 · 1 · 42 21

x1,2 = +13 ± 169 -168 2

x1,2 = +13 ± 1 2

x1 = 13 + 1 2 = 13 +1 2 = 14 2 = 7

x2 = 13 - 1 2 = 13 -1 2 = 12 2 = 6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 13 2 ) 2 - 42 = 169 4 - 42 = 169 4 - 168 4 = 1 4

x1,2 = 13 2 ± 1 4

x1 = 13 2 - 1 2 = 12 2 = 6

x2 = 13 2 + 1 2 = 14 2 = 7

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( 6 |0), S2( 7 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= -6 x 3 +3 x 2 +122x und g(x)= -3 x 3 -4x .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

-6 x 3 +3 x 2 +122x = -3 x 3 -4x | - ( -3 x 3 -4x )
-6 x 3 +3 x 3 +3 x 2 +122x +4x = 0
-3 x 3 +3 x 2 +126x = 0
3 x ( - x 2 + x +42 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

- x 2 + x +42 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x2,3 = -1 ± 1 2 -4 · ( -1 ) · 42 2( -1 )

x2,3 = -1 ± 1 +168 -2

x2,3 = -1 ± 169 -2

x2 = -1 + 169 -2 = -1 +13 -2 = 12 -2 = -6

x3 = -1 - 169 -2 = -1 -13 -2 = -14 -2 = 7

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 + x +42 = 0 |: -1

x 2 - x -42 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -42 ) = 1 4 + 42 = 1 4 + 168 4 = 169 4

x1,2 = 1 2 ± 169 4

x1 = 1 2 - 13 2 = - 12 2 = -6

x2 = 1 2 + 13 2 = 14 2 = 7

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( -6 ) = -3 ( -6 ) 3 -4( -6 ) = 672 S1( -6 | 672 )

g(0) = -3 0 3 -40 = 0 S2(0|0)

g( 7 ) = -3 7 3 -47 = -1057 S3( 7 | -1057 )