nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -46 . Berechne alle Stellen für die gilt: f(x) = 3.

Lösung einblenden

Es gilt f(x) = 3, also x 2 -46 = 3.

x 2 -46 = 3 | +46
x 2 = 49 | 2
x1 = - 49 = -7
x2 = 49 = 7

An den Stellen x1 = -7 und x2 = 7 gilt also f(x)= 3.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 4 +77 . Berechne alle Stellen für die gilt: f(x) = -4.

Lösung einblenden

Es gilt f(x) = -4, also - x 4 +77 = -4.

- x 4 +77 = -4 | -77
- x 4 = -81 |: ( -1 )
x 4 = 81 | 4
x1 = - 81 4 = -3
x2 = 81 4 = 3

An den Stellen x1 = -3 und x2 = 3 gilt also f(x)= -4.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= x 5 -4 x 3 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

x 5 -4 x 3 = 0
x 3 ( x 2 -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x 2 -4 = 0 | +4
x 2 = 4 | 2
x2 = - 4 = -2
x3 = 4 = 2

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -2 |0), S2(0|0), S3( 2 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= x 5 +3 x 3 -2 x 2 und g(x)= 3 x 3 - x 2 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

x 5 +3 x 3 -2 x 2 = 3 x 3 - x 2 | - ( 3 x 3 - x 2 )
x 5 +3 x 3 -3 x 3 -2 x 2 + x 2 = 0
x 5 - x 2 = 0
x 2 ( x 3 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 3 -1 = 0 | +1
x 3 = 1 | 3
x2 = 1 3 = 1

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g(0) = 3 0 3 - 0 2 = 0 S1(0|0)

g( 1 ) = 3 1 3 - 1 2 = 2 S2( 1 | 2 )