nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 - x -17 . Berechne alle Stellen für die gilt: f(x) = -5.

Lösung einblenden

Es gilt f(x) = -5, also x 2 - x -17 = -5.

x 2 - x -17 = -5 | +5

x 2 - x -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -12 ) 21

x1,2 = +1 ± 1 +48 2

x1,2 = +1 ± 49 2

x1 = 1 + 49 2 = 1 +7 2 = 8 2 = 4

x2 = 1 - 49 2 = 1 -7 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -12 ) = 1 4 + 12 = 1 4 + 48 4 = 49 4

x1,2 = 1 2 ± 49 4

x1 = 1 2 - 7 2 = - 6 2 = -3

x2 = 1 2 + 7 2 = 8 2 = 4

An den Stellen x1 = -3 und x2 = 4 gilt also f(x)= -5.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 4 -34 . Berechne alle Stellen für die gilt: f(x) = -2.

Lösung einblenden

Es gilt f(x) = -2, also 2 x 4 -34 = -2.

2 x 4 -34 = -2 | +34
2 x 4 = 32 |:2
x 4 = 16 | 4
x1 = - 16 4 = -2
x2 = 16 4 = 2

An den Stellen x1 = -2 und x2 = 2 gilt also f(x)= -2.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= -4 x 3 +144x mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

-4 x 3 +144x = 0
4 x ( - x 2 +36 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

- x 2 +36 = 0 | -36
- x 2 = -36 |: ( -1 )
x 2 = 36 | 2
x2 = - 36 = -6
x3 = 36 = 6

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -6 |0), S2(0|0), S3( 6 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= x 5 - x 2 -3x -5 und g(x)= -3x -5 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

x 5 - x 2 -3x -5 = -3x -5 | +5
x 5 - x 2 -3x = -3x | +3x
x 5 - x 2 -3x +3x = 0
x 5 - x 2 = 0
x 2 ( x 3 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 3 -1 = 0 | +1
x 3 = 1 | 3
x2 = 1 3 = 1

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g(0) = -30 -5 = -5 S1(0| -5 )

g( 1 ) = -31 -5 = -8 S2( 1 | -8 )