nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 3 - x +1 . Berechne alle Stellen für die gilt: f(x) = 1.

Lösung einblenden

Es gilt f(x) = 1, also x 3 - x +1 = 1.

x 3 - x +1 = 1 | -1
x 3 - x +1 -1 = 0
x 3 - x = 0
x ( x 2 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 2 -1 = 0 | +1
x 2 = 1 | 2
x2 = - 1 = -1
x3 = 1 = 1

An den Stellen x1 = -1 , x2 = 0 und x3 = 1 gilt also f(x)= 1.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 3 -22 . Berechne alle Stellen für die gilt: f(x) = 5.

Lösung einblenden

Es gilt f(x) = 5, also x 3 -22 = 5.

x 3 -22 = 5 | +22
x 3 = 27 | 3
x = 27 3 = 3

An der Stelle x1 = 3 gilt also f(x)= 5.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= x 4 + x mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

x 4 + x = 0
x ( x 3 +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 3 +1 = 0 | -1
x 3 = -1 | 3
x2 = - 1 3 = -1

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -1 |0), S2(0|0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= 3 x 3 -3x +125 und g(x)= 4 x 3 -3x .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

3 x 3 -3x +125 = 4 x 3 -3x | -125 -4 x 3 +3x
- x 3 = -125 |: ( -1 )
x 3 = 125 | 3
x = 125 3 = 5

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( 5 ) = 4 5 3 -35 = 485 S1( 5 | 485 )