nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -11 . Berechne alle Stellen für die gilt: f(x) = 5.

Lösung einblenden

Es gilt f(x) = 5, also x 2 -11 = 5.

x 2 -11 = 5 | +11
x 2 = 16 | 2
x1 = - 16 = -4
x2 = 16 = 4

An den Stellen x1 = -4 und x2 = 4 gilt also f(x)= 5.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 ( x 2 -11 ) 3 -15 . Berechne alle Stellen für die gilt: f(x) = 1.

Lösung einblenden

Es gilt f(x) = 1, also -2 ( x 2 -11 ) 3 -15 = 1.

-2 ( x 2 -11 ) 3 -15 = 1 | +15
-2 ( x 2 -11 ) 3 = 16 |: ( -2 )
( x 2 -11 ) 3 = -8 | 3
x 2 -11 = - 8 3 = -2
x 2 -11 = -2 | +11
x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

An den Stellen x1 = -3 und x2 = 3 gilt also f(x)= 1.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= 2 x 3 +2 x 2 -12x mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

2 x 3 +2 x 2 -12x = 0
2 x ( x 2 + x -6 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 2 + x -6 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x2,3 = -1 ± 1 2 -4 · 1 · ( -6 ) 21

x2,3 = -1 ± 1 +24 2

x2,3 = -1 ± 25 2

x2 = -1 + 25 2 = -1 +5 2 = 4 2 = 2

x3 = -1 - 25 2 = -1 -5 2 = -6 2 = -3

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -3 |0), S2(0|0), S3( 2 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= - x 3 + x -10 und g(x)= x -2 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

- x 3 + x -10 = x -2 | +10
- x 3 + x = x +8 | - x
- x 3 = 8 |: ( -1 )
x 3 = -8 | 3
x = - 8 3 = -2

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( -2 ) = -2 -2 = -4 S1( -2 | -4 )