nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -2x -25 . Berechne alle Stellen für die gilt: f(x) = -1.

Lösung einblenden

Es gilt f(x) = -1, also x 2 -2x -25 = -1.

x 2 -2x -25 = -1 | +1

x 2 -2x -24 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -24 ) 21

x1,2 = +2 ± 4 +96 2

x1,2 = +2 ± 100 2

x1 = 2 + 100 2 = 2 +10 2 = 12 2 = 6

x2 = 2 - 100 2 = 2 -10 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -24 ) = 1+ 24 = 25

x1,2 = 1 ± 25

x1 = 1 - 5 = -4

x2 = 1 + 5 = 6

An den Stellen x1 = -4 und x2 = 6 gilt also f(x)= -1.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 4 -157 . Berechne alle Stellen für die gilt: f(x) = 5.

Lösung einblenden

Es gilt f(x) = 5, also 2 x 4 -157 = 5.

2 x 4 -157 = 5 | +157
2 x 4 = 162 |:2
x 4 = 81 | 4
x1 = - 81 4 = -3
x2 = 81 4 = 3

An den Stellen x1 = -3 und x2 = 3 gilt also f(x)= 5.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= -2 x 3 +54 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

-2 x 3 +54 = 0 | -54
-2 x 3 = -54 |: ( -2 )
x 3 = 27 | 3
x = 27 3 = 3

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( 3 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= x 3 -4 x 2 -2 und g(x)= -2 x 2 -2 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

x 3 -4 x 2 -2 = -2 x 2 -2 | +2
x 3 -4 x 2 = -2 x 2 | +2 x 2
x 3 -4 x 2 +2 x 2 = 0
x 3 -2 x 2 = 0
x 2 ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x -2 = 0 | +2
x2 = 2

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g(0) = -2 0 2 -2 = -2 S1(0| -2 )

g( 2 ) = -2 2 2 -2 = -10 S2( 2 | -10 )