nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 +5x -16 . Berechne alle Stellen für die gilt: f(x) = -2.

Lösung einblenden

Es gilt f(x) = -2, also x 2 +5x -16 = -2.

x 2 +5x -16 = -2 | +2

x 2 +5x -14 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -5 ± 5 2 -4 · 1 · ( -14 ) 21

x1,2 = -5 ± 25 +56 2

x1,2 = -5 ± 81 2

x1 = -5 + 81 2 = -5 +9 2 = 4 2 = 2

x2 = -5 - 81 2 = -5 -9 2 = -14 2 = -7

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - ( -14 ) = 25 4 + 14 = 25 4 + 56 4 = 81 4

x1,2 = - 5 2 ± 81 4

x1 = - 5 2 - 9 2 = - 14 2 = -7

x2 = - 5 2 + 9 2 = 4 2 = 2

An den Stellen x1 = -7 und x2 = 2 gilt also f(x)= -2.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 ( x +4 ) 4 -34 . Berechne alle Stellen für die gilt: f(x) = -2.

Lösung einblenden

Es gilt f(x) = -2, also 2 ( x +4 ) 4 -34 = -2.

2 ( x +4 ) 4 -34 = -2 | +34
2 ( x +4 ) 4 = 32 |:2
( x +4 ) 4 = 16 | 4

1. Fall

x +4 = - 16 4 = -2
x +4 = -2 | -4
x1 = -6

2. Fall

x +4 = 16 4 = 2
x +4 = 2 | -4
x2 = -2

An den Stellen x1 = -6 und x2 = -2 gilt also f(x)= -2.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= x 4 -16 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

x 4 -16 = 0 | +16
x 4 = 16 | 4
x1 = - 16 4 = -2
x2 = 16 4 = 2

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -2 |0), S2( 2 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= - x 3 - x +66 und g(x)= -x +2 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

- x 3 - x +66 = -x +2 | -66
- x 3 - x = -x -64 | + x
- x 3 = -64 |: ( -1 )
x 3 = 64 | 3
x = 64 3 = 4

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( 4 ) = -4 +2 = -2 S1( 4 | -2 )