nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 4 -2 x 3 -3 . Berechne alle Stellen für die gilt: f(x) = -3.

Lösung einblenden

Es gilt f(x) = -3, also x 4 -2 x 3 -3 = -3.

x 4 -2 x 3 -3 = -3 | +3
x 4 -2 x 3 -3 +3 = 0
x 4 -2 x 3 = 0
x 3 ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x -2 = 0 | +2
x2 = 2

An den Stellen x1 = 0 und x2 = 2 gilt also f(x)= -3.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= - ( x +5 ) 4 +17 . Berechne alle Stellen für die gilt: f(x) = 1.

Lösung einblenden

Es gilt f(x) = 1, also - ( x +5 ) 4 +17 = 1.

- ( x +5 ) 4 +17 = 1 | -17
- ( x +5 ) 4 = -16 |: ( -1 )
( x +5 ) 4 = 16 | 4

1. Fall

x +5 = - 16 4 = -2
x +5 = -2 | -5
x1 = -7

2. Fall

x +5 = 16 4 = 2
x +5 = 2 | -5
x2 = -3

An den Stellen x1 = -7 und x2 = -3 gilt also f(x)= 1.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= -2 x 2 +12x +14 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

-2 x 2 +12x +14 = 0 |:2

- x 2 +6x +7 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · ( -1 ) · 7 2( -1 )

x1,2 = -6 ± 36 +28 -2

x1,2 = -6 ± 64 -2

x1 = -6 + 64 -2 = -6 +8 -2 = 2 -2 = -1

x2 = -6 - 64 -2 = -6 -8 -2 = -14 -2 = 7

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +6x +7 = 0 |: -1

x 2 -6x -7 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -3 ) 2 - ( -7 ) = 9+ 7 = 16

x1,2 = 3 ± 16

x1 = 3 - 4 = -1

x2 = 3 + 4 = 7

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -1 |0), S2( 7 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= 2 x 3 + x 2 -127 und g(x)= x 2 +1 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

2 x 3 + x 2 -127 = x 2 +1 | +127
2 x 3 + x 2 = x 2 +128 | - x 2
2 x 3 = 128 |:2
x 3 = 64 | 3
x = 64 3 = 4

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( 4 ) = 4 2 +1 = 17 S1( 4 | 17 )