nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 4 + x 3 -3 . Berechne alle Stellen für die gilt: f(x) = -3.

Lösung einblenden

Es gilt f(x) = -3, also x 4 + x 3 -3 = -3.

x 4 + x 3 -3 = -3 | +3
x 4 + x 3 -3 +3 = 0
x 4 + x 3 = 0
x 3 ( x +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x +1 = 0 | -1
x2 = -1

An den Stellen x1 = -1 und x2 = 0 gilt also f(x)= -3.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 3 +49 . Berechne alle Stellen für die gilt: f(x) = -5.

Lösung einblenden

Es gilt f(x) = -5, also 2 x 3 +49 = -5.

2 x 3 +49 = -5 | -49
2 x 3 = -54 |:2
x 3 = -27 | 3
x = - 27 3 = -3

An der Stelle x1 = -3 gilt also f(x)= -5.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= x 6 - x 3 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

x 6 - x 3 = 0
x 3 ( x 3 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x 3 -1 = 0 | +1
x 3 = 1 | 3
x2 = 1 3 = 1

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1(0|0), S2( 1 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= -2 x 3 -4 x 2 +44x -100 und g(x)= -2 x 3 +4x .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

-2 x 3 -4 x 2 +44x -100 = -2 x 3 +4x | +2 x 3 -4x
-4 x 2 +40x -100 = 0 |:4

- x 2 +10x -25 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -10 ± 10 2 -4 · ( -1 ) · ( -25 ) 2( -1 )

x1,2 = -10 ± 100 -100 -2

x1,2 = -10 ± 0 -2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -10 -2 = 5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +10x -25 = 0 |: -1

x 2 -10x +25 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -5 ) 2 - 25 = 25 - 25 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 5 ± 0 = 5

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( 5 ) = -2 5 3 +45 = -230 S1( 5 | -230 )