nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 - x +1 . Berechne alle Stellen für die gilt: f(x) = 1.

Lösung einblenden

Es gilt f(x) = 1, also x 2 - x +1 = 1.

x 2 - x +1 = 1 | -1
x 2 - x +1 -1 = 0
x 2 - x = 0
x ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

An den Stellen x1 = 0 und x2 = 1 gilt also f(x)= 1.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 ( x -1 ) 4 -31 . Berechne alle Stellen für die gilt: f(x) = 1.

Lösung einblenden

Es gilt f(x) = 1, also 2 ( x -1 ) 4 -31 = 1.

2 ( x -1 ) 4 -31 = 1 | +31
2 ( x -1 ) 4 = 32 |:2
( x -1 ) 4 = 16 | 4

1. Fall

x -1 = - 16 4 = -2
x -1 = -2 | +1
x1 = -1

2. Fall

x -1 = 16 4 = 2
x -1 = 2 | +1
x2 = 3

An den Stellen x1 = -1 und x2 = 3 gilt also f(x)= 1.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= x 5 +8 x 2 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

x 5 +8 x 2 = 0
x 2 ( x 3 +8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 3 +8 = 0 | -8
x 3 = -8 | 3
x2 = - 8 3 = -2

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -2 |0), S2(0|0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= -3 x 2 - x +51 und g(x)= -x +3 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

-3 x 2 - x +51 = -x +3 | -51
-3 x 2 - x = -x -48 | + x
-3 x 2 = -48 |: ( -3 )
x 2 = 16 | 2
x1 = - 16 = -4
x2 = 16 = 4

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( -4 ) = -( -4 ) +3 = 7 S1( -4 | 7 )

g( 4 ) = -4 +3 = -1 S2( 4 | -1 )