nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -4x -16 . Berechne alle Stellen für die gilt: f(x) = 5.

Lösung einblenden

Es gilt f(x) = 5, also x 2 -4x -16 = 5.

x 2 -4x -16 = 5 | -5

x 2 -4x -21 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · ( -21 ) 21

x1,2 = +4 ± 16 +84 2

x1,2 = +4 ± 100 2

x1 = 4 + 100 2 = 4 +10 2 = 14 2 = 7

x2 = 4 - 100 2 = 4 -10 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -2 ) 2 - ( -21 ) = 4+ 21 = 25

x1,2 = 2 ± 25

x1 = 2 - 5 = -3

x2 = 2 + 5 = 7

An den Stellen x1 = -3 und x2 = 7 gilt also f(x)= 5.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 ( -4 +2x ) 3 -130 . Berechne alle Stellen für die gilt: f(x) = -2.

Lösung einblenden

Es gilt f(x) = -2, also 2 ( -4 +2x ) 3 -130 = -2.

2 ( -4 +2x ) 3 -130 = -2
2 ( 2x -4 ) 3 -130 = -2 | +130
2 ( 2x -4 ) 3 = 128 |:2
( 2x -4 ) 3 = 64 | 3
2x -4 = 64 3 = 4
2x -4 = 4 | +4
2x = 8 |:2
x = 4

An der Stelle x1 = 4 gilt also f(x)= -2.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= ( x +3 ) 3 -27 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

( x +3 ) 3 -27 = 0 | +27
( x +3 ) 3 = 27 | 3
x +3 = 27 3 = 3
x +3 = 3 | -3
x = 0

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1(0|0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= x 2 -10x +43 und g(x)= 3x +1 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

x 2 -10x +43 = 3x +1 | -3x -1

x 2 -13x +42 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +13 ± ( -13 ) 2 -4 · 1 · 42 21

x1,2 = +13 ± 169 -168 2

x1,2 = +13 ± 1 2

x1 = 13 + 1 2 = 13 +1 2 = 14 2 = 7

x2 = 13 - 1 2 = 13 -1 2 = 12 2 = 6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 13 2 ) 2 - 42 = 169 4 - 42 = 169 4 - 168 4 = 1 4

x1,2 = 13 2 ± 1 4

x1 = 13 2 - 1 2 = 12 2 = 6

x2 = 13 2 + 1 2 = 14 2 = 7

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( 6 ) = 36 +1 = 19 S1( 6 | 19 )

g( 7 ) = 37 +1 = 22 S2( 7 | 22 )