nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 +3x -30 . Berechne alle Stellen für die gilt: f(x) = -2.

Lösung einblenden

Es gilt f(x) = -2, also x 2 +3x -30 = -2.

x 2 +3x -30 = -2 | +2

x 2 +3x -28 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -3 ± 3 2 -4 · 1 · ( -28 ) 21

x1,2 = -3 ± 9 +112 2

x1,2 = -3 ± 121 2

x1 = -3 + 121 2 = -3 +11 2 = 8 2 = 4

x2 = -3 - 121 2 = -3 -11 2 = -14 2 = -7

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -28 ) = 9 4 + 28 = 9 4 + 112 4 = 121 4

x1,2 = - 3 2 ± 121 4

x1 = - 3 2 - 11 2 = - 14 2 = -7

x2 = - 3 2 + 11 2 = 8 2 = 4

An den Stellen x1 = -7 und x2 = 4 gilt also f(x)= -2.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 3 -30 . Berechne alle Stellen für die gilt: f(x) = -3.

Lösung einblenden

Es gilt f(x) = -3, also x 3 -30 = -3.

x 3 -30 = -3 | +30
x 3 = 27 | 3
x = 27 3 = 3

An der Stelle x1 = 3 gilt also f(x)= -3.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= x 4 -2 x 3 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

x 4 -2 x 3 = 0
x 3 ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x -2 = 0 | +2
x2 = 2

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1(0|0), S2( 2 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= x 4 - x 2 -3x -3 und g(x)= -3x -3 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

x 4 - x 2 -3x -3 = -3x -3 | +3
x 4 - x 2 -3x = -3x | +3x
x 4 - x 2 -3x +3x = 0
x 4 - x 2 = 0
x 2 ( x 2 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 2 -1 = 0 | +1
x 2 = 1 | 2
x2 = - 1 = -1
x3 = 1 = 1

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( -1 ) = -3( -1 ) -3 = 0 S1( -1 |0)

g(0) = -30 -3 = -3 S2(0| -3 )

g( 1 ) = -31 -3 = -6 S3( 1 | -6 )