nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 4 +2 x 3 -1 . Berechne alle Stellen für die gilt: f(x) = -1.

Lösung einblenden

Es gilt f(x) = -1, also x 4 +2 x 3 -1 = -1.

x 4 +2 x 3 -1 = -1 | +1
x 4 +2 x 3 -1 +1 = 0
x 4 +2 x 3 = 0
x 3 ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x +2 = 0 | -2
x2 = -2

An den Stellen x1 = -2 und x2 = 0 gilt also f(x)= -1.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 ( x -4 ) 4 -37 . Berechne alle Stellen für die gilt: f(x) = -5.

Lösung einblenden

Es gilt f(x) = -5, also 2 ( x -4 ) 4 -37 = -5.

2 ( x -4 ) 4 -37 = -5 | +37
2 ( x -4 ) 4 = 32 |:2
( x -4 ) 4 = 16 | 4

1. Fall

x -4 = - 16 4 = -2
x -4 = -2 | +4
x1 = 2

2. Fall

x -4 = 16 4 = 2
x -4 = 2 | +4
x2 = 6

An den Stellen x1 = 2 und x2 = 6 gilt also f(x)= -5.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= x 2 - x mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

x 2 - x = 0
x ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1(0|0), S2( 1 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= -4 x 3 +2 x 2 +21x -18 und g(x)= -4 x 3 +5 x 2 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

-4 x 3 +2 x 2 +21x -18 = -4 x 3 +5 x 2 | +4 x 3 -5 x 2
-3 x 2 +21x -18 = 0 |:3

- x 2 +7x -6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -7 ± 7 2 -4 · ( -1 ) · ( -6 ) 2( -1 )

x1,2 = -7 ± 49 -24 -2

x1,2 = -7 ± 25 -2

x1 = -7 + 25 -2 = -7 +5 -2 = -2 -2 = 1

x2 = -7 - 25 -2 = -7 -5 -2 = -12 -2 = 6

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +7x -6 = 0 |: -1

x 2 -7x +6 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 7 2 ) 2 - 6 = 49 4 - 6 = 49 4 - 24 4 = 25 4

x1,2 = 7 2 ± 25 4

x1 = 7 2 - 5 2 = 2 2 = 1

x2 = 7 2 + 5 2 = 12 2 = 6

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( 1 ) = -4 1 3 +5 1 2 = 1 S1( 1 | 1 )

g( 6 ) = -4 6 3 +5 6 2 = -684 S2( 6 | -684 )