nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 4 - x 2 +4 . Berechne alle Stellen für die gilt: f(x) = 4.

Lösung einblenden

Es gilt f(x) = 4, also x 4 - x 2 +4 = 4.

x 4 - x 2 +4 = 4 | -4
x 4 - x 2 +4 -4 = 0
x 4 - x 2 = 0
x 2 ( x 2 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 2 -1 = 0 | +1
x 2 = 1 | 2
x2 = - 1 = -1
x3 = 1 = 1

An den Stellen x1 = -1 , x2 = 0 und x3 = 1 gilt also f(x)= 4.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 ( x -1 ) 3 +249 . Berechne alle Stellen für die gilt: f(x) = -1.

Lösung einblenden

Es gilt f(x) = -1, also 2 ( x -1 ) 3 +249 = -1.

2 ( x -1 ) 3 +249 = -1 | -249
2 ( x -1 ) 3 = -250 |:2
( x -1 ) 3 = -125 | 3
x -1 = - 125 3 = -5
x -1 = -5 | +1
x = -4

An der Stelle x1 = -4 gilt also f(x)= -1.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= -2 x 3 +12 x 2 -16x mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

-2 x 3 +12 x 2 -16x = 0
2 x ( - x 2 +6x -8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

- x 2 +6x -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x2,3 = -6 ± 6 2 -4 · ( -1 ) · ( -8 ) 2( -1 )

x2,3 = -6 ± 36 -32 -2

x2,3 = -6 ± 4 -2

x2 = -6 + 4 -2 = -6 +2 -2 = -4 -2 = 2

x3 = -6 - 4 -2 = -6 -2 -2 = -8 -2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +6x -8 = 0 |: -1

x 2 -6x +8 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -3 ) 2 - 8 = 9 - 8 = 1

x1,2 = 3 ± 1

x1 = 3 - 1 = 2

x2 = 3 + 1 = 4

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1(0|0), S2( 2 |0), S3( 4 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= -3 x 3 -14 x 2 +9x und g(x)= -5 x 2 -3x .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

-3 x 3 -14 x 2 +9x = -5 x 2 -3x | - ( -5 x 2 -3x )
-3 x 3 -14 x 2 +5 x 2 +9x +3x = 0
-3 x 3 -9 x 2 +12x = 0
-3 x ( x 2 +3x -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 2 +3x -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x2,3 = -3 ± 3 2 -4 · 1 · ( -4 ) 21

x2,3 = -3 ± 9 +16 2

x2,3 = -3 ± 25 2

x2 = -3 + 25 2 = -3 +5 2 = 2 2 = 1

x3 = -3 - 25 2 = -3 -5 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -4 ) = 9 4 + 4 = 9 4 + 16 4 = 25 4

x1,2 = - 3 2 ± 25 4

x1 = - 3 2 - 5 2 = - 8 2 = -4

x2 = - 3 2 + 5 2 = 2 2 = 1

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( -4 ) = -5 ( -4 ) 2 -3( -4 ) = -68 S1( -4 | -68 )

g(0) = -5 0 2 -30 = 0 S2(0|0)

g( 1 ) = -5 1 2 -31 = -8 S3( 1 | -8 )