nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 5 - x 3 +5 . Berechne alle Stellen für die gilt: f(x) = 5.

Lösung einblenden

Es gilt f(x) = 5, also x 5 - x 3 +5 = 5.

x 5 - x 3 +5 = 5 | -5
x 5 - x 3 +5 -5 = 0
x 5 - x 3 = 0
x 3 ( x 2 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x 2 -1 = 0 | +1
x 2 = 1 | 2
x2 = - 1 = -1
x3 = 1 = 1

An den Stellen x1 = -1 , x2 = 0 und x3 = 1 gilt also f(x)= 5.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= ( x -5 ) 3 +12 . Berechne alle Stellen für die gilt: f(x) = 4.

Lösung einblenden

Es gilt f(x) = 4, also ( x -5 ) 3 +12 = 4.

( x -5 ) 3 +12 = 4 | -12
( x -5 ) 3 = -8 | 3
x -5 = - 8 3 = -2
x -5 = -2 | +5
x = 3

An der Stelle x1 = 3 gilt also f(x)= 4.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= x 2 + x mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

x 2 + x = 0
x ( x +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +1 = 0 | -1
x2 = -1

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -1 |0), S2(0|0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= -5 x 4 -14 x 3 +135 x 2 und g(x)= x 3 -5 x 2 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

-5 x 4 -14 x 3 +135 x 2 = x 3 -5 x 2 | - ( x 3 -5 x 2 )
-5 x 4 -14 x 3 - x 3 +135 x 2 +5 x 2 = 0
-5 x 4 -15 x 3 +140 x 2 = 0
-5 x 2 ( x 2 +3x -28 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 2 +3x -28 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x2,3 = -3 ± 3 2 -4 · 1 · ( -28 ) 21

x2,3 = -3 ± 9 +112 2

x2,3 = -3 ± 121 2

x2 = -3 + 121 2 = -3 +11 2 = 8 2 = 4

x3 = -3 - 121 2 = -3 -11 2 = -14 2 = -7

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -28 ) = 9 4 + 28 = 9 4 + 112 4 = 121 4

x1,2 = - 3 2 ± 121 4

x1 = - 3 2 - 11 2 = - 14 2 = -7

x2 = - 3 2 + 11 2 = 8 2 = 4

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( -7 ) = ( -7 ) 3 -5 ( -7 ) 2 = -588 S1( -7 | -588 )

g(0) = 0 3 -5 0 2 = 0 S2(0|0)

g( 4 ) = 4 3 -5 4 2 = -16 S3( 4 | -16 )