nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -23 . Berechne alle Stellen für die gilt: f(x) = 2.

Lösung einblenden

Es gilt f(x) = 2, also x 2 -23 = 2.

x 2 -23 = 2 | +23
x 2 = 25 | 2
x1 = - 25 = -5
x2 = 25 = 5

An den Stellen x1 = -5 und x2 = 5 gilt also f(x)= 2.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 ( x +4 ) 4 +158 . Berechne alle Stellen für die gilt: f(x) = -4.

Lösung einblenden

Es gilt f(x) = -4, also -2 ( x +4 ) 4 +158 = -4.

-2 ( x +4 ) 4 +158 = -4 | -158
-2 ( x +4 ) 4 = -162 |: ( -2 )
( x +4 ) 4 = 81 | 4

1. Fall

x +4 = - 81 4 = -3
x +4 = -3 | -4
x1 = -7

2. Fall

x +4 = 81 4 = 3
x +4 = 3 | -4
x2 = -1

An den Stellen x1 = -7 und x2 = -1 gilt also f(x)= -4.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= x 3 +2 x 2 -15x mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

x 3 +2 x 2 -15x = 0
x ( x 2 +2x -15 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 2 +2x -15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x2,3 = -2 ± 2 2 -4 · 1 · ( -15 ) 21

x2,3 = -2 ± 4 +60 2

x2,3 = -2 ± 64 2

x2 = -2 + 64 2 = -2 +8 2 = 6 2 = 3

x3 = -2 - 64 2 = -2 -8 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -15 ) = 1+ 15 = 16

x1,2 = -1 ± 16

x1 = -1 - 4 = -5

x2 = -1 + 4 = 3

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -5 |0), S2(0|0), S3( 3 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= x 3 +2 x 2 -5x +5 und g(x)= -5x +5 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

x 3 +2 x 2 -5x +5 = -5x +5 | -5
x 3 +2 x 2 -5x = -5x | +5x
x 3 +2 x 2 -5x +5x = 0
x 3 +2 x 2 = 0
x 2 ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x +2 = 0 | -2
x2 = -2

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( -2 ) = -5( -2 ) +5 = 15 S1( -2 | 15 )

g(0) = -50 +5 = 5 S2(0| 5 )