nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -3x -7 . Berechne alle Stellen für die gilt: f(x) = -3.

Lösung einblenden

Es gilt f(x) = -3, also x 2 -3x -7 = -3.

x 2 -3x -7 = -3 | +3

x 2 -3x -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -4 ) 21

x1,2 = +3 ± 9 +16 2

x1,2 = +3 ± 25 2

x1 = 3 + 25 2 = 3 +5 2 = 8 2 = 4

x2 = 3 - 25 2 = 3 -5 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - ( -4 ) = 9 4 + 4 = 9 4 + 16 4 = 25 4

x1,2 = 3 2 ± 25 4

x1 = 3 2 - 5 2 = - 2 2 = -1

x2 = 3 2 + 5 2 = 8 2 = 4

An den Stellen x1 = -1 und x2 = 4 gilt also f(x)= -3.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 3 +249 . Berechne alle Stellen für die gilt: f(x) = -1.

Lösung einblenden

Es gilt f(x) = -1, also -2 x 3 +249 = -1.

-2 x 3 +249 = -1 | -249
-2 x 3 = -250 |: ( -2 )
x 3 = 125 | 3
x = 125 3 = 5

An der Stelle x1 = 5 gilt also f(x)= -1.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= x 2 - x mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

x 2 - x = 0
x ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1(0|0), S2( 1 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= -2 x 4 +10 x 3 +15 x 2 +3x und g(x)= 3 x 2 +3x .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

-2 x 4 +10 x 3 +15 x 2 +3x = 3 x 2 +3x | - ( 3 x 2 +3x )
-2 x 4 +10 x 3 +15 x 2 -3 x 2 +3x -3x = 0
-2 x 4 +10 x 3 +12 x 2 = 0
2 x 2 ( - x 2 +5x +6 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

- x 2 +5x +6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x2,3 = -5 ± 5 2 -4 · ( -1 ) · 6 2( -1 )

x2,3 = -5 ± 25 +24 -2

x2,3 = -5 ± 49 -2

x2 = -5 + 49 -2 = -5 +7 -2 = 2 -2 = -1

x3 = -5 - 49 -2 = -5 -7 -2 = -12 -2 = 6

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +5x +6 = 0 |: -1

x 2 -5x -6 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 2 ) 2 - ( -6 ) = 25 4 + 6 = 25 4 + 24 4 = 49 4

x1,2 = 5 2 ± 49 4

x1 = 5 2 - 7 2 = - 2 2 = -1

x2 = 5 2 + 7 2 = 12 2 = 6

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( -1 ) = 3 ( -1 ) 2 +3( -1 ) = 0 S1( -1 |0)

g(0) = 3 0 2 +30 = 0 S2(0|0)

g( 6 ) = 3 6 2 +36 = 126 S3( 6 | 126 )