nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 + x -15 . Berechne alle Stellen für die gilt: f(x) = -3.

Lösung einblenden

Es gilt f(x) = -3, also x 2 + x -15 = -3.

x 2 + x -15 = -3 | +3

x 2 + x -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · 1 · ( -12 ) 21

x1,2 = -1 ± 1 +48 2

x1,2 = -1 ± 49 2

x1 = -1 + 49 2 = -1 +7 2 = 6 2 = 3

x2 = -1 - 49 2 = -1 -7 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -12 ) = 1 4 + 12 = 1 4 + 48 4 = 49 4

x1,2 = - 1 2 ± 49 4

x1 = - 1 2 - 7 2 = - 8 2 = -4

x2 = - 1 2 + 7 2 = 6 2 = 3

An den Stellen x1 = -4 und x2 = 3 gilt also f(x)= -3.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 3 +132 . Berechne alle Stellen für die gilt: f(x) = 4.

Lösung einblenden

Es gilt f(x) = 4, also -2 x 3 +132 = 4.

-2 x 3 +132 = 4 | -132
-2 x 3 = -128 |: ( -2 )
x 3 = 64 | 3
x = 64 3 = 4

An der Stelle x1 = 4 gilt also f(x)= 4.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= - x 3 -64 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

- x 3 -64 = 0 | +64
- x 3 = 64 |: ( -1 )
x 3 = -64 | 3
x = - 64 3 = -4

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -4 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= -2 x 3 +5x +14 und g(x)= 5x -2 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

-2 x 3 +5x +14 = 5x -2 | -14
-2 x 3 +5x = 5x -16 | -5x
-2 x 3 = -16 |: ( -2 )
x 3 = 8 | 3
x = 8 3 = 2

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( 2 ) = 52 -2 = 8 S1( 2 | 8 )