nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 4 - x 2 +2 . Berechne alle Stellen für die gilt: f(x) = 2.

Lösung einblenden

Es gilt f(x) = 2, also x 4 - x 2 +2 = 2.

x 4 - x 2 +2 = 2 | -2
x 4 - x 2 +2 -2 = 0
x 4 - x 2 = 0
x 2 ( x 2 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 2 -1 = 0 | +1
x 2 = 1 | 2
x2 = - 1 = -1
x3 = 1 = 1

An den Stellen x1 = -1 , x2 = 0 und x3 = 1 gilt also f(x)= 2.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 ( x -4 ) 4 -36 . Berechne alle Stellen für die gilt: f(x) = -4.

Lösung einblenden

Es gilt f(x) = -4, also 2 ( x -4 ) 4 -36 = -4.

2 ( x -4 ) 4 -36 = -4 | +36
2 ( x -4 ) 4 = 32 |:2
( x -4 ) 4 = 16 | 4

1. Fall

x -4 = - 16 4 = -2
x -4 = -2 | +4
x1 = 2

2. Fall

x -4 = 16 4 = 2
x -4 = 2 | +4
x2 = 6

An den Stellen x1 = 2 und x2 = 6 gilt also f(x)= -4.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= -3 x 2 +12x -9 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

-3 x 2 +12x -9 = 0 |:3

- x 2 +4x -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -4 ± 4 2 -4 · ( -1 ) · ( -3 ) 2( -1 )

x1,2 = -4 ± 16 -12 -2

x1,2 = -4 ± 4 -2

x1 = -4 + 4 -2 = -4 +2 -2 = -2 -2 = 1

x2 = -4 - 4 -2 = -4 -2 -2 = -6 -2 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +4x -3 = 0 |: -1

x 2 -4x +3 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -2 ) 2 - 3 = 4 - 3 = 1

x1,2 = 2 ± 1

x1 = 2 - 1 = 1

x2 = 2 + 1 = 3

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( 1 |0), S2( 3 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= 2 x 3 + x +255 und g(x)= x +5 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

2 x 3 + x +255 = x +5 | -255
2 x 3 + x = x -250 | - x
2 x 3 = -250 |:2
x 3 = -125 | 3
x = - 125 3 = -5

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( -5 ) = -5 +5 = 0 S1( -5 |0)