nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -46 . Berechne alle Stellen für die gilt: f(x) = 3.

Lösung einblenden

Es gilt f(x) = 3, also x 2 -46 = 3.

x 2 -46 = 3 | +46
x 2 = 49 | 2
x1 = - 49 = -7
x2 = 49 = 7

An den Stellen x1 = -7 und x2 = 7 gilt also f(x)= 3.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 ( x +1 ) 4 +163 . Berechne alle Stellen für die gilt: f(x) = 1.

Lösung einblenden

Es gilt f(x) = 1, also 2 ( x +1 ) 4 +163 = 1.

2 ( x +1 ) 4 +163 = 1 | -163
2 ( x +1 ) 4 = -162 |:2
( x +1 ) 4 = -81 | 4

Diese Gleichung hat keine (reele) Lösung!

Es gibt also keine Stelle x für die f(x)= 1 gilt.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= - x 3 -27 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

- x 3 -27 = 0 | +27
- x 3 = 27 |: ( -1 )
x 3 = -27 | 3
x = - 27 3 = -3

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -3 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= x 3 - x -30 und g(x)= -x -3 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

x 3 - x -30 = -x -3 | +30
x 3 - x = -x +27 | + x
x 3 = 27 | 3
x = 27 3 = 3

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( 3 ) = -3 -3 = -6 S1( 3 | -6 )