nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -2x -32 . Berechne alle Stellen für die gilt: f(x) = 3.

Lösung einblenden

Es gilt f(x) = 3, also x 2 -2x -32 = 3.

x 2 -2x -32 = 3 | -3

x 2 -2x -35 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -35 ) 21

x1,2 = +2 ± 4 +140 2

x1,2 = +2 ± 144 2

x1 = 2 + 144 2 = 2 +12 2 = 14 2 = 7

x2 = 2 - 144 2 = 2 -12 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -35 ) = 1+ 35 = 36

x1,2 = 1 ± 36

x1 = 1 - 6 = -5

x2 = 1 + 6 = 7

An den Stellen x1 = -5 und x2 = 7 gilt also f(x)= 3.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 ( x 2 -28 ) 3 -56 . Berechne alle Stellen für die gilt: f(x) = -2.

Lösung einblenden

Es gilt f(x) = -2, also -2 ( x 2 -28 ) 3 -56 = -2.

-2 ( x 2 -28 ) 3 -56 = -2 | +56
-2 ( x 2 -28 ) 3 = 54 |: ( -2 )
( x 2 -28 ) 3 = -27 | 3
x 2 -28 = - 27 3 = -3
x 2 -28 = -3 | +28
x 2 = 25 | 2
x1 = - 25 = -5
x2 = 25 = 5

An den Stellen x1 = -5 und x2 = 5 gilt also f(x)= -2.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= x 6 +8 x 3 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

x 6 +8 x 3 = 0
x 3 ( x 3 +8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x 3 +8 = 0 | -8
x 3 = -8 | 3
x2 = - 8 3 = -2

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -2 |0), S2(0|0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= 3 x 2 -20x -90 und g(x)= -2 x 2 -5x .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

3 x 2 -20x -90 = -2 x 2 -5x | +2 x 2 +5x
5 x 2 -15x -90 = 0 |:5

x 2 -3x -18 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -18 ) 21

x1,2 = +3 ± 9 +72 2

x1,2 = +3 ± 81 2

x1 = 3 + 81 2 = 3 +9 2 = 12 2 = 6

x2 = 3 - 81 2 = 3 -9 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - ( -18 ) = 9 4 + 18 = 9 4 + 72 4 = 81 4

x1,2 = 3 2 ± 81 4

x1 = 3 2 - 9 2 = - 6 2 = -3

x2 = 3 2 + 9 2 = 12 2 = 6

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( -3 ) = -2 ( -3 ) 2 -5( -3 ) = -3 S1( -3 | -3 )

g( 6 ) = -2 6 2 -56 = -102 S2( 6 | -102 )