nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 - x -1 . Berechne alle Stellen für die gilt: f(x) = -1.

Lösung einblenden

Es gilt f(x) = -1, also x 2 - x -1 = -1.

x 2 - x -1 = -1 | +1
x 2 - x -1 +1 = 0
x 2 - x = 0
x ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

An den Stellen x1 = 0 und x2 = 1 gilt also f(x)= -1.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 4 -85 . Berechne alle Stellen für die gilt: f(x) = -4.

Lösung einblenden

Es gilt f(x) = -4, also x 4 -85 = -4.

x 4 -85 = -4 | +85
x 4 = 81 | 4
x1 = - 81 4 = -3
x2 = 81 4 = 3

An den Stellen x1 = -3 und x2 = 3 gilt also f(x)= -4.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= x 4 -4 x 2 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

x 4 -4 x 2 = 0
x 2 ( x 2 -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 2 -4 = 0 | +4
x 2 = 4 | 2
x2 = - 4 = -2
x3 = 4 = 2

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -2 |0), S2(0|0), S3( 2 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= x 3 +7 x 2 -16x und g(x)= 3 x 2 -4x .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

x 3 +7 x 2 -16x = 3 x 2 -4x | - ( 3 x 2 -4x )
x 3 +7 x 2 -3 x 2 -16x +4x = 0
x 3 +4 x 2 -12x = 0
x ( x 2 +4x -12 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 2 +4x -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x2,3 = -4 ± 4 2 -4 · 1 · ( -12 ) 21

x2,3 = -4 ± 16 +48 2

x2,3 = -4 ± 64 2

x2 = -4 + 64 2 = -4 +8 2 = 4 2 = 2

x3 = -4 - 64 2 = -4 -8 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - ( -12 ) = 4+ 12 = 16

x1,2 = -2 ± 16

x1 = -2 - 4 = -6

x2 = -2 + 4 = 2

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( -6 ) = 3 ( -6 ) 2 -4( -6 ) = 132 S1( -6 | 132 )

g(0) = 3 0 2 -40 = 0 S2(0|0)

g( 2 ) = 3 2 2 -42 = 4 S3( 2 | 4 )