nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x ( x +1 ) 2 ( x -3 ) . Berechne alle Stellen für die gilt: f(x) = 0.

Lösung einblenden

Es gilt f(x) = 0, also x ( x +1 ) 2 ( x -3 ) = 0.

x ( x +1 ) 2 ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

( x +1 ) 2 ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

( x +1 ) 2 = 0 | 2
x +1 = 0
x +1 = 0 | -1
x2 = -1

2. Fall:

x -3 = 0 | +3
x3 = 3

An den Stellen x1 = -1 , x2 = 0 und x3 = 3 gilt also f(x)= 0.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 ( -5 -2x ) 3 +50 . Berechne alle Stellen für die gilt: f(x) = -4.

Lösung einblenden

Es gilt f(x) = -4, also 2 ( -5 -2x ) 3 +50 = -4.

2 ( -5 -2x ) 3 +50 = -4
2 ( -2x -5 ) 3 +50 = -4 | -50
2 ( -2x -5 ) 3 = -54 |:2
( -2x -5 ) 3 = -27 | 3
-2x -5 = - 27 3 = -3
-2x -5 = -3 | +5
-2x = 2 |:(-2 )
x = -1

An der Stelle x1 = -1 gilt also f(x)= -4.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= -3 x 4 -9 x 3 +84 x 2 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

-3 x 4 -9 x 3 +84 x 2 = 0
-3 x 2 ( x 2 +3x -28 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 2 +3x -28 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x2,3 = -3 ± 3 2 -4 · 1 · ( -28 ) 21

x2,3 = -3 ± 9 +112 2

x2,3 = -3 ± 121 2

x2 = -3 + 121 2 = -3 +11 2 = 8 2 = 4

x3 = -3 - 121 2 = -3 -11 2 = -14 2 = -7

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -28 ) = 9 4 + 28 = 9 4 + 112 4 = 121 4

x1,2 = - 3 2 ± 121 4

x1 = - 3 2 - 11 2 = - 14 2 = -7

x2 = - 3 2 + 11 2 = 8 2 = 4

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -7 |0), S2(0|0), S3( 4 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= -2 x 3 -3 x 2 +4x +16 und g(x)= -3 x 2 +4x .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

-2 x 3 -3 x 2 +4x +16 = -3 x 2 +4x | -16 +3 x 2 -4x
-2 x 3 = -16 |: ( -2 )
x 3 = 8 | 3
x = 8 3 = 2

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( 2 ) = -3 2 2 +42 = -4 S1( 2 | -4 )