nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 + x -4 . Berechne alle Stellen für die gilt: f(x) = -4.

Lösung einblenden

Es gilt f(x) = -4, also x 2 + x -4 = -4.

x 2 + x -4 = -4 | +4
x 2 + x -4 +4 = 0
x 2 + x = 0
x ( x +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +1 = 0 | -1
x2 = -1

An den Stellen x1 = -1 und x2 = 0 gilt also f(x)= -4.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= - ( x +3 ) 4 +76 . Berechne alle Stellen für die gilt: f(x) = -5.

Lösung einblenden

Es gilt f(x) = -5, also - ( x +3 ) 4 +76 = -5.

- ( x +3 ) 4 +76 = -5 | -76
- ( x +3 ) 4 = -81 |: ( -1 )
( x +3 ) 4 = 81 | 4

1. Fall

x +3 = - 81 4 = -3
x +3 = -3 | -3
x1 = -6

2. Fall

x +3 = 81 4 = 3
x +3 = 3 | -3
x2 = 0

An den Stellen x1 = -6 und x2 = 0 gilt also f(x)= -5.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= x 3 -4x mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

x 3 -4x = 0
x ( x 2 -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 2 -4 = 0 | +4
x 2 = 4 | 2
x2 = - 4 = -2
x3 = 4 = 2

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -2 |0), S2(0|0), S3( 2 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= 2 x 4 +7 x 3 -40 x 2 und g(x)= - x 3 +2 x 2 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

2 x 4 +7 x 3 -40 x 2 = - x 3 +2 x 2 | - ( - x 3 +2 x 2 )
2 x 4 +7 x 3 + x 3 -40 x 2 -2 x 2 = 0
2 x 4 +8 x 3 -42 x 2 = 0
2 x 2 ( x 2 +4x -21 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 2 +4x -21 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x2,3 = -4 ± 4 2 -4 · 1 · ( -21 ) 21

x2,3 = -4 ± 16 +84 2

x2,3 = -4 ± 100 2

x2 = -4 + 100 2 = -4 +10 2 = 6 2 = 3

x3 = -4 - 100 2 = -4 -10 2 = -14 2 = -7

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - ( -21 ) = 4+ 21 = 25

x1,2 = -2 ± 25

x1 = -2 - 5 = -7

x2 = -2 + 5 = 3

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( -7 ) = - ( -7 ) 3 +2 ( -7 ) 2 = 441 S1( -7 | 441 )

g(0) = - 0 3 +2 0 2 = 0 S2(0|0)

g( 3 ) = - 3 3 +2 3 2 = -9 S3( 3 | -9 )