nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -3x -29 . Berechne alle Stellen für die gilt: f(x) = -1.

Lösung einblenden

Es gilt f(x) = -1, also x 2 -3x -29 = -1.

x 2 -3x -29 = -1 | +1

x 2 -3x -28 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -28 ) 21

x1,2 = +3 ± 9 +112 2

x1,2 = +3 ± 121 2

x1 = 3 + 121 2 = 3 +11 2 = 14 2 = 7

x2 = 3 - 121 2 = 3 -11 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - ( -28 ) = 9 4 + 28 = 9 4 + 112 4 = 121 4

x1,2 = 3 2 ± 121 4

x1 = 3 2 - 11 2 = - 8 2 = -4

x2 = 3 2 + 11 2 = 14 2 = 7

An den Stellen x1 = -4 und x2 = 7 gilt also f(x)= -1.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 ( x -4 ) 4 -166 . Berechne alle Stellen für die gilt: f(x) = -4.

Lösung einblenden

Es gilt f(x) = -4, also 2 ( x -4 ) 4 -166 = -4.

2 ( x -4 ) 4 -166 = -4 | +166
2 ( x -4 ) 4 = 162 |:2
( x -4 ) 4 = 81 | 4

1. Fall

x -4 = - 81 4 = -3
x -4 = -3 | +4
x1 = 1

2. Fall

x -4 = 81 4 = 3
x -4 = 3 | +4
x2 = 7

An den Stellen x1 = 1 und x2 = 7 gilt also f(x)= -4.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= x 3 - x mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

x 3 - x = 0
x ( x 2 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 2 -1 = 0 | +1
x 2 = 1 | 2
x2 = - 1 = -1
x3 = 1 = 1

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -1 |0), S2(0|0), S3( 1 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= -2 x 4 -5x -27 und g(x)= -5x +5 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

-2 x 4 -5x -27 = -5x +5 | +27
-2 x 4 -5x = -5x +32 | +5x
-2 x 4 = 32 |: ( -2 )
x 4 = -16 | 4

Diese Gleichung hat keine (reele) Lösung!

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).