nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -8x +4 . Berechne alle Stellen für die gilt: f(x) = -3.

Lösung einblenden

Es gilt f(x) = -3, also x 2 -8x +4 = -3.

x 2 -8x +4 = -3 | +3

x 2 -8x +7 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +8 ± ( -8 ) 2 -4 · 1 · 7 21

x1,2 = +8 ± 64 -28 2

x1,2 = +8 ± 36 2

x1 = 8 + 36 2 = 8 +6 2 = 14 2 = 7

x2 = 8 - 36 2 = 8 -6 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -4 ) 2 - 7 = 16 - 7 = 9

x1,2 = 4 ± 9

x1 = 4 - 3 = 1

x2 = 4 + 3 = 7

An den Stellen x1 = 1 und x2 = 7 gilt also f(x)= -3.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 ( -4 +3x ) 3 -12 . Berechne alle Stellen für die gilt: f(x) = 4.

Lösung einblenden

Es gilt f(x) = 4, also 2 ( -4 +3x ) 3 -12 = 4.

2 ( -4 +3x ) 3 -12 = 4
2 ( 3x -4 ) 3 -12 = 4 | +12
2 ( 3x -4 ) 3 = 16 |:2
( 3x -4 ) 3 = 8 | 3
3x -4 = 8 3 = 2
3x -4 = 2 | +4
3x = 6 |:3
x = 2

An der Stelle x1 = 2 gilt also f(x)= 4.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= 4 x 2 -16 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

4 x 2 -16 = 0 | +16
4 x 2 = 16 |:4
x 2 = 4 | 2
x1 = - 4 = -2
x2 = 4 = 2

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -2 |0), S2( 2 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= -5 x 2 +17x -19 und g(x)= -3x -4 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

-5 x 2 +17x -19 = -3x -4 | +3x +4
-5 x 2 +20x -15 = 0 |:5

- x 2 +4x -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -4 ± 4 2 -4 · ( -1 ) · ( -3 ) 2( -1 )

x1,2 = -4 ± 16 -12 -2

x1,2 = -4 ± 4 -2

x1 = -4 + 4 -2 = -4 +2 -2 = -2 -2 = 1

x2 = -4 - 4 -2 = -4 -2 -2 = -6 -2 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +4x -3 = 0 |: -1

x 2 -4x +3 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -2 ) 2 - 3 = 4 - 3 = 1

x1,2 = 2 ± 1

x1 = 2 - 1 = 1

x2 = 2 + 1 = 3

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( 1 ) = -31 -4 = -7 S1( 1 | -7 )

g( 3 ) = -33 -4 = -13 S2( 3 | -13 )