nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 3 +2 x 2 -5 . Berechne alle Stellen für die gilt: f(x) = -5.

Lösung einblenden

Es gilt f(x) = -5, also x 3 +2 x 2 -5 = -5.

x 3 +2 x 2 -5 = -5 | +5
x 3 +2 x 2 -5 +5 = 0
x 3 +2 x 2 = 0
x 2 ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x +2 = 0 | -2
x2 = -2

An den Stellen x1 = -2 und x2 = 0 gilt also f(x)= -5.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 3 -56 . Berechne alle Stellen für die gilt: f(x) = -2.

Lösung einblenden

Es gilt f(x) = -2, also -2 x 3 -56 = -2.

-2 x 3 -56 = -2 | +56
-2 x 3 = 54 |: ( -2 )
x 3 = -27 | 3
x = - 27 3 = -3

An der Stelle x1 = -3 gilt also f(x)= -2.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= x 2 -9x +18 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

x 2 -9x +18 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +9 ± ( -9 ) 2 -4 · 1 · 18 21

x1,2 = +9 ± 81 -72 2

x1,2 = +9 ± 9 2

x1 = 9 + 9 2 = 9 +3 2 = 12 2 = 6

x2 = 9 - 9 2 = 9 -3 2 = 6 2 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 9 2 ) 2 - 18 = 81 4 - 18 = 81 4 - 72 4 = 9 4

x1,2 = 9 2 ± 9 4

x1 = 9 2 - 3 2 = 6 2 = 3

x2 = 9 2 + 3 2 = 12 2 = 6

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( 3 |0), S2( 6 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= -3 x 3 +127 und g(x)= -2 x 3 +2 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

-3 x 3 +127 = -2 x 3 +2 | -127
-3 x 3 = -2 x 3 -125 | +2 x 3
- x 3 = -125 |: ( -1 )
x 3 = 125 | 3
x = 125 3 = 5

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( 5 ) = -2 5 3 +2 = -248 S1( 5 | -248 )