nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 +4x -11 . Berechne alle Stellen für die gilt: f(x) = 1.

Lösung einblenden

Es gilt f(x) = 1, also x 2 +4x -11 = 1.

x 2 +4x -11 = 1 | -1

x 2 +4x -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -4 ± 4 2 -4 · 1 · ( -12 ) 21

x1,2 = -4 ± 16 +48 2

x1,2 = -4 ± 64 2

x1 = -4 + 64 2 = -4 +8 2 = 4 2 = 2

x2 = -4 - 64 2 = -4 -8 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - ( -12 ) = 4+ 12 = 16

x1,2 = -2 ± 16

x1 = -2 - 4 = -6

x2 = -2 + 4 = 2

An den Stellen x1 = -6 und x2 = 2 gilt also f(x)= 1.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 3 +251 . Berechne alle Stellen für die gilt: f(x) = 1.

Lösung einblenden

Es gilt f(x) = 1, also 2 x 3 +251 = 1.

2 x 3 +251 = 1 | -251
2 x 3 = -250 |:2
x 3 = -125 | 3
x = - 125 3 = -5

An der Stelle x1 = -5 gilt also f(x)= 1.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= -4 x 2 +40x -96 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

-4 x 2 +40x -96 = 0 |:4

- x 2 +10x -24 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -10 ± 10 2 -4 · ( -1 ) · ( -24 ) 2( -1 )

x1,2 = -10 ± 100 -96 -2

x1,2 = -10 ± 4 -2

x1 = -10 + 4 -2 = -10 +2 -2 = -8 -2 = 4

x2 = -10 - 4 -2 = -10 -2 -2 = -12 -2 = 6

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +10x -24 = 0 |: -1

x 2 -10x +24 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -5 ) 2 - 24 = 25 - 24 = 1

x1,2 = 5 ± 1

x1 = 5 - 1 = 4

x2 = 5 + 1 = 6

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( 4 |0), S2( 6 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= 3 x 3 -3x +54 und g(x)= 5 x 3 -3x .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

3 x 3 -3x +54 = 5 x 3 -3x | -54 -5 x 3 +3x
-2 x 3 = -54 |: ( -2 )
x 3 = 27 | 3
x = 27 3 = 3

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( 3 ) = 5 3 3 -33 = 126 S1( 3 | 126 )