nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 5 -4 x 3 +2 . Berechne alle Stellen für die gilt: f(x) = 2.

Lösung einblenden

Es gilt f(x) = 2, also x 5 -4 x 3 +2 = 2.

x 5 -4 x 3 +2 = 2 | -2
x 5 -4 x 3 +2 -2 = 0
x 5 -4 x 3 = 0
x 3 ( x 2 -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x 2 -4 = 0 | +4
x 2 = 4 | 2
x2 = - 4 = -2
x3 = 4 = 2

An den Stellen x1 = -2 , x2 = 0 und x3 = 2 gilt also f(x)= 2.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 4 -163 . Berechne alle Stellen für die gilt: f(x) = -1.

Lösung einblenden

Es gilt f(x) = -1, also -2 x 4 -163 = -1.

-2 x 4 -163 = -1 | +163
-2 x 4 = 162 |: ( -2 )
x 4 = -81 | 4

Diese Gleichung hat keine (reele) Lösung!

Es gibt also keine Stelle x für die f(x)= -1 gilt.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= - x 4 +81 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

- x 4 +81 = 0 | -81
- x 4 = -81 |: ( -1 )
x 4 = 81 | 4
x1 = - 81 4 = -3
x2 = 81 4 = 3

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -3 |0), S2( 3 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= x 3 +7 x 2 +5x und g(x)= 5 x 2 +5x .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

x 3 +7 x 2 +5x = 5 x 2 +5x | - ( 5 x 2 +5x )
x 3 +7 x 2 -5 x 2 +5x -5x = 0
x 3 +2 x 2 = 0
x 2 ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x +2 = 0 | -2
x2 = -2

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( -2 ) = 5 ( -2 ) 2 +5( -2 ) = 10 S1( -2 | 10 )

g(0) = 5 0 2 +50 = 0 S2(0|0)