nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgl. elementar

Beispiel:

Löse die Gleichung ohne WTR: e 3x +9 = 1

Lösung einblenden

e 3x +9 = 1

Zuerst versuchen wir den Term rechts auch als Exponentialterm zu schreiben.

e 3x +9 = e 0

Wir erkennen, dass links und rechts Exponentialterme mit gleicher Basis e stehen.
Diese Terme sind genau dann gleich, wenn ihre Exponenten gleich sind. Deswegen setzen wir einfach nur diese gleich:

3x +9 = 0 | -9
3x = -9 |:3
x = -3

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

-6 e 5x +4 = 0

Lösung einblenden
-6 e 5x +4 = 0 | -4
-6 e 5x = -4 |:-6
e 5x = 2 3 |ln(⋅)
5x = ln( 2 3 ) |:5
x = 1 5 ln( 2 3 ) ≈ -0.0811

L={ 1 5 ln( 2 3 ) }

Exponentialgl. mit 2 e-Termen

Beispiel:

Löse die folgende Gleichung:

-2 e -x = -3 e -2x

Lösung einblenden
-2 e -x = -3 e -2x | +3 e -2x
-2 e -x +3 e -2x = 0
( -2 e x +3 ) e -2x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

-2 e x +3 = 0 | -3
-2 e x = -3 |:-2
e x = 3 2 |ln(⋅)
x1 = ln( 3 2 ) ≈ 0.4055

2. Fall:

e -2x = 0

Diese Gleichung hat keine Lösung!

L={ ln( 3 2 ) }

Exponentialgl. Substitution BF

Beispiel:

Löse die folgende Gleichung:

e 2x -7 e x +10 = 0

Lösung einblenden
e 2x -7 e x +10 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -7u +10 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +7 ± ( -7 ) 2 -4 · 1 · 10 21

u1,2 = +7 ± 49 -40 2

u1,2 = +7 ± 9 2

u1 = 7 + 9 2 = 7 +3 2 = 10 2 = 5

u2 = 7 - 9 2 = 7 -3 2 = 4 2 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 7 2 ) 2 - 10 = 49 4 - 10 = 49 4 - 40 4 = 9 4

x1,2 = 7 2 ± 9 4

x1 = 7 2 - 3 2 = 4 2 = 2

x2 = 7 2 + 3 2 = 10 2 = 5

Rücksubstitution:

u1: e x = 5

e x = 5 |ln(⋅)
x1 = ln( 5 ) ≈ 1.6094

u2: e x = 2

e x = 2 |ln(⋅)
x2 = ln( 2 ) ≈ 0.6931

L={ ln( 2 ) ; ln( 5 ) }

Exponentialgl. Substitution

Beispiel:

Löse die folgende Gleichung:

e 3x +5 e 2x -6 e x = 0

Lösung einblenden
e 3x +5 e 2x -6 e x = 0
( e 2x +5 e x -6 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 2x +5 e x -6 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 +5u -6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -5 ± 5 2 -4 · 1 · ( -6 ) 21

u1,2 = -5 ± 25 +24 2

u1,2 = -5 ± 49 2

u1 = -5 + 49 2 = -5 +7 2 = 2 2 = 1

u2 = -5 - 49 2 = -5 -7 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - ( -6 ) = 25 4 + 6 = 25 4 + 24 4 = 49 4

x1,2 = - 5 2 ± 49 4

x1 = - 5 2 - 7 2 = - 12 2 = -6

x2 = - 5 2 + 7 2 = 2 2 = 1

Rücksubstitution:

u1: e x = 1

e x = 1 |ln(⋅)
x1 = 0 ≈ 0

u2: e x = -6

e x = -6

Diese Gleichung hat keine Lösung!


2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

L={0}

Exponentialgl. vermischt

Beispiel:

Löse die folgende Gleichung:

e 2x +2 e x -35 = 0

Lösung einblenden
e 2x +2 e x -35 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 +2u -35 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -2 ± 2 2 -4 · 1 · ( -35 ) 21

u1,2 = -2 ± 4 +140 2

u1,2 = -2 ± 144 2

u1 = -2 + 144 2 = -2 +12 2 = 10 2 = 5

u2 = -2 - 144 2 = -2 -12 2 = -14 2 = -7

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -35 ) = 1+ 35 = 36

x1,2 = -1 ± 36

x1 = -1 - 6 = -7

x2 = -1 + 6 = 5

Rücksubstitution:

u1: e x = 5

e x = 5 |ln(⋅)
x1 = ln( 5 ) ≈ 1.6094

u2: e x = -7

e x = -7

Diese Gleichung hat keine Lösung!

L={ ln( 5 ) }