nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgl. elementar

Beispiel:

Löse die Gleichung ohne WTR: e 6x +12 = 1

Lösung einblenden

e 6x +12 = 1

Zuerst versuchen wir den Term rechts auch als Exponentialterm zu schreiben.

e 6x +12 = e 0

Wir erkennen, dass links und rechts Exponentialterme mit gleicher Basis e stehen.
Diese Terme sind genau dann gleich, wenn ihre Exponenten gleich sind. Deswegen setzen wir einfach nur diese gleich:

6x +12 = 0 | -12
6x = -12 |:6
x = -2

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

-8 e -3x +6 = 0

Lösung einblenden
-8 e -3x +6 = 0 | -6
-8 e -3x = -6 |:-8
e -3x = 3 4 |ln(⋅)
-3x = ln( 3 4 ) |:-3
x = - 1 3 ln( 3 4 ) ≈ 0.0959

L={ - 1 3 ln( 3 4 ) }

Exponentialgl. mit 2 e-Termen

Beispiel:

Löse die folgende Gleichung:

- e 5x = -4 e 2x

Lösung einblenden
- e 5x = -4 e 2x | +4 e 2x
- e 5x +4 e 2x = 0
( - e 3x +4 ) e 2x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

- e 3x +4 = 0 | -4
- e 3x = -4 |:-1
e 3x = 4 |ln(⋅)
3x = ln( 4 ) |:3
x1 = 1 3 ln( 4 ) ≈ 0.4621
x1 = 2 3 ln( 2 )

2. Fall:

e 2x = 0

Diese Gleichung hat keine Lösung!

L={ 2 3 ln( 2 ) }

Exponentialgl. Substitution BF

Beispiel:

Löse die folgende Gleichung:

e 2x -5 e x -14 = 0

Lösung einblenden
e 2x -5 e x -14 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -5u -14 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +5 ± ( -5 ) 2 -4 · 1 · ( -14 ) 21

u1,2 = +5 ± 25 +56 2

u1,2 = +5 ± 81 2

u1 = 5 + 81 2 = 5 +9 2 = 14 2 = 7

u2 = 5 - 81 2 = 5 -9 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 2 ) 2 - ( -14 ) = 25 4 + 14 = 25 4 + 56 4 = 81 4

x1,2 = 5 2 ± 81 4

x1 = 5 2 - 9 2 = - 4 2 = -2

x2 = 5 2 + 9 2 = 14 2 = 7

Rücksubstitution:

u1: e x = 7

e x = 7 |ln(⋅)
x1 = ln( 7 ) ≈ 1.9459

u2: e x = -2

e x = -2

Diese Gleichung hat keine Lösung!

L={ ln( 7 ) }

Exponentialgl. Substitution

Beispiel:

Löse die folgende Gleichung:

e 8x -2 e 5x -24 e 2x = 0

Lösung einblenden
e 8x -2 e 5x -24 e 2x = 0
( e 6x -2 e 3x -24 ) e 2x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 6x -2 e 3x -24 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e 3x

Draus ergibt sich die quadratische Gleichung:

u 2 -2u -24 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -24 ) 21

u1,2 = +2 ± 4 +96 2

u1,2 = +2 ± 100 2

u1 = 2 + 100 2 = 2 +10 2 = 12 2 = 6

u2 = 2 - 100 2 = 2 -10 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -24 ) = 1+ 24 = 25

x1,2 = 1 ± 25

x1 = 1 - 5 = -4

x2 = 1 + 5 = 6

Rücksubstitution:

u1: e 3x = 6

e 3x = 6 |ln(⋅)
3x = ln( 6 ) |:3
x1 = 1 3 ln( 6 ) ≈ 0.5973

u2: e 3x = -4

e 3x = -4

Diese Gleichung hat keine Lösung!


2. Fall:

e 2x = 0

Diese Gleichung hat keine Lösung!

L={ 1 3 ln( 6 ) }

Exponentialgl. vermischt

Beispiel:

Löse die folgende Gleichung:

-6 e -3x +6 = 0

Lösung einblenden
-6 e -3x +6 = 0 | -6
-6 e -3x = -6 |:-6
e -3x = 1 |ln(⋅)
-3x = 0 |:-3
x = 0 ≈ 0

L={0}