nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgl. elementar

Beispiel:

Löse die Gleichung ohne WTR: e x + 3 2 = e

Lösung einblenden

e x + 3 2 = e

Zuerst versuchen wir den Term rechts auch als Exponentialterm zu schreiben.

e x + 3 2 = e 1 2

Wir erkennen, dass links und rechts Exponentialterme mit gleicher Basis e stehen.
Diese Terme sind genau dann gleich, wenn ihre Exponenten gleich sind. Deswegen setzen wir einfach nur diese gleich:

x + 3 2 = 1 2 |⋅ 2
2( x + 3 2 ) = 1
2x +3 = 1 | -3
2x = -2 |:2
x = -1

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

-3 e 4x +4 = 0

Lösung einblenden
-3 e 4x +4 = 0 | -4
-3 e 4x = -4 |:-3
e 4x = 4 3 |ln(⋅)
4x = ln( 4 3 ) |:4
x = 1 4 ln( 4 3 ) ≈ 0.0719

L={ 1 4 ln( 4 3 ) }

Exponentialgl. mit 2 e-Termen

Beispiel:

Löse die folgende Gleichung:

e 3x = 2 e 2x

Lösung einblenden
e 3x = 2 e 2x | -2 e 2x
e 3x -2 e 2x = 0
( e x -2 ) e 2x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e x -2 = 0 | +2
e x = 2 |ln(⋅)
x1 = ln( 2 ) ≈ 0.6931

2. Fall:

e 2x = 0

Diese Gleichung hat keine Lösung!

L={ ln( 2 ) }

Exponentialgl. Substitution BF

Beispiel:

Löse die folgende Gleichung:

e 2x - e x -20 = 0

Lösung einblenden
e 2x - e x -20 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 - u -20 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -20 ) 21

u1,2 = +1 ± 1 +80 2

u1,2 = +1 ± 81 2

u1 = 1 + 81 2 = 1 +9 2 = 10 2 = 5

u2 = 1 - 81 2 = 1 -9 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -20 ) = 1 4 + 20 = 1 4 + 80 4 = 81 4

x1,2 = 1 2 ± 81 4

x1 = 1 2 - 9 2 = - 8 2 = -4

x2 = 1 2 + 9 2 = 10 2 = 5

Rücksubstitution:

u1: e x = 5

e x = 5 |ln(⋅)
x1 = ln( 5 ) ≈ 1.6094

u2: e x = -4

e x = -4

Diese Gleichung hat keine Lösung!

L={ ln( 5 ) }

Exponentialgl. Substitution

Beispiel:

Löse die folgende Gleichung:

e x -11 +30 e -x = 0

Lösung einblenden
e x -11 +30 e -x = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

e x +30 e -x -11 = 0 |⋅ e x
e 2x -11 e x +30 = 0

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -11u +30 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +11 ± ( -11 ) 2 -4 · 1 · 30 21

u1,2 = +11 ± 121 -120 2

u1,2 = +11 ± 1 2

u1 = 11 + 1 2 = 11 +1 2 = 12 2 = 6

u2 = 11 - 1 2 = 11 -1 2 = 10 2 = 5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 11 2 ) 2 - 30 = 121 4 - 30 = 121 4 - 120 4 = 1 4

x1,2 = 11 2 ± 1 4

x1 = 11 2 - 1 2 = 10 2 = 5

x2 = 11 2 + 1 2 = 12 2 = 6

Rücksubstitution:

u1: e x = 6

e x = 6 |ln(⋅)
x1 = ln( 6 ) ≈ 1.7918

u2: e x = 5

e x = 5 |ln(⋅)
x2 = ln( 5 ) ≈ 1.6094

L={ ln( 5 ) ; ln( 6 ) }

Exponentialgl. vermischt

Beispiel:

Löse die folgende Gleichung:

e 2x -13 e x +42 = 0

Lösung einblenden
e 2x -13 e x +42 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -13u +42 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +13 ± ( -13 ) 2 -4 · 1 · 42 21

u1,2 = +13 ± 169 -168 2

u1,2 = +13 ± 1 2

u1 = 13 + 1 2 = 13 +1 2 = 14 2 = 7

u2 = 13 - 1 2 = 13 -1 2 = 12 2 = 6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 13 2 ) 2 - 42 = 169 4 - 42 = 169 4 - 168 4 = 1 4

x1,2 = 13 2 ± 1 4

x1 = 13 2 - 1 2 = 12 2 = 6

x2 = 13 2 + 1 2 = 14 2 = 7

Rücksubstitution:

u1: e x = 7

e x = 7 |ln(⋅)
x1 = ln( 7 ) ≈ 1.9459

u2: e x = 6

e x = 6 |ln(⋅)
x2 = ln( 6 ) ≈ 1.7918

L={ ln( 6 ) ; ln( 7 ) }