nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgl. elementar

Beispiel:

Löse die Gleichung ohne WTR: e x +2 = 1 e

Lösung einblenden

e x +2 = 1 e

Zuerst versuchen wir den Term rechts auch als Exponentialterm zu schreiben.

e x +2 = e -1

Wir erkennen, dass links und rechts Exponentialterme mit gleicher Basis e stehen.
Diese Terme sind genau dann gleich, wenn ihre Exponenten gleich sind. Deswegen setzen wir einfach nur diese gleich:

x +2 = -1 | -2
x = -3

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

5 e 6x -5 = 0

Lösung einblenden
5 e 6x -5 = 0 | +5
5 e 6x = 5 |:5
e 6x = 1 |ln(⋅)
6x = 0 |:6
x = 0 ≈ 0

L={0}

Exponentialgl. mit 2 e-Termen

Beispiel:

Löse die folgende Gleichung:

6 e -2x -6 e -4x = 0

Lösung einblenden
6 e -2x -6 e -4x = 0
6 ( e 2x -1 ) e -4x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 2x -1 = 0 | +1
e 2x = 1 |ln(⋅)
2x = 0 |:2
x1 = 0 ≈ 0

2. Fall:

e -4x = 0

Diese Gleichung hat keine Lösung!

L={0}

Exponentialgl. Substitution BF

Beispiel:

Löse die folgende Gleichung:

e 2x -3 e x -4 = 0

Lösung einblenden
e 2x -3 e x -4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -3u -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -4 ) 21

u1,2 = +3 ± 9 +16 2

u1,2 = +3 ± 25 2

u1 = 3 + 25 2 = 3 +5 2 = 8 2 = 4

u2 = 3 - 25 2 = 3 -5 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - ( -4 ) = 9 4 + 4 = 9 4 + 16 4 = 25 4

x1,2 = 3 2 ± 25 4

x1 = 3 2 - 5 2 = - 2 2 = -1

x2 = 3 2 + 5 2 = 8 2 = 4

Rücksubstitution:

u1: e x = 4

e x = 4 |ln(⋅)
x1 = ln( 4 ) ≈ 1.3863
x1 = 2 ln( 2 )

u2: e x = -1

e x = -1

Diese Gleichung hat keine Lösung!

L={ 2 ln( 2 ) }

Exponentialgl. Substitution

Beispiel:

Löse die folgende Gleichung:

e 5x - e 2x -6 e -x = 0

Lösung einblenden
e 5x - e 2x -6 e -x = 0
( e 6x - e 3x -6 ) e -x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 6x - e 3x -6 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e 3x

Draus ergibt sich die quadratische Gleichung:

u 2 - u -6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -6 ) 21

u1,2 = +1 ± 1 +24 2

u1,2 = +1 ± 25 2

u1 = 1 + 25 2 = 1 +5 2 = 6 2 = 3

u2 = 1 - 25 2 = 1 -5 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -6 ) = 1 4 + 6 = 1 4 + 24 4 = 25 4

x1,2 = 1 2 ± 25 4

x1 = 1 2 - 5 2 = - 4 2 = -2

x2 = 1 2 + 5 2 = 6 2 = 3

Rücksubstitution:

u1: e 3x = 3

e 3x = 3 |ln(⋅)
3x = ln( 3 ) |:3
x1 = 1 3 ln( 3 ) ≈ 0.3662

u2: e 3x = -2

e 3x = -2

Diese Gleichung hat keine Lösung!


2. Fall:

e -x = 0

Diese Gleichung hat keine Lösung!

L={ 1 3 ln( 3 ) }

Exponentialgl. vermischt

Beispiel:

Löse die folgende Gleichung:

( 2 e 3x -3 ) · ( x 2 -1 ) = 0

Lösung einblenden
( 2 e 3x -3 ) ( x 2 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 e 3x -3 = 0 | +3
2 e 3x = 3 |:2
e 3x = 3 2 |ln(⋅)
3x = ln( 3 2 ) |:3
x1 = 1 3 ln( 3 2 ) ≈ 0.1352

2. Fall:

x 2 -1 = 0 | +1
x 2 = 1 | 2
x2 = - 1 = -1
x3 = 1 = 1

L={ -1 ; 1 3 ln( 3 2 ) ; 1 }