nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgl. elementar

Beispiel:

Löse die Gleichung ohne WTR: e 3x -8 = 1 e 2

Lösung einblenden

e 3x -8 = 1 e 2

Zuerst versuchen wir den Term rechts auch als Exponentialterm zu schreiben.

e 3x -8 = e -2

Wir erkennen, dass links und rechts Exponentialterme mit gleicher Basis e stehen.
Diese Terme sind genau dann gleich, wenn ihre Exponenten gleich sind. Deswegen setzen wir einfach nur diese gleich:

3x -8 = -2 | +8
3x = 6 |:3
x = 2

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

9 e -7x = 4

Lösung einblenden
9 e -7x = 4 |:9
e -7x = 4 9 |ln(⋅)
-7x = ln( 4 9 ) |:-7
x = - 1 7 ln( 4 9 ) ≈ 0.1158

L={ - 1 7 ln( 4 9 ) }

Exponentialgl. mit 2 e-Termen

Beispiel:

Löse die folgende Gleichung:

-6 e 4x = -7 e 2x

Lösung einblenden
-6 e 4x = -7 e 2x | +7 e 2x
-6 e 4x +7 e 2x = 0
( -6 e 2x +7 ) e 2x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

-6 e 2x +7 = 0 | -7
-6 e 2x = -7 |:-6
e 2x = 7 6 |ln(⋅)
2x = ln( 7 6 ) |:2
x1 = 1 2 ln( 7 6 ) ≈ 0.0771

2. Fall:

e 2x = 0

Diese Gleichung hat keine Lösung!

L={ 1 2 ln( 7 6 ) }

Exponentialgl. Substitution BF

Beispiel:

Löse die folgende Gleichung:

e 2x + e x -2 = 0

Lösung einblenden
e 2x + e x -2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 + u -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -1 ± 1 2 -4 · 1 · ( -2 ) 21

u1,2 = -1 ± 1 +8 2

u1,2 = -1 ± 9 2

u1 = -1 + 9 2 = -1 +3 2 = 2 2 = 1

u2 = -1 - 9 2 = -1 -3 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = - 1 2 ± 9 4

x1 = - 1 2 - 3 2 = - 4 2 = -2

x2 = - 1 2 + 3 2 = 2 2 = 1

Rücksubstitution:

u1: e x = 1

e x = 1 |ln(⋅)
x1 = 0 ≈ 0

u2: e x = -2

e x = -2

Diese Gleichung hat keine Lösung!

L={0}

Exponentialgl. Substitution

Beispiel:

Löse die folgende Gleichung:

e 3x -6 e 2x +5 e x = 0

Lösung einblenden
e 3x -6 e 2x +5 e x = 0
( e 2x -6 e x +5 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 2x -6 e x +5 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -6u +5 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +6 ± ( -6 ) 2 -4 · 1 · 5 21

u1,2 = +6 ± 36 -20 2

u1,2 = +6 ± 16 2

u1 = 6 + 16 2 = 6 +4 2 = 10 2 = 5

u2 = 6 - 16 2 = 6 -4 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -3 ) 2 - 5 = 9 - 5 = 4

x1,2 = 3 ± 4

x1 = 3 - 2 = 1

x2 = 3 + 2 = 5

Rücksubstitution:

u1: e x = 5

e x = 5 |ln(⋅)
x1 = ln( 5 ) ≈ 1.6094

u2: e x = 1

e x = 1 |ln(⋅)
x2 = 0 ≈ 0

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

L={0; ln( 5 ) }

Exponentialgl. vermischt

Beispiel:

Löse die folgende Gleichung:

e 2x + e x -12 = 0

Lösung einblenden
e 2x + e x -12 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 + u -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -1 ± 1 2 -4 · 1 · ( -12 ) 21

u1,2 = -1 ± 1 +48 2

u1,2 = -1 ± 49 2

u1 = -1 + 49 2 = -1 +7 2 = 6 2 = 3

u2 = -1 - 49 2 = -1 -7 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -12 ) = 1 4 + 12 = 1 4 + 48 4 = 49 4

x1,2 = - 1 2 ± 49 4

x1 = - 1 2 - 7 2 = - 8 2 = -4

x2 = - 1 2 + 7 2 = 6 2 = 3

Rücksubstitution:

u1: e x = 3

e x = 3 |ln(⋅)
x1 = ln( 3 ) ≈ 1.0986

u2: e x = -4

e x = -4

Diese Gleichung hat keine Lösung!

L={ ln( 3 ) }