nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgl. elementar

Beispiel:

Löse die Gleichung ohne WTR: e x +2 = 1 e

Lösung einblenden

e x +2 = 1 e

Zuerst versuchen wir den Term rechts auch als Exponentialterm zu schreiben.

e x +2 = e -1

Wir erkennen, dass links und rechts Exponentialterme mit gleicher Basis e stehen.
Diese Terme sind genau dann gleich, wenn ihre Exponenten gleich sind. Deswegen setzen wir einfach nur diese gleich:

x +2 = -1 | -2
x = -3

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

5 e -x = 5

Lösung einblenden
5 e -x = 5 |:5
e -x = 1 |ln(⋅)
-x = 0 |:-1
x = 0 ≈ 0

L={0}

Exponentialgl. mit 2 e-Termen

Beispiel:

Löse die folgende Gleichung:

-2 e 7x = -4 e 2x

Lösung einblenden
-2 e 7x = -4 e 2x | +4 e 2x
-2 e 7x +4 e 2x = 0
2 ( - e 5x +2 ) e 2x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

- e 5x +2 = 0 | -2
- e 5x = -2 |:-1
e 5x = 2 |ln(⋅)
5x = ln( 2 ) |:5
x1 = 1 5 ln( 2 ) ≈ 0.1386

2. Fall:

e 2x = 0

Diese Gleichung hat keine Lösung!

L={ 1 5 ln( 2 ) }

Exponentialgl. Substitution BF

Beispiel:

Löse die folgende Gleichung:

e 2x -11 e x +30 = 0

Lösung einblenden
e 2x -11 e x +30 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -11u +30 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +11 ± ( -11 ) 2 -4 · 1 · 30 21

u1,2 = +11 ± 121 -120 2

u1,2 = +11 ± 1 2

u1 = 11 + 1 2 = 11 +1 2 = 12 2 = 6

u2 = 11 - 1 2 = 11 -1 2 = 10 2 = 5

Rücksubstitution:

u1: e x = 6

e x = 6 |ln(⋅)
x1 = ln( 6 ) ≈ 1.7918

u2: e x = 5

e x = 5 |ln(⋅)
x2 = ln( 5 ) ≈ 1.6094

L={ ln( 5 ) ; ln( 6 ) }

Exponentialgl. Substitution

Beispiel:

Löse die folgende Gleichung:

e 5x +2 e 2x -3 e -x = 0

Lösung einblenden
e 5x +2 e 2x -3 e -x = 0
( e 6x +2 e 3x -3 ) e -x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 6x +2 e 3x -3 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e 3x

Draus ergibt sich die quadratische Gleichung:

u 2 +2u -3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

u1,2 = -2 ± 4 +12 2

u1,2 = -2 ± 16 2

u1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

u2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Rücksubstitution:

u1: e 3x = 1

e 3x = 1 |ln(⋅)
3x = 0 |:3
x1 = 0 ≈ 0

u2: e 3x = -3

e 3x = -3

Diese Gleichung hat keine Lösung!


2. Fall:

e -x = 0

Diese Gleichung hat keine Lösung!

L={0}

Exponentialgl. vermischt

Beispiel:

Löse die folgende Gleichung:

e 2x -5 e x -6 = 0

Lösung einblenden
e 2x -5 e x -6 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -5u -6 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +5 ± ( -5 ) 2 -4 · 1 · ( -6 ) 21

u1,2 = +5 ± 25 +24 2

u1,2 = +5 ± 49 2

u1 = 5 + 49 2 = 5 +7 2 = 12 2 = 6

u2 = 5 - 49 2 = 5 -7 2 = -2 2 = -1

Rücksubstitution:

u1: e x = 6

e x = 6 |ln(⋅)
x1 = ln( 6 ) ≈ 1.7918

u2: e x = -1

e x = -1

Diese Gleichung hat keine Lösung!

L={ ln( 6 ) }