nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgl. elementar

Beispiel:

Löse die Gleichung ohne WTR: e 3x +9 = 1

Lösung einblenden

e 3x +9 = 1

Zuerst versuchen wir den Term rechts auch als Exponentialterm zu schreiben.

e 3x +9 = e 0

Wir erkennen, dass links und rechts Exponentialterme mit gleicher Basis e stehen.
Diese Terme sind genau dann gleich, wenn ihre Exponenten gleich sind. Deswegen setzen wir einfach nur diese gleich:

3x +9 = 0 | -9
3x = -9 |:3
x = -3

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

3 e 7x = 0

Lösung einblenden
3 e 7x = 0 |:3
e 7x = 0

Diese Gleichung hat keine Lösung!

L={}

Exponentialgl. mit 2 e-Termen

Beispiel:

Löse die folgende Gleichung:

7 e 2x = 6 e -3x

Lösung einblenden
7 e 2x = 6 e -3x | -6 e -3x
7 e 2x -6 e -3x = 0
( 7 e 5x -6 ) e -3x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

7 e 5x -6 = 0 | +6
7 e 5x = 6 |:7
e 5x = 6 7 |ln(⋅)
5x = ln( 6 7 ) |:5
x1 = 1 5 ln( 6 7 ) ≈ -0.0308

2. Fall:

e -3x = 0

Diese Gleichung hat keine Lösung!

L={ 1 5 ln( 6 7 ) }

Exponentialgl. Substitution BF

Beispiel:

Löse die folgende Gleichung:

e 2x -2 e x -8 = 0

Lösung einblenden
e 2x -2 e x -8 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -2u -8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -8 ) 21

u1,2 = +2 ± 4 +32 2

u1,2 = +2 ± 36 2

u1 = 2 + 36 2 = 2 +6 2 = 8 2 = 4

u2 = 2 - 36 2 = 2 -6 2 = -4 2 = -2

Rücksubstitution:

u1: e x = 4

e x = 4 |ln(⋅)
x1 = ln( 4 ) ≈ 1.3863
x1 = 2 ln( 2 )

u2: e x = -2

e x = -2

Diese Gleichung hat keine Lösung!

L={ 2 ln( 2 ) }

Exponentialgl. Substitution

Beispiel:

Löse die folgende Gleichung:

e 3x -7 e 2x +6 e x = 0

Lösung einblenden
e 3x -7 e 2x +6 e x = 0
( e 2x -7 e x +6 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 2x -7 e x +6 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -7u +6 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +7 ± ( -7 ) 2 -4 · 1 · 6 21

u1,2 = +7 ± 49 -24 2

u1,2 = +7 ± 25 2

u1 = 7 + 25 2 = 7 +5 2 = 12 2 = 6

u2 = 7 - 25 2 = 7 -5 2 = 2 2 = 1

Rücksubstitution:

u1: e x = 6

e x = 6 |ln(⋅)
x1 = ln( 6 ) ≈ 1.7918

u2: e x = 1

e x = 1 |ln(⋅)
x2 = 0 ≈ 0

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

L={0; ln( 6 ) }

Exponentialgl. vermischt

Beispiel:

Löse die folgende Gleichung:

e 2x -7 e x +6 = 0

Lösung einblenden
e 2x -7 e x +6 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -7u +6 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +7 ± ( -7 ) 2 -4 · 1 · 6 21

u1,2 = +7 ± 49 -24 2

u1,2 = +7 ± 25 2

u1 = 7 + 25 2 = 7 +5 2 = 12 2 = 6

u2 = 7 - 25 2 = 7 -5 2 = 2 2 = 1

Rücksubstitution:

u1: e x = 6

e x = 6 |ln(⋅)
x1 = ln( 6 ) ≈ 1.7918

u2: e x = 1

e x = 1 |ln(⋅)
x2 = 0 ≈ 0

L={0; ln( 6 ) }