nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgl. elementar

Beispiel:

Löse die Gleichung ohne WTR: e x -4 = 1 e

Lösung einblenden

e x -4 = 1 e

Zuerst versuchen wir den Term rechts auch als Exponentialterm zu schreiben.

e x -4 = e -1

Wir erkennen, dass links und rechts Exponentialterme mit gleicher Basis e stehen.
Diese Terme sind genau dann gleich, wenn ihre Exponenten gleich sind. Deswegen setzen wir einfach nur diese gleich:

x -4 = -1 | +4
x = 3

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

- e -x +6 = 0

Lösung einblenden
- e -x +6 = 0 | -6
- e -x = -6 |:-1
e -x = 6 |ln(⋅)
-x = ln( 6 ) |:-1
x = - ln( 6 ) ≈ -1.7918

L={ - ln( 6 ) }

Exponentialgl. mit 2 e-Termen

Beispiel:

Löse die folgende Gleichung:

-7 e 3x = -2 e x

Lösung einblenden
-7 e 3x = -2 e x | +2 e x
-7 e 3x +2 e x = 0
( -7 e 2x +2 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

-7 e 2x +2 = 0 | -2
-7 e 2x = -2 |:-7
e 2x = 2 7 |ln(⋅)
2x = ln( 2 7 ) |:2
x1 = 1 2 ln( 2 7 ) ≈ -0.6264

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

L={ 1 2 ln( 2 7 ) }

Exponentialgl. Substitution BF

Beispiel:

Löse die folgende Gleichung:

e 2x +4 e x -12 = 0

Lösung einblenden
e 2x +4 e x -12 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 +4u -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -4 ± 4 2 -4 · 1 · ( -12 ) 21

u1,2 = -4 ± 16 +48 2

u1,2 = -4 ± 64 2

u1 = -4 + 64 2 = -4 +8 2 = 4 2 = 2

u2 = -4 - 64 2 = -4 -8 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - ( -12 ) = 4+ 12 = 16

x1,2 = -2 ± 16

x1 = -2 - 4 = -6

x2 = -2 + 4 = 2

Rücksubstitution:

u1: e x = 2

e x = 2 |ln(⋅)
x1 = ln( 2 ) ≈ 0.6931

u2: e x = -6

e x = -6

Diese Gleichung hat keine Lösung!

L={ ln( 2 ) }

Exponentialgl. Substitution

Beispiel:

Löse die folgende Gleichung:

e 4x -2 e 2x -8 = 0

Lösung einblenden
e 4x -2 e 2x -8 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e 2x

Draus ergibt sich die quadratische Gleichung:

u 2 -2u -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -8 ) 21

u1,2 = +2 ± 4 +32 2

u1,2 = +2 ± 36 2

u1 = 2 + 36 2 = 2 +6 2 = 8 2 = 4

u2 = 2 - 36 2 = 2 -6 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -8 ) = 1+ 8 = 9

x1,2 = 1 ± 9

x1 = 1 - 3 = -2

x2 = 1 + 3 = 4

Rücksubstitution:

u1: e 2x = 4

e 2x = 4 |ln(⋅)
2x = ln( 4 ) |:2
x1 = 1 2 ln( 4 ) ≈ 0.6931
x1 = ln( 2 )

u2: e 2x = -2

e 2x = -2

Diese Gleichung hat keine Lösung!

L={ ln( 2 ) }

Exponentialgl. vermischt

Beispiel:

Löse die folgende Gleichung:

e 2x + e x -30 = 0

Lösung einblenden
e 2x + e x -30 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 + u -30 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -1 ± 1 2 -4 · 1 · ( -30 ) 21

u1,2 = -1 ± 1 +120 2

u1,2 = -1 ± 121 2

u1 = -1 + 121 2 = -1 +11 2 = 10 2 = 5

u2 = -1 - 121 2 = -1 -11 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -30 ) = 1 4 + 30 = 1 4 + 120 4 = 121 4

x1,2 = - 1 2 ± 121 4

x1 = - 1 2 - 11 2 = - 12 2 = -6

x2 = - 1 2 + 11 2 = 10 2 = 5

Rücksubstitution:

u1: e x = 5

e x = 5 |ln(⋅)
x1 = ln( 5 ) ≈ 1.6094

u2: e x = -6

e x = -6

Diese Gleichung hat keine Lösung!

L={ ln( 5 ) }