nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgl. elementar

Beispiel:

Löse die Gleichung ohne WTR: e 2x +3 = 1 e

Lösung einblenden

e 2x +3 = 1 e

Zuerst versuchen wir den Term rechts auch als Exponentialterm zu schreiben.

e 2x +3 = e -1

Wir erkennen, dass links und rechts Exponentialterme mit gleicher Basis e stehen.
Diese Terme sind genau dann gleich, wenn ihre Exponenten gleich sind. Deswegen setzen wir einfach nur diese gleich:

2x +3 = -1 | -3
2x = -4 |:2
x = -2

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

-4 e -7x = 0

Lösung einblenden
-4 e -7x = 0 |:-4
e -7x = 0

Diese Gleichung hat keine Lösung!

L={}

Exponentialgl. mit 2 e-Termen

Beispiel:

Löse die folgende Gleichung:

6 e -x = 4 e -3x

Lösung einblenden
6 e -x = 4 e -3x | -4 e -3x
6 e -x -4 e -3x = 0
2 ( 3 e 2x -2 ) e -3x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

3 e 2x -2 = 0 | +2
3 e 2x = 2 |:3
e 2x = 2 3 |ln(⋅)
2x = ln( 2 3 ) |:2
x1 = 1 2 ln( 2 3 ) ≈ -0.2027

2. Fall:

e -3x = 0

Diese Gleichung hat keine Lösung!

L={ 1 2 ln( 2 3 ) }

Exponentialgl. Substitution BF

Beispiel:

Löse die folgende Gleichung:

e 2x -2 e x -35 = 0

Lösung einblenden
e 2x -2 e x -35 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -2u -35 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -35 ) 21

u1,2 = +2 ± 4 +140 2

u1,2 = +2 ± 144 2

u1 = 2 + 144 2 = 2 +12 2 = 14 2 = 7

u2 = 2 - 144 2 = 2 -12 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -35 ) = 1+ 35 = 36

x1,2 = 1 ± 36

x1 = 1 - 6 = -5

x2 = 1 + 6 = 7

Rücksubstitution:

u1: e x = 7

e x = 7 |ln(⋅)
x1 = ln( 7 ) ≈ 1.9459

u2: e x = -5

e x = -5

Diese Gleichung hat keine Lösung!

L={ ln( 7 ) }

Exponentialgl. Substitution

Beispiel:

Löse die folgende Gleichung:

e 7x + e 4x -6 e x = 0

Lösung einblenden
e 7x + e 4x -6 e x = 0
( e 6x + e 3x -6 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 6x + e 3x -6 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e 3x

Draus ergibt sich die quadratische Gleichung:

u 2 + u -6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -1 ± 1 2 -4 · 1 · ( -6 ) 21

u1,2 = -1 ± 1 +24 2

u1,2 = -1 ± 25 2

u1 = -1 + 25 2 = -1 +5 2 = 4 2 = 2

u2 = -1 - 25 2 = -1 -5 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -6 ) = 1 4 + 6 = 1 4 + 24 4 = 25 4

x1,2 = - 1 2 ± 25 4

x1 = - 1 2 - 5 2 = - 6 2 = -3

x2 = - 1 2 + 5 2 = 4 2 = 2

Rücksubstitution:

u1: e 3x = 2

e 3x = 2 |ln(⋅)
3x = ln( 2 ) |:3
x1 = 1 3 ln( 2 ) ≈ 0.231

u2: e 3x = -3

e 3x = -3

Diese Gleichung hat keine Lösung!


2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

L={ 1 3 ln( 2 ) }

Exponentialgl. vermischt

Beispiel:

Löse die folgende Gleichung:

e x x 2 +10 · e x x = 0

Lösung einblenden
e x x 2 +10 · e x x = 0
x 2 · e x +10 x · e x = 0
( x 2 +10x ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 +10x = 0
x ( x +10 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +10 = 0 | -10
x2 = -10

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

L={ -10 ; 0}