nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgl. elementar

Beispiel:

Löse die Gleichung ohne WTR: e x +6 = e

Lösung einblenden

e x +6 = e

Zuerst versuchen wir den Term rechts auch als Exponentialterm zu schreiben.

e x +6 = e

Wir erkennen, dass links und rechts Exponentialterme mit gleicher Basis e stehen.
Diese Terme sind genau dann gleich, wenn ihre Exponenten gleich sind. Deswegen setzen wir einfach nur diese gleich:

x +6 = 1 | -6
x = -5

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

-4 e -2x = -3

Lösung einblenden
-4 e -2x = -3 |:-4
e -2x = 3 4 |ln(⋅)
-2x = ln( 3 4 ) |:-2
x = - 1 2 ln( 3 4 ) ≈ 0.1438

L={ - 1 2 ln( 3 4 ) }

Exponentialgl. mit 2 e-Termen

Beispiel:

Löse die folgende Gleichung:

-6 e -2x +8 e -6x = 0

Lösung einblenden
-6 e -2x +8 e -6x = 0
2 ( -3 e 4x +4 ) e -6x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

-3 e 4x +4 = 0 | -4
-3 e 4x = -4 |:-3
e 4x = 4 3 |ln(⋅)
4x = ln( 4 3 ) |:4
x1 = 1 4 ln( 4 3 ) ≈ 0.0719

2. Fall:

e -6x = 0

Diese Gleichung hat keine Lösung!

L={ 1 4 ln( 4 3 ) }

Exponentialgl. Substitution BF

Beispiel:

Löse die folgende Gleichung:

e 2x +2 e x -35 = 0

Lösung einblenden
e 2x +2 e x -35 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 +2u -35 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -2 ± 2 2 -4 · 1 · ( -35 ) 21

u1,2 = -2 ± 4 +140 2

u1,2 = -2 ± 144 2

u1 = -2 + 144 2 = -2 +12 2 = 10 2 = 5

u2 = -2 - 144 2 = -2 -12 2 = -14 2 = -7

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -35 ) = 1+ 35 = 36

x1,2 = -1 ± 36

x1 = -1 - 6 = -7

x2 = -1 + 6 = 5

Rücksubstitution:

u1: e x = 5

e x = 5 |ln(⋅)
x1 = ln( 5 ) ≈ 1.6094

u2: e x = -7

e x = -7

Diese Gleichung hat keine Lösung!

L={ ln( 5 ) }

Exponentialgl. Substitution

Beispiel:

Löse die folgende Gleichung:

e 6x -4 e 4x -5 e 2x = 0

Lösung einblenden
e 6x -4 e 4x -5 e 2x = 0
( e 4x -4 e 2x -5 ) e 2x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 4x -4 e 2x -5 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e 2x

Draus ergibt sich die quadratische Gleichung:

u 2 -4u -5 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +4 ± ( -4 ) 2 -4 · 1 · ( -5 ) 21

u1,2 = +4 ± 16 +20 2

u1,2 = +4 ± 36 2

u1 = 4 + 36 2 = 4 +6 2 = 10 2 = 5

u2 = 4 - 36 2 = 4 -6 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -2 ) 2 - ( -5 ) = 4+ 5 = 9

x1,2 = 2 ± 9

x1 = 2 - 3 = -1

x2 = 2 + 3 = 5

Rücksubstitution:

u1: e 2x = 5

e 2x = 5 |ln(⋅)
2x = ln( 5 ) |:2
x1 = 1 2 ln( 5 ) ≈ 0.8047

u2: e 2x = -1

e 2x = -1

Diese Gleichung hat keine Lösung!


2. Fall:

e 2x = 0

Diese Gleichung hat keine Lösung!

L={ 1 2 ln( 5 ) }

Exponentialgl. vermischt

Beispiel:

Löse die folgende Gleichung:

e 2x -14 e x +49 = 0

Lösung einblenden
e 2x -14 e x +49 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -14u +49 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +14 ± ( -14 ) 2 -4 · 1 · 49 21

u1,2 = +14 ± 196 -196 2

u1,2 = +14 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

u = 14 2 = 7

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -7 ) 2 - 49 = 49 - 49 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 7 ± 0 = 7

Rücksubstitution:

u1: e x = 7

e x = 7 |ln(⋅)
x1 = ln( 7 ) ≈ 1.9459

u2: e x = 7

e x = 7 |ln(⋅)
x2 = ln( 7 ) ≈ 1.9459

L={ ln( 7 ) }

ln( 7 ) ist 2-fache Lösung!