nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgl. elementar

Beispiel:

Löse die Gleichung ohne WTR: e 6x +11 = 1 e

Lösung einblenden

e 6x +11 = 1 e

Zuerst versuchen wir den Term rechts auch als Exponentialterm zu schreiben.

e 6x +11 = e -1

Wir erkennen, dass links und rechts Exponentialterme mit gleicher Basis e stehen.
Diese Terme sind genau dann gleich, wenn ihre Exponenten gleich sind. Deswegen setzen wir einfach nur diese gleich:

6x +11 = -1 | -11
6x = -12 |:6
x = -2

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

-4 e -5x = 0

Lösung einblenden
-4 e -5x = 0 |:-4
e -5x = 0

Diese Gleichung hat keine Lösung!

L={}

Exponentialgl. mit 2 e-Termen

Beispiel:

Löse die folgende Gleichung:

4 e -2x = 8 e -4x

Lösung einblenden
4 e -2x = 8 e -4x | -8 e -4x
4 e -2x -8 e -4x = 0
4 ( e 2x -2 ) e -4x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 2x -2 = 0 | +2
e 2x = 2 |ln(⋅)
2x = ln( 2 ) |:2
x1 = 1 2 ln( 2 ) ≈ 0.3466

2. Fall:

e -4x = 0

Diese Gleichung hat keine Lösung!

L={ 1 2 ln( 2 ) }

Exponentialgl. Substitution BF

Beispiel:

Löse die folgende Gleichung:

e 2x -4 e x -5 = 0

Lösung einblenden
e 2x -4 e x -5 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -4u -5 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +4 ± ( -4 ) 2 -4 · 1 · ( -5 ) 21

u1,2 = +4 ± 16 +20 2

u1,2 = +4 ± 36 2

u1 = 4 + 36 2 = 4 +6 2 = 10 2 = 5

u2 = 4 - 36 2 = 4 -6 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -2 ) 2 - ( -5 ) = 4+ 5 = 9

x1,2 = 2 ± 9

x1 = 2 - 3 = -1

x2 = 2 + 3 = 5

Rücksubstitution:

u1: e x = 5

e x = 5 |ln(⋅)
x1 = ln( 5 ) ≈ 1.6094

u2: e x = -1

e x = -1

Diese Gleichung hat keine Lösung!

L={ ln( 5 ) }

Exponentialgl. Substitution

Beispiel:

Löse die folgende Gleichung:

e 3x - e x -30 e -x = 0

Lösung einblenden
e 3x - e x -30 e -x = 0
( e 4x - e 2x -30 ) e -x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 4x - e 2x -30 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e 2x

Draus ergibt sich die quadratische Gleichung:

u 2 - u -30 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -30 ) 21

u1,2 = +1 ± 1 +120 2

u1,2 = +1 ± 121 2

u1 = 1 + 121 2 = 1 +11 2 = 12 2 = 6

u2 = 1 - 121 2 = 1 -11 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -30 ) = 1 4 + 30 = 1 4 + 120 4 = 121 4

x1,2 = 1 2 ± 121 4

x1 = 1 2 - 11 2 = - 10 2 = -5

x2 = 1 2 + 11 2 = 12 2 = 6

Rücksubstitution:

u1: e 2x = 6

e 2x = 6 |ln(⋅)
2x = ln( 6 ) |:2
x1 = 1 2 ln( 6 ) ≈ 0.8959

u2: e 2x = -5

e 2x = -5

Diese Gleichung hat keine Lösung!


2. Fall:

e -x = 0

Diese Gleichung hat keine Lösung!

L={ 1 2 ln( 6 ) }

Exponentialgl. vermischt

Beispiel:

Löse die folgende Gleichung:

-3 e 5x +6 = 0

Lösung einblenden
-3 e 5x +6 = 0 | -6
-3 e 5x = -6 |:-3
e 5x = 2 |ln(⋅)
5x = ln( 2 ) |:5
x = 1 5 ln( 2 ) ≈ 0.1386

L={ 1 5 ln( 2 ) }