nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgl. elementar

Beispiel:

Löse die Gleichung ohne WTR: e 6x +10 = 1 e 2

Lösung einblenden

e 6x +10 = 1 e 2

Zuerst versuchen wir den Term rechts auch als Exponentialterm zu schreiben.

e 6x +10 = e -2

Wir erkennen, dass links und rechts Exponentialterme mit gleicher Basis e stehen.
Diese Terme sind genau dann gleich, wenn ihre Exponenten gleich sind. Deswegen setzen wir einfach nur diese gleich:

6x +10 = -2 | -10
6x = -12 |:6
x = -2

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

-5 e -x +2 = 0

Lösung einblenden
-5 e -x +2 = 0 | -2
-5 e -x = -2 |:-5
e -x = 2 5 |ln(⋅)
-x = ln( 2 5 ) |:-1
x = - ln( 2 5 ) ≈ 0.9163

L={ - ln( 2 5 ) }

Exponentialgl. mit 2 e-Termen

Beispiel:

Löse die folgende Gleichung:

6 e -x = 3 e -3x

Lösung einblenden
6 e -x = 3 e -3x | -3 e -3x
6 e -x -3 e -3x = 0
3 ( 2 e 2x -1 ) e -3x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 e 2x -1 = 0 | +1
2 e 2x = 1 |:2
e 2x = 1 2 |ln(⋅)
2x = ln( 1 2 ) |:2
x1 = 1 2 ln( 1 2 ) ≈ -0.3466

2. Fall:

e -3x = 0

Diese Gleichung hat keine Lösung!

L={ 1 2 ln( 1 2 ) }

Exponentialgl. Substitution BF

Beispiel:

Löse die folgende Gleichung:

e 2x -4 e x -12 = 0

Lösung einblenden
e 2x -4 e x -12 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -4u -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +4 ± ( -4 ) 2 -4 · 1 · ( -12 ) 21

u1,2 = +4 ± 16 +48 2

u1,2 = +4 ± 64 2

u1 = 4 + 64 2 = 4 +8 2 = 12 2 = 6

u2 = 4 - 64 2 = 4 -8 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -2 ) 2 - ( -12 ) = 4+ 12 = 16

x1,2 = 2 ± 16

x1 = 2 - 4 = -2

x2 = 2 + 4 = 6

Rücksubstitution:

u1: e x = 6

e x = 6 |ln(⋅)
x1 = ln( 6 ) ≈ 1.7918

u2: e x = -2

e x = -2

Diese Gleichung hat keine Lösung!

L={ ln( 6 ) }

Exponentialgl. Substitution

Beispiel:

Löse die folgende Gleichung:

e 3x + e 2x -6 e x = 0

Lösung einblenden
e 3x + e 2x -6 e x = 0
( e 2x + e x -6 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 2x + e x -6 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 + u -6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -1 ± 1 2 -4 · 1 · ( -6 ) 21

u1,2 = -1 ± 1 +24 2

u1,2 = -1 ± 25 2

u1 = -1 + 25 2 = -1 +5 2 = 4 2 = 2

u2 = -1 - 25 2 = -1 -5 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -6 ) = 1 4 + 6 = 1 4 + 24 4 = 25 4

x1,2 = - 1 2 ± 25 4

x1 = - 1 2 - 5 2 = - 6 2 = -3

x2 = - 1 2 + 5 2 = 4 2 = 2

Rücksubstitution:

u1: e x = 2

e x = 2 |ln(⋅)
x1 = ln( 2 ) ≈ 0.6931

u2: e x = -3

e x = -3

Diese Gleichung hat keine Lösung!


2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

L={ ln( 2 ) }

Exponentialgl. vermischt

Beispiel:

Löse die folgende Gleichung:

e 2x -2 e x -24 = 0

Lösung einblenden
e 2x -2 e x -24 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -2u -24 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -24 ) 21

u1,2 = +2 ± 4 +96 2

u1,2 = +2 ± 100 2

u1 = 2 + 100 2 = 2 +10 2 = 12 2 = 6

u2 = 2 - 100 2 = 2 -10 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -24 ) = 1+ 24 = 25

x1,2 = 1 ± 25

x1 = 1 - 5 = -4

x2 = 1 + 5 = 6

Rücksubstitution:

u1: e x = 6

e x = 6 |ln(⋅)
x1 = ln( 6 ) ≈ 1.7918

u2: e x = -4

e x = -4

Diese Gleichung hat keine Lösung!

L={ ln( 6 ) }