nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgl. elementar

Beispiel:

Löse die Gleichung ohne WTR: e x +1 = 1 e

Lösung einblenden

e x +1 = 1 e

Zuerst versuchen wir den Term rechts auch als Exponentialterm zu schreiben.

e x +1 = e -1

Wir erkennen, dass links und rechts Exponentialterme mit gleicher Basis e stehen.
Diese Terme sind genau dann gleich, wenn ihre Exponenten gleich sind. Deswegen setzen wir einfach nur diese gleich:

x +1 = -1 | -1
x = -2

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

-4 e -2x = -5

Lösung einblenden
-4 e -2x = -5 |:-4
e -2x = 5 4 |ln(⋅)
-2x = ln( 5 4 ) |:-2
x = - 1 2 ln( 5 4 ) ≈ -0.1116

L={ - 1 2 ln( 5 4 ) }

Exponentialgl. mit 2 e-Termen

Beispiel:

Löse die folgende Gleichung:

3 e -x -7 e -3x = 0

Lösung einblenden
3 e -x -7 e -3x = 0
( 3 e 2x -7 ) e -3x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

3 e 2x -7 = 0 | +7
3 e 2x = 7 |:3
e 2x = 7 3 |ln(⋅)
2x = ln( 7 3 ) |:2
x1 = 1 2 ln( 7 3 ) ≈ 0.4236

2. Fall:

e -3x = 0

Diese Gleichung hat keine Lösung!

L={ 1 2 ln( 7 3 ) }

Exponentialgl. Substitution BF

Beispiel:

Löse die folgende Gleichung:

e 2x -4 e x -21 = 0

Lösung einblenden
e 2x -4 e x -21 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -4u -21 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +4 ± ( -4 ) 2 -4 · 1 · ( -21 ) 21

u1,2 = +4 ± 16 +84 2

u1,2 = +4 ± 100 2

u1 = 4 + 100 2 = 4 +10 2 = 14 2 = 7

u2 = 4 - 100 2 = 4 -10 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -2 ) 2 - ( -21 ) = 4+ 21 = 25

x1,2 = 2 ± 25

x1 = 2 - 5 = -3

x2 = 2 + 5 = 7

Rücksubstitution:

u1: e x = 7

e x = 7 |ln(⋅)
x1 = ln( 7 ) ≈ 1.9459

u2: e x = -3

e x = -3

Diese Gleichung hat keine Lösung!

L={ ln( 7 ) }

Exponentialgl. Substitution

Beispiel:

Löse die folgende Gleichung:

e 2x - e x -20 = 0

Lösung einblenden
e 2x - e x -20 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 - u -20 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -20 ) 21

u1,2 = +1 ± 1 +80 2

u1,2 = +1 ± 81 2

u1 = 1 + 81 2 = 1 +9 2 = 10 2 = 5

u2 = 1 - 81 2 = 1 -9 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -20 ) = 1 4 + 20 = 1 4 + 80 4 = 81 4

x1,2 = 1 2 ± 81 4

x1 = 1 2 - 9 2 = - 8 2 = -4

x2 = 1 2 + 9 2 = 10 2 = 5

Rücksubstitution:

u1: e x = 5

e x = 5 |ln(⋅)
x1 = ln( 5 ) ≈ 1.6094

u2: e x = -4

e x = -4

Diese Gleichung hat keine Lösung!

L={ ln( 5 ) }

Exponentialgl. vermischt

Beispiel:

Löse die folgende Gleichung:

e 2x +2 e x -24 = 0

Lösung einblenden
e 2x +2 e x -24 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 +2u -24 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -2 ± 2 2 -4 · 1 · ( -24 ) 21

u1,2 = -2 ± 4 +96 2

u1,2 = -2 ± 100 2

u1 = -2 + 100 2 = -2 +10 2 = 8 2 = 4

u2 = -2 - 100 2 = -2 -10 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -24 ) = 1+ 24 = 25

x1,2 = -1 ± 25

x1 = -1 - 5 = -6

x2 = -1 + 5 = 4

Rücksubstitution:

u1: e x = 4

e x = 4 |ln(⋅)
x1 = ln( 4 ) ≈ 1.3863
x1 = 2 ln( 2 )

u2: e x = -6

e x = -6

Diese Gleichung hat keine Lösung!

L={ 2 ln( 2 ) }