nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgl. elementar

Beispiel:

Löse die Gleichung ohne WTR: e 6x -10 = e 2

Lösung einblenden

e 6x -10 = e 2

Wir erkennen, dass links und rechts Exponentialterme mit gleicher Basis e stehen.
Diese Terme sind genau dann gleich, wenn ihre Exponenten gleich sind. Deswegen setzen wir einfach nur diese gleich:

6x -10 = 2 | +10
6x = 12 |:6
x = 2

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

8 e -4x = 6

Lösung einblenden
8 e -4x = 6 |:8
e -4x = 3 4 |ln(⋅)
-4x = ln( 3 4 ) |:-4
x = - 1 4 ln( 3 4 ) ≈ 0.0719

L={ - 1 4 ln( 3 4 ) }

Exponentialgl. mit 2 e-Termen

Beispiel:

Löse die folgende Gleichung:

7 e 2x = 9 e -2x

Lösung einblenden
7 e 2x = 9 e -2x | -9 e -2x
7 e 2x -9 e -2x = 0
( 7 e 4x -9 ) e -2x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

7 e 4x -9 = 0 | +9
7 e 4x = 9 |:7
e 4x = 9 7 |ln(⋅)
4x = ln( 9 7 ) |:4
x1 = 1 4 ln( 9 7 ) ≈ 0.0628

2. Fall:

e -2x = 0

Diese Gleichung hat keine Lösung!

L={ 1 4 ln( 9 7 ) }

Exponentialgl. Substitution BF

Beispiel:

Löse die folgende Gleichung:

e 2x +2 e x -15 = 0

Lösung einblenden
e 2x +2 e x -15 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 +2u -15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -2 ± 2 2 -4 · 1 · ( -15 ) 21

u1,2 = -2 ± 4 +60 2

u1,2 = -2 ± 64 2

u1 = -2 + 64 2 = -2 +8 2 = 6 2 = 3

u2 = -2 - 64 2 = -2 -8 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -15 ) = 1+ 15 = 16

x1,2 = -1 ± 16

x1 = -1 - 4 = -5

x2 = -1 + 4 = 3

Rücksubstitution:

u1: e x = 3

e x = 3 |ln(⋅)
x1 = ln( 3 ) ≈ 1.0986

u2: e x = -5

e x = -5

Diese Gleichung hat keine Lösung!

L={ ln( 3 ) }

Exponentialgl. Substitution

Beispiel:

Löse die folgende Gleichung:

e 4x +3 e 3x -28 e 2x = 0

Lösung einblenden
e 4x +3 e 3x -28 e 2x = 0
( e 2x +3 e x -28 ) e 2x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 2x +3 e x -28 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 +3u -28 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 1 · ( -28 ) 21

u1,2 = -3 ± 9 +112 2

u1,2 = -3 ± 121 2

u1 = -3 + 121 2 = -3 +11 2 = 8 2 = 4

u2 = -3 - 121 2 = -3 -11 2 = -14 2 = -7

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -28 ) = 9 4 + 28 = 9 4 + 112 4 = 121 4

x1,2 = - 3 2 ± 121 4

x1 = - 3 2 - 11 2 = - 14 2 = -7

x2 = - 3 2 + 11 2 = 8 2 = 4

Rücksubstitution:

u1: e x = 4

e x = 4 |ln(⋅)
x1 = ln( 4 ) ≈ 1.3863
x1 = 2 ln( 2 )

u2: e x = -7

e x = -7

Diese Gleichung hat keine Lösung!


2. Fall:

e 2x = 0

Diese Gleichung hat keine Lösung!

L={ 2 ln( 2 ) }

Exponentialgl. vermischt

Beispiel:

Löse die folgende Gleichung:

e 2x +2 e x -15 = 0

Lösung einblenden
e 2x +2 e x -15 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 +2u -15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -2 ± 2 2 -4 · 1 · ( -15 ) 21

u1,2 = -2 ± 4 +60 2

u1,2 = -2 ± 64 2

u1 = -2 + 64 2 = -2 +8 2 = 6 2 = 3

u2 = -2 - 64 2 = -2 -8 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -15 ) = 1+ 15 = 16

x1,2 = -1 ± 16

x1 = -1 - 4 = -5

x2 = -1 + 4 = 3

Rücksubstitution:

u1: e x = 3

e x = 3 |ln(⋅)
x1 = ln( 3 ) ≈ 1.0986

u2: e x = -5

e x = -5

Diese Gleichung hat keine Lösung!

L={ ln( 3 ) }