nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgl. elementar

Beispiel:

Löse die Gleichung ohne WTR: e x +2 = e 2

Lösung einblenden

e x +2 = e 2

Wir erkennen, dass links und rechts Exponentialterme mit gleicher Basis e stehen.
Diese Terme sind genau dann gleich, wenn ihre Exponenten gleich sind. Deswegen setzen wir einfach nur diese gleich:

x +2 = 2 | -2
x = 0

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

e -9x = 2

Lösung einblenden
e -9x = 2 |ln(⋅)
-9x = ln( 2 ) |:-9
x = - 1 9 ln( 2 ) ≈ -0.077

L={ - 1 9 ln( 2 ) }

Exponentialgl. Substitution BF

Beispiel:

Löse die folgende Gleichung:

e 2x -2 e x -8 = 0

Lösung einblenden
e 2x -2 e x -8 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -2u -8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -8 ) 21

u1,2 = +2 ± 4 +32 2

u1,2 = +2 ± 36 2

u1 = 2 + 36 2 = 2 +6 2 = 8 2 = 4

u2 = 2 - 36 2 = 2 -6 2 = -4 2 = -2

Rücksubstitution:

u1: e x = 4

e x = 4 |ln(⋅)
x1 = ln( 4 ) ≈ 1.3863
x1 = 2 ln( 2 )

u2: e x = -2

e x = -2

Diese Gleichung hat keine Lösung!

L={ 2 ln( 2 ) }

Exponentialgl. Substitution

Beispiel:

Löse die folgende Gleichung:

e 4x -5 e x +4 e -2x = 0

Lösung einblenden
e 4x -5 e x +4 e -2x = 0
( e 6x -5 e 3x +4 ) e -2x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 6x -5 e 3x +4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e 3x

Draus ergibt sich die quadratische Gleichung:

u 2 -5u +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +5 ± ( -5 ) 2 -4 · 1 · 4 21

u1,2 = +5 ± 25 -16 2

u1,2 = +5 ± 9 2

u1 = 5 + 9 2 = 5 +3 2 = 8 2 = 4

u2 = 5 - 9 2 = 5 -3 2 = 2 2 = 1

Rücksubstitution:

u1: e 3x = 4

e 3x = 4 |ln(⋅)
3x = ln( 4 ) |:3
x1 = 1 3 ln( 4 ) ≈ 0.4621
x1 = 2 3 ln( 2 )

u2: e 3x = 1

e 3x = 1 |ln(⋅)
3x = 0 |:3
x2 = 0 ≈ 0

2. Fall:

e -2x = 0

Diese Gleichung hat keine Lösung!

L={0; 2 3 ln( 2 ) }

Exponentialgl. vermischt

Beispiel:

Löse die folgende Gleichung:

e 2x -3 e x -18 = 0

Lösung einblenden
e 2x -3 e x -18 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -3u -18 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -18 ) 21

u1,2 = +3 ± 9 +72 2

u1,2 = +3 ± 81 2

u1 = 3 + 81 2 = 3 +9 2 = 12 2 = 6

u2 = 3 - 81 2 = 3 -9 2 = -6 2 = -3

Rücksubstitution:

u1: e x = 6

e x = 6 |ln(⋅)
x1 = ln( 6 ) ≈ 1.7918

u2: e x = -3

e x = -3

Diese Gleichung hat keine Lösung!

L={ ln( 6 ) }