Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Extrempunkte (schwerer) BF
Beispiel:
Berechne die Koordinaten aller Extrempunkte des Graphen von f mit :
Als erstes leitet man die Funktion zwei mal ab.
=>
=
=
Die notwendige Bedingung für einen Extrempunkt ist f'(x)=0.
(Alle Extrempunkte haben die Steigung 0).
Man setzt nun also f'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von f zu bestimmen.
| = | | | ||
| = |
Die Lösung x= ist nun der einzige Kandidat für eine Extremstelle.
Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in f''(x):
Ist f''(x) < 0, so handelt es sich um einen Hochpunkt (hinreichende Bedingung: f'(x0)=0
und f''(x0)<0).
Ist sie größer 0 handelt es sich um einen Tiefpunkt (hinreichende Bedingung:
f'(x0)=0 und f''(x0)>0).
f''() = = = >0
Das heißt bei x = ist ein Tiefpunkt.
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f() =
=
Man erhält so den Tiefpunkt T:(|
)
Extrempunkte (schwerer)
Beispiel:
Berechne die Koordinaten aller Extrempunkte des Graphen von f mit :
Als erstes leitet man die Funktion zwei mal ab.
=>
Die notwendige Bedingung für einen Extrempunkt ist f'(x)=0.
(Alle Extrempunkte haben die Steigung 0).
Man setzt nun also f'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von f zu bestimmen.
| = | |||
| = |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
| x1 | = |
2. Fall:
= 0
Lösen mit der a-b-c-Formel (Mitternachtsformel):
eingesetzt in x1,2 = ergibt:
x2,3 =
x2,3 =
x2,3 =
x2 =
= =
x3 =
Lösen mit der p-q-Formel (x² + px + q = 0):
vor dem Einsetzen in x1,2 =
berechnen wir zuerst die Diskriminante D =
D =
x1,2 =
x1 =
x2 =
Die Lösungen
Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in f''(x):
Ist f''(x) < 0, so handelt es sich um einen Hochpunkt (hinreichende Bedingung: f'(x0)=0
und f''(x0)<0).
Ist sie größer 0 handelt es sich um einen Tiefpunkt (hinreichende Bedingung:
f'(x0)=0 und f''(x0)>0).
1.: x=0
f''(
Das heißt bei x =
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f(
Man erhält so den Tiefpunkt T:(
2.: x=2
f''(
Das heißt bei x =
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f(
Man erhält so den Hochpunkt H:(
3.: x=5
f''(
Das heißt bei x =
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f(
Man erhält so den Tiefpunkt T:(
Minimaler Abstand zur x-Achse
Beispiel:
Zeige, dass der Graph der Funktion f mit
Bestimme diesen kleinsten Abstand.
Wir sehen am positiven Vorzeichen vor der höchsten Potenz (
Als erstes leitet man die Funktion zwei mal ab.
=>
=
Die notwendige Bedingung für einen Extrempunkt ist f'(x)=0.
(Alle Extrempunkte haben die Steigung 0).
Man setzt nun also f'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von f zu bestimmen.
|
|
= | ||
|
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
| x1 | = |
2. Fall:
|
|
= | |
|
|
|
|
= | |
|
|
| x2 | = |
|
=
|
| x3 | = |
|
=
|
Die Lösungen
Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in f''(x):
Ist f''(x) < 0, so handelt es sich um einen Hochpunkt (hinreichende Bedingung: f'(x0)=0
und f''(x0)<0).
Ist sie größer 0 handelt es sich um einen Tiefpunkt (hinreichende Bedingung:
f'(x0)=0 und f''(x0)>0).
1.: x=- 1
f''(
Das heißt bei x =
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f(
Man erhält so den Tiefpunkt T:(
≈ T:(-1|1.25)
2.: x=0
f''(
Das heißt bei x =
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f(
Man erhält so den Hochpunkt H:(
3.: x=1
f''(
Das heißt bei x =
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f(
Man erhält so den Tiefpunkt T:(
≈ T:(1|1.25)
Eigentlich hätte es gereicht nur die Tiefpunkte zu untersuchen.
Wir sehen also, dass selbst der niedrigste Tiefpunkt einen positiven y-Wert hat. Also müssen alle Punkte über der x-Achse liegen.
Der niedrigste Punkt muss ja ein Tiefpunkt sein, daher sehen wir dass der Tiefpunkt (-1|
Dieser geringste Abstand ist also |
Extrempunkte e-Funktion BF
Beispiel:
Berechne die Koordinaten aller Extrempunkte des Graphen von f mit
Als erstes leitet man die Funktion zwei mal ab.
=>
=
=
Die notwendige Bedingung für einen Extrempunkt ist f'(x)=0.
(Alle Extrempunkte haben die Steigung 0).
Man setzt nun also f'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von f zu bestimmen.
|
|
= | |
|
|
|
|
= | |⋅ |
|
|
|
= | |ln(⋅) | |
|
|
= |
|
|: |
|
|
= |
|
≈ 1.9617 |
Die Lösung x=
Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in f''(x):
Ist f''(x) < 0, so handelt es sich um einen Hochpunkt (hinreichende Bedingung: f'(x0)=0
und f''(x0)<0).
Ist sie größer 0 handelt es sich um einen Tiefpunkt (hinreichende Bedingung:
f'(x0)=0 und f''(x0)>0).
f''(
Das heißt bei x =
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f(
Man erhält so den Tiefpunkt T:(
≈ T:(1.962|0.153)
Extrempunkte (e-Funktionen)
Beispiel:
Berechne die Koordinaten aller Extrempunkte des Graphen von f mit
Bitte alle Werte (mit dem WTR) fertig rechnen und als als Dezimalzahlen angeben.
Als erstes leitet man die Funktion zwei mal ab.
=>
=
=
=
=
Die notwendige Bedingung für einen Extrempunkt ist f'(x)=0.
(Alle Extrempunkte haben die Steigung 0).
Man setzt nun also f'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von f zu bestimmen.
|
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
|
|
= | |⋅ 4 | |
|
|
= | ||
|
|
= | |
|
|
|
|
= |
|
|:( |
| x1 | = |
|
2. Fall:
|
|
= |
Diese Gleichung hat keine Lösung!
Die Lösung x=
Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in f''(x):
Ist f''(x) < 0, so handelt es sich um einen Hochpunkt (hinreichende Bedingung: f'(x0)=0
und f''(x0)<0).
Ist sie größer 0 handelt es sich um einen Tiefpunkt (hinreichende Bedingung:
f'(x0)=0 und f''(x0)>0).
f''(
Das heißt bei x =
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f(
Man erhält so den Hochpunkt H:(
≈ H:(-6|0.893)
Extrempunkte e-Funktion Anwend.
Beispiel:
Berechne die Koordinaten aller Extrempunkte des Graphen von f mit
Als erstes leitet man die Funktion zwei mal ab.
=>
=
=
=
=
Die notwendige Bedingung für einen Extrempunkt ist f'(x)=0.
(Alle Extrempunkte haben die Steigung 0).
Man setzt nun also f'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von f zu bestimmen.
|
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
|
|
= | |
|
|
|
|
= |
|
|:( |
| x1 | = |
|
2. Fall:
|
|
= |
Diese Gleichung hat keine Lösung!
Die Lösung x=
Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in f''(x):
Ist f''(x) < 0, so handelt es sich um einen Hochpunkt (hinreichende Bedingung: f'(x0)=0
und f''(x0)<0).
Ist sie größer 0 handelt es sich um einen Tiefpunkt (hinreichende Bedingung:
f'(x0)=0 und f''(x0)>0).
f''(
Das heißt bei x =
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f(
Man erhält so den Hochpunkt H:(
≈ H:(6|16.337)
Wendepunkte (schwerer) BF
Beispiel:
Berechne alle Wendepunkte von f mit
Als erstes leitet man die Funktion drei mal ab.
=
=
=
=
=
=
=
=
Die notwendige Bedingung für einen Wendepunkt ist f''(x)=0.
(Wendestellen sind Extremstellen in der Ableitung, also haben Wendepunkten die Steigung 0 in f').
Man setzt nun also die zweite Ableitung gleich 0, um die einzig möglichen x-Werte für Wendepunkte zu bestimmen.
|
|
= | |
|
|
|
|
= |
|
|:( |
|
|
= |
|
Die Lösung x=
Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in die dritte Ableitung.
Ist die dritte Ableitung des Punktes ungleich 0, so handelt es sich um einen Wendepunkt (hinreichende Bedingung: f''(x0)=0 und f'''(x0)≠0).
Überprüfung bei x =
f'''(
Da f'''(
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzen werden.
f(
Man erhält so den Wendepunkt: WP(
Wendetangente
Beispiel:
Bestimme eine Gleichung der Tangente im Wendepunkte des Graphen der Funktion f mit
Zuerst muss natürlich mal der Wendepunkt berechnet werden:
Als erstes leitet man die Funktion drei mal ab.
=
=
=
Die notwendige Bedingung für einen Wendepunkt ist f''(x)=0.
(Wendestellen sind Extremstellen in der Ableitung, also haben Wendepunkten die Steigung 0 in f').
Man setzt nun also die zweite Ableitung gleich 0, um die einzig möglichen x-Werte für Wendepunkte zu bestimmen.
|
|
= | |
|
|
|
|
= |
|
|: |
|
|
= |
|
Die Lösung x=
Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in die dritte Ableitung.
Ist die dritte Ableitung des Punktes ungleich 0, so handelt es sich um einen Wendepunkt (hinreichende Bedingung: f''(x0)=0 und f'''(x0)≠0).
Überprüfung bei x =
f'''(
Da f'''(
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzen werden.
f(
Man erhält so den Wendepunkt: WP(
Jetzt müssen wir die Tangente im Wendepunkt anlegen:
Um die Steigung der Tangente zu erhalten, setzen wir den gegebenen x-Wert in die Ableitung ein:
=
=
=
Damit wissen wir nun schon, dass die Tangente die Gleichung t: y=
Um noch das c zu bestimmen, brauchen wir einen Punkt, den wir in die Gleichung einsetzen können.
Dazu müssen wir noch den y-Wert des Berührpunkts bestimmen, also
Wir erhalten so also den Punkt B(1|
Nun setzt man die errechnete Ableitung und die errechneten Punktkoordinaten in eine allgemeine Geradengleichung (y=mx+c) ein:
also c=
Damit erhält man als Geradengleichung für die Tangente: y=
max. Flächeninhalt am Graph
Beispiel:
Der Punkte P liegt im 1. Quadrant auf dem Graph der Funktion f mit
Wir schreiben u für den x-Wert des Punkts P und da der Punkt P auf dem Graph von f liegt, muss der y-Wert f(u) sein, also P(u|f(u)).
An der Skizze erkennt man, dass dann die Seiten des achsenparallelen Rechteck die Längen u und f(u) haben. Folglich gilt für den Flächeninhalt dieses
Rechtecks:
A = u ⋅ f(u) =
Wir suchen also ein Maximum von
Als erstes leitet man die Funktion zwei mal ab.
=>
=
Die notwendige Bedingung für einen Extrempunkt ist A'(x)=0.
(Alle Extrempunkte haben die Steigung 0).
Man setzt nun also A'(u) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von A zu bestimmen.
|
|
= | |
|
|
|
|
= | |:
|
|
|
|
= | |
|
|
| u1 | = |
|
=
|
| u2 | = |
|
=
|
Die Lösungen
Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in A''(u):
Ist A''(u) < 0, so handelt es sich um einen Hochpunkt (hinreichende Bedingung: A'(u0)=0
und A''(u0)<0).
Ist sie größer 0 handelt es sich um einen Tiefpunkt (hinreichende Bedingung:
A'(u0)=0 und A''(u0)>0).
A''(
Das heißt bei u =
Um dessen y-Wert zu erhalten muss der entsprechende u-Wert in A(u) eingesetzt werden.
A(
Man erhält so den Hochpunkt H:(
≈ H:(0.5|0.25)
Den maximalen Flächeninhalt erhalten wir also, wenn wir als x-Koordinate des gesuchten Punkts u =
Den zugehörigen y-Wert erhalten wir, wenn wir x =
f(
Somit sind die Koordinaten des gesuchten Punkts P(
Den maximalen Flächeninhalt erhalten wir ja, wenn wir u =
Extremwertaufgabe (+Nebenbed.)
Beispiel:
Eine zylinderformige Dose soll 990 ml Volumen haben. Bestimme den Radius des Dosen-Zylinders, so dass der Zylinder eine möglichst kleine Oberfläche hat und man somit möglichst wenig Blech benötigt. Gib dann die minimale Oberfläche in cm² an.
Es muss gelten: 990 =
Wenn wir diese Gleichung nach h auflösen, erhalten wir:
h =
Dies können wir in die Oberflächenformel einsetzen:
O =
Als Zielfunktion für die Oberfläche ergibt sich somit O(x) =
=
=
=
Da diese Zielfunktion für die Oberfläche minimal werden soll, suchen wir deren Minimum:
Als erstes leitet man die Funktion zwei mal ab.
=>
=
=
Die notwendige Bedingung für einen Extrempunkt ist O'(x)=0.
(Alle Extrempunkte haben die Steigung 0).
Man setzt nun also O'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von O zu bestimmen.
D=R\{
Wir multiplizieren den Nenner
|
|
= | |⋅(
|
|
|
|
= | ||
|
|
= | ||
|
|
= |
|
|
= | |
|
|
|
|
= | |:
|
|
|
|
= |
|
|
|
|
= | |
|
|
|
|
= |
|
(Alle Lösungen sind auch in der Definitionsmenge).
Die Lösung x=
Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in O''(x):
Ist O''(x) < 0, so handelt es sich um einen Hochpunkt (hinreichende Bedingung: O'(x0)=0
und O''(x0)<0).
Ist sie größer 0 handelt es sich um einen Tiefpunkt (hinreichende Bedingung:
O'(x0)=0 und O''(x0)>0).
O''(
Das heißt bei x =
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in O(x) eingesetzt werden.
O(
Man erhält so den Tiefpunkt T:(
≈ T:(5.401|549.884)
Die minimale Oberfläche erhalten wir also, wenn wir x =
Die zugehörige Höhe erhalten wir, wenn wir
Als minimale Oberfläche erhalten wir:
O(
≈ 549.884.
Extrempunkte bei ln-Funktionen
Beispiel:
Berechne die Koordinaten aller Extrempunkte des Graphen von f mit
Als erstes leitet man die Funktion zwei mal ab.
=>
=
=
Die notwendige Bedingung für einen Extrempunkt ist f'(x)=0.
(Alle Extrempunkte haben die Steigung 0).
Man setzt nun also f'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von f zu bestimmen.
|
|
= | ||
|
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
| x1 | = |
2. Fall:
|
|
= | |
|
|
|
|
= |
|
|: |
|
|
= |
|
|e(⋅) |
|
|
= |
|
|⋅ 2 |
|
|
= |
|
Die Lösungen
f(
Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in f''(x):
Ist f''(x) < 0, so handelt es sich um einen Hochpunkt (hinreichende Bedingung: f'(x0)=0
und f''(x0)<0).
Ist sie größer 0 handelt es sich um einen Tiefpunkt (hinreichende Bedingung:
f'(x0)=0 und f''(x0)>0).
f''(
Das heißt bei x =
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f(
Man erhält so den Tiefpunkt T:(
≈ T:(1.213|-0.736)
