nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

negative Hochzahlen umwandeln

Beispiel:

Schreibe die Potenz so um, dass keine keine negative Zahl mehr in der Hochzahl ist: 5 x -6

Lösung einblenden

x -6 ist ja nur eine andere Schreibweise für 1 x 6 .

Also ist 5 x -6 das gleiche wie 5 · 1 x 6 = 5 x 6 .

n-te Wurzel - rationale Hochzahl

Beispiel:

Schreibe um in eine Potenz ohne Wurzelzeichen: x

Lösung einblenden

Eine 2-te Wurzel kann man immer auch als (...) 1 2 schreiben, also gilt hier: x = x 1 2

rationale (+ neg.) Hochzahl umwandeln

Beispiel:

Schreibe x 8 9 um in eine Potenz ohne Wurzelzeichen und ohne einen Nenner mit x.

Lösung einblenden

Eine 9-te Wurzel kann man immer auch als (...) 1 9 schreiben, also gilt hier: x 8 9 = ( x 8 ) 1 9

Diese Doppelpotenz können wir nun mit dem Potenzgesetz weiter verrechnen:

( x 8 ) 1 9 = x 1 9 · 8 = x 8 9

rationale Potenzen (im Kopf)

Beispiel:

Vereinfache den folgenden Term: 36 1 2

Lösung einblenden

36 1 2

= 36

= 6

Potenzen ohne WTR

Beispiel:

Vereinfache den folgenden Term: ( 8 27 ) 1 3

Lösung einblenden

( 8 27 ) 1 3

= 8 27 3

= 8 3 27 3

= 2 3

Potenzen von Dezimalzahlen

Beispiel:

Vereinfache den folgenden Term: 0,0001 1 4

Lösung einblenden

0,0001 1 4

= 0,0001 4

= 0,1

Potenzgesetze rationale Exp.

Beispiel:

Berechne ohne WTR: ( 16 3 ) - 1 2

Am Ende muss also eine (potenzfreie) Zahl stehen.

Lösung einblenden

( 16 3 ) - 1 2

= 16 3 · ( - 1 2 )

= 16 1 2 · ( -3 )

= ( 16 1 2 ) -3

= 1 ( 16 ) 3

= 1 4 3

= 1 64

rationale Hochzahlen vereinfachen

Beispiel:

Vereinfache den folgenden Term: x 4 6 · x 10 6

Dabei darf im Ergebnis nur noch eine Hochzahl stehen!

Lösung einblenden

Hier ist es eben wichtig, dass man die Potenzgesetze erkennt und dann rückwärts anwendet:

x 4 6 · x 10 6

= x 4 6 x 10 6

= x 4 6 + 10 6

= x 14 6

= x 7 3

rationale Potenzen verrechnen

Beispiel:

Vereinfache den folgenden Term: x 4 6 · x 4 3 x

Dabei darf im Ergebnis nur noch eine Hochzahl stehen!

Lösung einblenden

Hier ist es eben wichtig, dass man die Potenzgesetze erkennt und dann rückwärts anwendet:

x 4 6 · x 4 3 x

= x 4 6 x 4 3 x 1

= x 2 3 x 4 3 x 1

= x 2 3 + 4 3 x 1

= x 2 x 1

= x 2 -1

= x 1

Doppelbruchterm vereinfachen

Beispiel:

Vereinfache den folgenden Term: 5 t -3 8 t 4

Lösung einblenden

5 t -3 8 t 4

Zuerst schreiben wir die Potenzen mit negativen Hochzahlen in Bruchschreibweise um:

= 5 t 3 8 t 4

Jetzt lösen wir den Doppelbruch auf, indem wir den Zähler mit dem Kehrbruch des Nenners multiplizieren:

= 5 t 3 · t 4 8

= 5 8 t