nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Vorgänger Nachfolger

Beispiel:

Bestimme den Vorgänger und den Nachfolger der Zahl 3167

Lösung einblenden

Der Vorgänger der Zahl 3167 ist 3166.
Denn wenn man nach 3166 weiterzählt, kommt ja als nächste Zahl 3167.

Der Nachfolger der Zahl 3167 ist 3168.
Denn wenn man nach 3167 weiterzählt, kommt ja als nächste Zahl 3168.

am Zahlenstrahl finden

Beispiel:

Gib die markierte Zahl am Zahlenstrahl an:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zuerst müssen wir wissen, wieviel ein Strichchen auf der Skala ausmacht. Dazu nimmt man zwei benachbarte Zahlen auf der Skala, z.B. 500 und 750, und nimmt dann die Differenz der beiden Zahlen: 750 - 500 = 250

Wenn 5 Strichchen 250 bedeutet, dann steht doch 1 Strichchen immer für 50.

Also ist die Zahl beim Strichchen um 4 50er-Einheiten größer als 500, also 500 + 4⋅50 = 500 + 200 = 700.

Die gesuchte Zahl ist also: 700

Runden

Beispiel:

Runde die Zahl 523 auf Hunderter:

Lösung einblenden

Wenn wir eine Zahl auf Hunderter, also auf 100er runden, müssen auf Ende 2 Nullen dastehen.

Also müssen wir auf die vorletzte Stelle schauen, ob wir auf- oder abrunden müssen.
Und weil da eine 2 steht, müssen wir abrunden zu 500.

Die gesuchte Zahl ist also: 500

vom Wort zur Zahl

Beispiel:

Schreibe die Zahl
zweihundertsechsundachtzigtausendachthundertzehn
in Ziffern.

Lösung einblenden

Wenn man das lange Zahlenwort immer bei den Schlüsselwörtern "Milliarden", "Millionen", und "tausend" unterteilt, erkennt man, dass sich hinter dem Buchstabenungetüm zweihundertsechsundachtzigtausend achthundertzehn die Zahl
286 810 verbrigt.

Vorgänger Nachfolger verbal

Beispiel:

Bestimme den Vorgänger und den Nachfolger der Zahl dreiunddreißig Millionen

Lösung einblenden

Als erstes müssen wir die Buchstabenzahl in Ziffern übersetzen:
dreiunddreißig Millionen = 33 000 000

Der Vorgänger der Zahl 33 000 000 ist 32 999 999.
Denn wenn man nach 32 999 999 weiterzählt, kommt ja als nächste Zahl 33 000 000.

Der Nachfolger der Zahl 33 000 000 ist 33 000 001.
Denn wenn man nach 33 000 000 weiterzählt, kommt ja als nächste Zahl 33 000 001.

Runden rückwärts

Beispiel:

Bestimme die kleinste und die größte Zahl, die auf Zehner gerundet 200 ergibt:

Lösung einblenden

Am einfachsten ist es wahrscheinlich, wenn wir zuerst schauen, was den die nächst kleinere und die nächst größere Zahl wäre, die auf Zehner gerundet ist.

Die nächst größere wäre 200 + 10 = 210.

Die nächst kleinere wäre 200 - 10 = 190.

Wenn wir nun also die kleinste Zahl suchen, die auf Zehner gerundet 200 ergibt,
muss die doch in der Nähe der Mitte zwischen 200 und 190 liegen:

194 wird zu 190 abgerundet.

195 wird zu 200 aufgerundet, also ist 195 die gesuchte kleinste Zahl.

Wenn wir dann noch die größte Zahl suchen, die auf Zehner gerundet 200 ergibt,
suchen wir in der Nähe der Mitte zwischen 200 und 210:

205 wird zu 210 aufgerundet.

204 wird zu 200 abgerundet, also ist 204 die gesuchte größte Zahl.

kleinste und größte Zahl

Beispiel:

Die Zahlenkärtchen kann man durch unterschiedliche Reihenfolgen zu verschiedenen Zahlen zusammenlegen.
Bestimme die zweitgrößte Zahl, die dabei möglich ist.

6 8 5 62 157 7

Lösung einblenden

Wir sortieren zuerst die Kärtchen nach der ersten Ziffer:

1: 157

5: 5

6: 6 und 62

7: 7

8: 8

Weil wir nach einer großen Zahl suchen, müssen die großen Ziffern ganz links stehen, weil dort der Stelle ja am meisten Gewicht hat (z.B.: 91 ist ja viel mehr als 19).

Schwieriger wird es, wenn mehrere Kärtchen die gleiche Ziffer (vorne haben). Dann müssen wir auf die zweite (oder manchmal sogar auf die dritte) Ziffer schauen:

6 muss hier links von 62 stehen, weil ja 662 größer als 626 ist.

Für die größtmögliche Zahl ergibt sich somit folgende Reihenfolge :

8 7 6 62 5 157 , also 876 625 157

Wir suchen ja aber nicht die größte sondern nur die zweitgrößte Zahl.

Deswegen müssen wir die "optimale" Reihenfolge an einer Stelle verändern. Am wenigsten fällt dies bei den beiden letzten Kärtchen ins Gewicht, weil dort die kleinsten Stellen (Einer, Zehner, ..) sind.

Somit ergibt sich als neue Reihenfolge :

8 7 6 62 157 5 , also 876 621 575