nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

am Zahlenstrahl finden

Beispiel:

Gib die markierte Zahl am Zahlenstrahl an:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zuerst müssen wir wissen, wieviel ein Strichchen auf der Skala ausmacht. Dazu nimmt man zwei benachbarte Zahlen auf der Skala, z.B. 400 und 450, und nimmt dann die Differenz der beiden Zahlen: 450 - 400 = 50

Wenn 5 Strichchen 50 bedeutet, dann steht doch 1 Strichchen immer für 10.

Also ist die Zahl beim Strichchen um 4 10er-Einheiten größer als 400, also 400 + 4⋅10 = 400 + 40 = 440.

Die gesuchte Zahl ist also: 440

Runden

Beispiel:

Runde die Zahl 258 auf Zehner:

Lösung einblenden

Wenn wir eine Zahl auf Zehner, also auf 10er runden, muss am Ende 1 Null dastehen.

Also müssen wir auf die letzte Stelle schauen, ob wir auf- oder abrunden müssen.
Und weil da eine 8 steht, müssen wir aufrunden zu 260.

Die gesuchte Zahl ist also: 260

Vorgänger Nachfolger

Beispiel:

Bestimme den Vorgänger und den Nachfolger der Zahl 2253

Lösung einblenden

Der Vorgänger der Zahl 2253 ist 2252.
Denn wenn man nach 2252 weiterzählt, kommt ja als nächste Zahl 2253.

Der Nachfolger der Zahl 2253 ist 2254.
Denn wenn man nach 2253 weiterzählt, kommt ja als nächste Zahl 2254.

vom Wort zur Zahl

Beispiel:

Schreibe die Zahl
viertausendfünfhundertneunundsiebzig
in Ziffern.

Lösung einblenden

Wenn man das lange Zahlenwort immer bei den Schlüsselwörtern "Milliarden", "Millionen", und "tausend" unterteilt, erkennt man, dass sich hinter dem Buchstabenungetüm viertausend fünfhundertneunundsiebzig die Zahl
4 579 verbrigt.

Vorgänger Nachfolger verbal

Beispiel:

Bestimme den Vorgänger und den Nachfolger der Zahl neunundsiebzig Millionen

Lösung einblenden

Als erstes müssen wir die Buchstabenzahl in Ziffern übersetzen:
neunundsiebzig Millionen = 79 000 000

Der Vorgänger der Zahl 79 000 000 ist 78 999 999.
Denn wenn man nach 78 999 999 weiterzählt, kommt ja als nächste Zahl 79 000 000.

Der Nachfolger der Zahl 79 000 000 ist 79 000 001.
Denn wenn man nach 79 000 000 weiterzählt, kommt ja als nächste Zahl 79 000 001.

Runden rückwärts

Beispiel:

Bestimme die kleinste und die größte Zahl, die auf Hunderter gerundet 1000 ergibt:

Lösung einblenden

Am einfachsten ist es wahrscheinlich, wenn wir zuerst schauen, was den die nächst kleinere und die nächst größere Zahl wäre, die auf Hunderter gerundet ist.

Die nächst größere wäre 1000 + 100 = 1 100.

Die nächst kleinere wäre 1000 - 100 = 900.

Wenn wir nun also die kleinste Zahl suchen, die auf Hunderter gerundet 1000 ergibt,
muss die doch in der Nähe der Mitte zwischen 1000 und 900 liegen:

949 wird zu 900 abgerundet.

950 wird zu 1000 aufgerundet, also ist 950 die gesuchte kleinste Zahl.

Wenn wir dann noch die größte Zahl suchen, die auf Hunderter gerundet 1000 ergibt,
suchen wir in der Nähe der Mitte zwischen 1000 und 1 100:

1 050 wird zu 1 100 aufgerundet.

1 049 wird zu 1000 abgerundet, also ist 1 049 die gesuchte größte Zahl.

kleinste und größte Zahl

Beispiel:

Die Zahlenkärtchen kann man durch unterschiedliche Reihenfolgen zu verschiedenen Zahlen zusammenlegen.
Bestimme die zweitgrößte Zahl, die dabei möglich ist.

6 8 59 234 1 10

Lösung einblenden

Wir sortieren zuerst die Kärtchen nach der ersten Ziffer:

1: 1 und 10

2: 234

5: 59

6: 6

8: 8

Weil wir nach einer großen Zahl suchen, müssen die großen Ziffern ganz links stehen, weil dort der Stelle ja am meisten Gewicht hat (z.B.: 91 ist ja viel mehr als 19).

Schwieriger wird es, wenn mehrere Kärtchen die gleiche Ziffer (vorne haben). Dann müssen wir auf die zweite (oder manchmal sogar auf die dritte) Ziffer schauen:

1 muss hier links von 10 stehen, weil ja 110 größer als 101 ist.

Für die größtmögliche Zahl ergibt sich somit folgende Reihenfolge :

8 6 59 234 1 10 , also 8 659 234 110

Wir suchen ja aber nicht die größte sondern nur die zweitgrößte Zahl.

Deswegen müssen wir die "optimale" Reihenfolge an einer Stelle verändern. Am wenigsten fällt dies bei den beiden letzten Kärtchen ins Gewicht, weil dort die kleinsten Stellen (Einer, Zehner, ..) sind.

Somit ergibt sich als neue Reihenfolge :

8 6 59 234 10 1 , also 8 659 234 101