nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Erwartungswerte bei Binomialverteilungen

Beispiel:

Es werden drei Würfel geworfen. Wieviel Sechser muss man erwarten?
(Das Ergebnis bitte auf 2 Stellen runden!)

Lösung einblenden

Zuerst müssen wir die Wahrscheinlichkeiten für die einzelnen 'Trefferzahlen' bestimmen:

Trefferzahl: 0

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p= 1 6 .

P 1 6 3 (X=0) = ( 3 0 ) ( 1 6 )0 ( 5 6 )3 =0.5787037037037≈ 0.5787
(TI-Befehl: binompdf(3,1/6,0))

Trefferzahl: 1

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p= 1 6 .

P 1 6 3 (X=1) = ( 3 1 ) ( 1 6 )1 ( 5 6 )2 =0.34722222222222≈ 0.3472
(TI-Befehl: binompdf(3,1/6,1))

Trefferzahl: 2

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p= 1 6 .

P 1 6 3 (X=2) = ( 3 2 ) ( 1 6 )2 ( 5 6 )1 =0.069444444444444≈ 0.0694
(TI-Befehl: binompdf(3,1/6,2))

Trefferzahl: 3

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p= 1 6 .

P 1 6 3 (X=3) = ( 3 3 ) ( 1 6 )3 ( 5 6 )0 =0.0046296296296296≈ 0.0046
(TI-Befehl: binompdf(3,1/6,3))

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 1 2 3
P(X=xi) 0.5787 0.3472 0.0694 0.0046
xi ⋅ P(X=xi) 0 0,3472 0,1388 0,0138

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅0.5787 + 1⋅0.3472 + 2⋅0.0694 + 3⋅0.0046

0.5

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

In einem Stapel Karten mit 3 Asse, 10 Könige, 8 Damen und 3 Buben werden 2 Karten gezogen. Dabei zählen 2 Asse 1000, 2 Könige 450, 2 Damen 100 und 2 Buben 70 Punkte. Außerdem gibt es für ein Paar aus Dame und König 30 Punkte. Wie viele Punkte kann man bei diesem Spiel erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
As -> As 1 92
As -> König 5 92
As -> Dame 1 23
As -> Bube 3 184
König -> As 5 92
König -> König 15 92
König -> Dame 10 69
König -> Bube 5 92
Dame -> As 1 23
Dame -> König 10 69
Dame -> Dame 7 69
Dame -> Bube 1 23
Bube -> As 3 184
Bube -> König 5 92
Bube -> Dame 1 23
Bube -> Bube 1 92

Die Wahrscheinlichkeit für '2 Asse' ist:

P('As'-'As')
= 1 92

Die Wahrscheinlichkeit für '2 Könige' ist:

P('König'-'König')
= 15 92

Die Wahrscheinlichkeit für '2 Damen' ist:

P('Dame'-'Dame')
= 7 69

Die Wahrscheinlichkeit für '2 Buben' ist:

P('Bube'-'Bube')
= 1 92

Die Wahrscheinlichkeit für 'Paar (D&K)' ist:

P('König'-'Dame') + P('Dame'-'König')
= 10 69 + 10 69 = 20 69

Die Zufallsgröße X beschreibt die gewonnenen Punkte.

Erwartungswert der Zufallsgröße X

Ereignis 2 Asse 2 Könige 2 Damen 2 Buben Paar (D&K)
Zufallsgröße xi 1000 450 100 70 30
P(X=xi) 1 92 15 92 7 69 1 92 20 69
xi ⋅ P(X=xi) 250 23 3375 46 700 69 35 46 200 23

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1000⋅ 1 92 + 450⋅ 15 92 + 100⋅ 7 69 + 70⋅ 1 92 + 30⋅ 20 69

= 250 23 + 3375 46 + 700 69 + 35 46 + 200 23
= 1500 138 + 10125 138 + 1400 138 + 105 138 + 1200 138
= 14330 138
= 7165 69

103.84