nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Erwartungswerte bei Binomialverteilungen

Beispiel:

Ein Spieler würfelt mit drei Würfeln. Bei drei Sechsern erhält er 25€, bei 2 Sechsern bekommt er noch 10€, bei einer Sechs 1€. Ist gar keine Sechs dabei, erhält er 0€. Welchen Gewinn kann er erwarten?
(Das Ergebnis bitte auf 2 Stellen runden!)

Lösung einblenden

Zuerst müssen wir die Wahrscheinlichkeiten für die einzelnen 'Trefferzahlen' bestimmen:

Trefferzahl: 0

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p= 1 6 .

P 1 6 3 (X=0) = ( 3 0 ) ( 1 6 )0 ( 5 6 )3 =0.5787037037037≈ 0.5787
(TI-Befehl: binompdf(3,1/6,0))

Trefferzahl: 1

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p= 1 6 .

P 1 6 3 (X=1) = ( 3 1 ) ( 1 6 )1 ( 5 6 )2 =0.34722222222222≈ 0.3472
(TI-Befehl: binompdf(3,1/6,1))

Trefferzahl: 2

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p= 1 6 .

P 1 6 3 (X=2) = ( 3 2 ) ( 1 6 )2 ( 5 6 )1 =0.069444444444444≈ 0.0694
(TI-Befehl: binompdf(3,1/6,2))

Trefferzahl: 3

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p= 1 6 .

P 1 6 3 (X=3) = ( 3 3 ) ( 1 6 )3 ( 5 6 )0 =0.0046296296296296≈ 0.0046
(TI-Befehl: binompdf(3,1/6,3))

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 1 10 25
P(X=xi) 0.5787 0.3472 0.0694 0.0046
xi ⋅ P(X=xi) 0 0,3472 0,694 0,115

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅0.5787 + 1⋅0.3472 + 10⋅0.0694 + 25⋅0.0046

1.16

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

Ein Spieler darf aus einer Urne mit 9 blauen und 3 roten Kugeln 3 Kugeln ohne zurücklegen ziehen. Zieht er dabei 3 blaue Kugeln, so erhält er 81€, bei 2 blauen bekommt er noch 9€, bei einer 3€. Ist gar keine blaue Kugel dabei, erhält er 0€. Welchen Gewinn kann er erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
blau -> blau -> blau 21 55
blau -> blau -> rot 9 55
blau -> rot -> blau 9 55
blau -> rot -> rot 9 220
rot -> blau -> blau 9 55
rot -> blau -> rot 9 220
rot -> rot -> blau 9 220
rot -> rot -> rot 1 220

Die Wahrscheinlichkeit für 0 mal 'blau' ist: 1 220

Die Wahrscheinlichkeit für 1 mal 'blau' ist: 9 220 + 9 220 + 9 220 = 27 220

Die Wahrscheinlichkeit für 2 mal 'blau' ist: 9 55 + 9 55 + 9 55 = 27 55

Die Wahrscheinlichkeit für 3 mal 'blau' ist: 21 55

Die Zufallsgröße X beschreibt den ausbezahlten Euro-Betrag.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 3 9 81
P(X=xi) 1 220 27 220 27 55 21 55
xi ⋅ P(X=xi) 0 81 220 243 55 1701 55

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 1 220 + 3⋅ 27 220 + 9⋅ 27 55 + 81⋅ 21 55

= 0+ 81 220 + 243 55 + 1701 55
= 0 220 + 81 220 + 972 220 + 6804 220
= 7857 220

35.71