Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Erwartungswerte bei Binomialverteilungen
Beispiel:
Es werden drei Würfel geworfen. Wieviel Sechser muss man erwarten?
(Das Ergebnis bitte auf 2 Stellen runden!)
Zuerst müssen wir die Wahrscheinlichkeiten für die einzelnen 'Trefferzahlen' bestimmen:
Trefferzahl: 0
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=.
= =0.5787037037037≈ 0.5787(TI-Befehl: binompdf(3,1/6,0))
Trefferzahl: 1
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=.
= =0.34722222222222≈ 0.3472(TI-Befehl: binompdf(3,1/6,1))
Trefferzahl: 2
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=.
= =0.069444444444444≈ 0.0694(TI-Befehl: binompdf(3,1/6,2))
Trefferzahl: 3
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=.
= =0.0046296296296296≈ 0.0046(TI-Befehl: binompdf(3,1/6,3))
Erwartungswert der Zufallsgröße X
| Ereignis | 0 | 1 | 2 | 3 |
| Zufallsgröße xi | 0 | 1 | 2 | 3 |
| P(X=xi) | 0.5787 | 0.3472 | 0.0694 | 0.0046 |
| xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅0.5787 + 1⋅0.3472 + 2⋅0.0694 + 3⋅0.0046
≈ 0.5
Erwartungswerte mit gesuchten Anzahlen im WS-Baum
Beispiel:
Auf einen Schüleraustausch bewerben sich 15 Mädchen und 11 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Bestimme den Erwartungswert (als Bruch oder Dezimalzahl) für die Anzahl an Mädchen bei den ersten 3 verlosten Plätzen.
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
| Ereignis | P |
|---|---|
| Mädchen -> Mädchen -> Mädchen | |
| Mädchen -> Mädchen -> Jungs | |
| Mädchen -> Jungs -> Mädchen | |
| Mädchen -> Jungs -> Jungs | |
| Jungs -> Mädchen -> Mädchen | |
| Jungs -> Mädchen -> Jungs | |
| Jungs -> Jungs -> Mädchen | |
| Jungs -> Jungs -> Jungs |
Die Wahrscheinlichkeit für 0 mal 'Mädchen' ist:
Die Wahrscheinlichkeit für 1 mal 'Mädchen' ist: + + =
Die Wahrscheinlichkeit für 2 mal 'Mädchen' ist: + + =
Die Wahrscheinlichkeit für 3 mal 'Mädchen' ist:
Die Zufallsgröße X beschreibt die Anzahl an Mädchen unter den drei verlosten Plätzen.
Erwartungswert der Zufallsgröße X
| Ereignis | 0 | 1 | 2 | 3 |
| Zufallsgröße xi | 0 | 1 | 2 | 3 |
| P(X=xi) | ||||
| xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅ + 1⋅ + 2⋅ + 3⋅
=
=
=
=
≈ 1.73
