Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Erwartungswerte bei Binomialverteilungen
Beispiel:
Es werden drei Würfel geworfen. Wieviel Sechser muss man erwarten?
(Das Ergebnis bitte auf 2 Stellen runden!)
Zuerst müssen wir die Wahrscheinlichkeiten für die einzelnen 'Trefferzahlen' bestimmen:
Trefferzahl: 0
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=.
= =0.5787037037037≈ 0.5787(TI-Befehl: binompdf(3,1/6,0))
Trefferzahl: 1
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=.
= =0.34722222222222≈ 0.3472(TI-Befehl: binompdf(3,1/6,1))
Trefferzahl: 2
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=.
= =0.069444444444444≈ 0.0694(TI-Befehl: binompdf(3,1/6,2))
Trefferzahl: 3
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=.
= =0.0046296296296296≈ 0.0046(TI-Befehl: binompdf(3,1/6,3))
Erwartungswert der Zufallsgröße X
| Ereignis | 0 | 1 | 2 | 3 |
| Zufallsgröße xi | 0 | 1 | 2 | 3 |
| P(X=xi) | 0.5787 | 0.3472 | 0.0694 | 0.0046 |
| xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅0.5787 + 1⋅0.3472 + 2⋅0.0694 + 3⋅0.0046
≈ 0.5
Erwartungswerte mit best. Optionen im WS-Baum
Beispiel:
In einem Stapel Karten mit 10 Asse, 7 Könige, 6 Damen und 7 Buben werden 2 Karten gezogen. Dabei zählen 2 Asse 1000, 2 Könige 450, 2 Damen 160 und 2 Buben 50 Punkte. Außerdem gibt es für ein Paar aus Dame und König 20 Punkte. Wie viele Punkte kann man bei diesem Spiel erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
| Ereignis | P |
|---|---|
| As -> As | |
| As -> König | |
| As -> Dame | |
| As -> Bube | |
| König -> As | |
| König -> König | |
| König -> Dame | |
| König -> Bube | |
| Dame -> As | |
| Dame -> König | |
| Dame -> Dame | |
| Dame -> Bube | |
| Bube -> As | |
| Bube -> König | |
| Bube -> Dame | |
| Bube -> Bube |
Die Wahrscheinlichkeit für '2 Asse' ist:
P('As'-'As')
=
Die Wahrscheinlichkeit für '2 Könige' ist:
P('König'-'König')
=
Die Wahrscheinlichkeit für '2 Damen' ist:
P('Dame'-'Dame')
=
Die Wahrscheinlichkeit für '2 Buben' ist:
P('Bube'-'Bube')
=
Die Wahrscheinlichkeit für 'Paar (D&K)' ist:
P('König'-'Dame') + P('Dame'-'König')
= + =
Die Zufallsgröße X beschreibt die gewonnenen Punkte.
Erwartungswert der Zufallsgröße X
| Ereignis | 2 Asse | 2 Könige | 2 Damen | 2 Buben | Paar (D&K) |
| Zufallsgröße xi | 1000 | 450 | 160 | 50 | 20 |
| P(X=xi) | |||||
| xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 1000⋅ + 450⋅ + 160⋅ + 50⋅ + 20⋅
=
=
≈ 135.03
