Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Erwartungswerte bei Binomialverteilungen
Beispiel:
Auf einem Jahrmarkt hat man für 10€ 5 Versuche, einen Ball in einen Eimer zu werden. Dabei springt der Ball aber mit einer Wahrscheinlichkeit von 81% wieder raus. Bleibt er aber drin, bekommt man einen Euro. Als Riskovariante kann man das Spiel auch so spielen, dass man bei einem Treffer nichts bekommt, bei zwei jedoch gleich 4€, bei drei Treffern sogar 9€, bei 4 Treffern 16 € und bei 5 Treffern volle 25€. Berechne den Erwartungswert des Gewinns der Risikovariante um diesen mit dem des normalen Spiels zu vergleichen.
(Das Ergebnis bitte auf 2 Stellen runden!)
Zuerst müssen wir die Wahrscheinlichkeiten für die einzelnen 'Trefferzahlen' bestimmen:
Trefferzahl: 0-1
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.19.
= + = 0.7576222896 ≈ 0.7576(TI-Befehl: binomcdf(5,0.19,1))
Trefferzahl: 2
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.19.
= =0.191850201≈ 0.1919(TI-Befehl: binompdf(5,0.19,2))
Trefferzahl: 3
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.19.
= =0.045001899≈ 0.045(TI-Befehl: binompdf(5,0.19,3))
Trefferzahl: 4
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.19.
= =0.0052780005≈ 0.0053(TI-Befehl: binompdf(5,0.19,4))
Trefferzahl: 5
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.19.
= =0.0002476099≈ 0.0002(TI-Befehl: binompdf(5,0.19,5))
Erwartungswerte der Zufallsgrößen X und Y
| Ereignis | 0-1 | 2 | 3 | 4 | 5 |
| Zufallsgröße xi | 0 | 4 | 9 | 16 | 25 |
| Zufallsgröße yi (Gewinn) | -10 | -6 | -1 | 6 | 15 |
| P(X=xi) | 0.7576 | 0.1919 | 0.045 | 0.0053 | 0.0002 |
| xi ⋅ P(X=xi) | |||||
| yi ⋅ P(Y=yi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅0.7576 + 4⋅0.1919 + 9⋅0.045 + 16⋅0.0053 + 25⋅0.0002
≈ 1.26
Das ist jetzt allerdings der Erwartungswert der Auszahlung, von dem man noch den Einsatz abziehen muss, so dass sich als Erwartungswert des Gewinns E(x)=1.26 - 10 = -8.74 ergibt.
Oder man rechnet gleich den Erwartungswert der einzelnen Gewinne (X2) aus:
E(Y)= -10⋅0.7576 + -6⋅0.1919 + -1⋅0.045 + 6⋅0.0053 + 15⋅0.0002
≈ -8.74
Erwartungswerte mit gesuchten Anzahlen im WS-Baum
Beispiel:
In einem Kartenstapel befinden sich 4 Asse und 12 weitere Karten. Nachdem diese gut gemischt wurden, darf ein Spieler 3 Karten ziehen. Für jedes As, das unter den drei Karten ist, erhält er dabei 10€. Mit welchem Gewinn kann er rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
| Ereignis | P |
|---|---|
| As -> As -> As | |
| As -> As -> andereKarte | |
| As -> andereKarte -> As | |
| As -> andereKarte -> andereKarte | |
| andereKarte -> As -> As | |
| andereKarte -> As -> andereKarte | |
| andereKarte -> andereKarte -> As | |
| andereKarte -> andereKarte -> andereKarte |
Die Wahrscheinlichkeit für 0 mal 'As' ist:
Die Wahrscheinlichkeit für 1 mal 'As' ist: + + =
Die Wahrscheinlichkeit für 2 mal 'As' ist: + + =
Die Wahrscheinlichkeit für 3 mal 'As' ist:
Die Zufallsgröße X beschreibt den Gewinn für die 3 gezogenen Karten.
Erwartungswert der Zufallsgröße X
| Ereignis | 0 | 1 | 2 | 3 |
| Zufallsgröße xi | 0 | 10 | 20 | 30 |
| P(X=xi) | ||||
| xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅ + 10⋅ + 20⋅ + 30⋅
=
=
=
=
≈ 7.5
