Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Erwartungswerte bei Binomialverteilungen
Beispiel:
Auf einem Jahrmarkt hat man für 8€ 5 Versuche, einen Ball in einen Eimer zu werden. Dabei springt der Ball aber mit einer Wahrscheinlichkeit von 83% wieder raus. Bleibt er aber drin, bekommt man einen Euro. Als Riskovariante kann man das Spiel auch so spielen, dass man bei einem Treffer nichts bekommt, bei zwei jedoch gleich 4€, bei drei Treffern sogar 9€, bei 4 Treffern 16 € und bei 5 Treffern volle 25€. Berechne den Erwartungswert des Gewinns der Risikovariante um diesen mit dem des normalen Spiels zu vergleichen.
(Das Ergebnis bitte auf 2 Stellen runden!)
Zuerst müssen wir die Wahrscheinlichkeiten für die einzelnen 'Trefferzahlen' bestimmen:
Trefferzahl: 0-1
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.17.
= + = 0.7972997928 ≈ 0.7973(TI-Befehl: binomcdf(5,0.17,1))
Trefferzahl: 2
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.17.
= =0.165246443≈ 0.1652(TI-Befehl: binompdf(5,0.17,2))
Trefferzahl: 3
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.17.
= =0.033845657≈ 0.0338(TI-Befehl: binompdf(5,0.17,3))
Trefferzahl: 4
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.17.
= =0.0034661215≈ 0.0035(TI-Befehl: binompdf(5,0.17,4))
Trefferzahl: 5
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.17.
= =0.0001419857≈ 0.0001(TI-Befehl: binompdf(5,0.17,5))
Erwartungswerte der Zufallsgrößen X und Y
Ereignis | 0-1 | 2 | 3 | 4 | 5 |
Zufallsgröße xi | 0 | 4 | 9 | 16 | 25 |
Zufallsgröße yi (Gewinn) | -8 | -4 | 1 | 8 | 17 |
P(X=xi) | 0.7973 | 0.1652 | 0.0338 | 0.0035 | 0.0001 |
xi ⋅ P(X=xi) | |||||
yi ⋅ P(Y=yi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅0.7973 + 4⋅0.1652 + 9⋅0.0338 + 16⋅0.0035 + 25⋅0.0001
≈ 1.02
Das ist jetzt allerdings der Erwartungswert der Auszahlung, von dem man noch den Einsatz abziehen muss, so dass sich als Erwartungswert des Gewinns E(x)=1.02 - 8 = -6.98 ergibt.
Oder man rechnet gleich den Erwartungswert der einzelnen Gewinne (X2) aus:
E(Y)= -8⋅0.7973 + -4⋅0.1652 + 1⋅0.0338 + 8⋅0.0035 + 17⋅0.0001
≈ -6.98
Erwartungswerte mit gesuchten Anzahlen im WS-Baum
Beispiel:
Auf einen Schüleraustausch bewerben sich 21 Mädchen und 7 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Bestimme den Erwartungswert (als Bruch oder Dezimalzahl) für die Anzahl an Mädchen bei den ersten 3 verlosten Plätzen.
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Ereignis | P |
---|---|
Mädchen -> Mädchen -> Mädchen | |
Mädchen -> Mädchen -> Jungs | |
Mädchen -> Jungs -> Mädchen | |
Mädchen -> Jungs -> Jungs | |
Jungs -> Mädchen -> Mädchen | |
Jungs -> Mädchen -> Jungs | |
Jungs -> Jungs -> Mädchen | |
Jungs -> Jungs -> Jungs |
Die Wahrscheinlichkeit für 0 mal 'Mädchen' ist:
Die Wahrscheinlichkeit für 1 mal 'Mädchen' ist: + + =
Die Wahrscheinlichkeit für 2 mal 'Mädchen' ist: + + =
Die Wahrscheinlichkeit für 3 mal 'Mädchen' ist:
Die Zufallsgröße X beschreibt die Anzahl an Mädchen unter den drei verlosten Plätzen.
Erwartungswert der Zufallsgröße X
Ereignis | 0 | 1 | 2 | 3 |
Zufallsgröße xi | 0 | 1 | 2 | 3 |
P(X=xi) | ||||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅ + 1⋅ + 2⋅ + 3⋅
=
=
=
=
≈ 2.25