nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache Wurzelgleichung

Beispiel:

Löse die folgende Gleichung:

2 x +14 = 6

Lösung einblenden
2 x +14 = 6 |:2
x +14 = 3 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
x +14 = 3 2
x +14 = 9 | -14
x = -5

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -5

Linke Seite:

x = -5 in 2 x +14

= 2 -5 +14

= 2 9

= 6

Rechte Seite:

x = -5 in 6

= 6

Also 6 = 6

x = -5 ist somit eine Lösung !

L={ -5 }

Wurzelgleichung (-> quadr.)

Beispiel:

Löse die folgende Gleichung:

-28x -48 = 2x

Lösung einblenden
-28x -48 = 2x |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
-28x -48 = ( 2x ) 2
-28x -48 = 4 x 2 | -4 x 2
-4 x 2 -28x -48 = 0 |:4

- x 2 -7x -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +7 ± ( -7 ) 2 -4 · ( -1 ) · ( -12 ) 2( -1 )

x1,2 = +7 ± 49 -48 -2

x1,2 = +7 ± 1 -2

x1 = 7 + 1 -2 = 7 +1 -2 = 8 -2 = -4

x2 = 7 - 1 -2 = 7 -1 -2 = 6 -2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -7x -12 = 0 |: -1

x 2 +7x +12 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 7 2 ) 2 - 12 = 49 4 - 12 = 49 4 - 48 4 = 1 4

x1,2 = - 7 2 ± 1 4

x1 = - 7 2 - 1 2 = - 8 2 = -4

x2 = - 7 2 + 1 2 = - 6 2 = -3

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -4

Linke Seite:

x = -4 in -28x -48

= -28( -4 ) -48

= 112 -48

= 64

= 8

Rechte Seite:

x = -4 in 2x

= 2( -4 )

= -8

Also 8 ≠ -8

x = -4 ist somit keine Lösung !

Probe für x = -3

Linke Seite:

x = -3 in -28x -48

= -28( -3 ) -48

= 84 -48

= 36

= 6

Rechte Seite:

x = -3 in 2x

= 2( -3 )

= -6

Also 6 ≠ -6

x = -3 ist somit keine Lösung !

L={}

Wurzelgleichung (rechts linear)

Beispiel:

Löse die folgende Gleichung:

99x -171 -3 = 3x

Lösung einblenden
99x -171 -3 = 3x | +3
99x -171 = 3x +3 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
99x -171 = ( 3x +3 ) 2
99x -171 = 9 x 2 +18x +9 | -9 x 2 -18x -9
-9 x 2 +81x -180 = 0 |:9

- x 2 +9x -20 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -9 ± 9 2 -4 · ( -1 ) · ( -20 ) 2( -1 )

x1,2 = -9 ± 81 -80 -2

x1,2 = -9 ± 1 -2

x1 = -9 + 1 -2 = -9 +1 -2 = -8 -2 = 4

x2 = -9 - 1 -2 = -9 -1 -2 = -10 -2 = 5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +9x -20 = 0 |: -1

x 2 -9x +20 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 9 2 ) 2 - 20 = 81 4 - 20 = 81 4 - 80 4 = 1 4

x1,2 = 9 2 ± 1 4

x1 = 9 2 - 1 2 = 8 2 = 4

x2 = 9 2 + 1 2 = 10 2 = 5

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = 4

Linke Seite:

x = 4 in 99x -171 -3

= 994 -171 -3

= 396 -171 -3

= 225 -3

= 15 -3

= 12

Rechte Seite:

x = 4 in 3x

= 34

= 12

Also 12 = 12

x = 4 ist somit eine Lösung !

Probe für x = 5

Linke Seite:

x = 5 in 99x -171 -3

= 995 -171 -3

= 495 -171 -3

= 324 -3

= 18 -3

= 15

Rechte Seite:

x = 5 in 3x

= 35

= 15

Also 15 = 15

x = 5 ist somit eine Lösung !

L={ 4 ; 5 }

Wurzelgleichung (2 Wurzeln, 1x quadr.)

Beispiel:

Löse die folgende Gleichung:

20x +264 = 2 4x +60

Lösung einblenden
20x +264 = 2 4x +60 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
20x +264 = ( 2 4x +60 ) 2
20x +264 = 4( 4x +60 )
20x +264 = 16x +240 | -264
20x = 16x -24 | -16x
4x = -24 |:4
x = -6

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -6

Linke Seite:

x = -6 in 20x +264

= 20( -6 ) +264

= -120 +264

= 144

= 12

Rechte Seite:

x = -6 in 2 4x +60

= 2 4( -6 ) +60

= 2 -24 +60

= 2 36

= 12

Also 12 = 12

x = -6 ist somit eine Lösung !

L={ -6 }

Wurzelgleichung (2 Wurzeln, 2x quadr.)

Beispiel:

Löse die folgende Gleichung:

6x -29 = 2x -9 +2

Lösung einblenden
6x -29 = 2x -9 +2 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
6x -29 = ( 2x -9 +2 ) 2
6x -29 = 4 2x -9 +2x -5 | -6x +29 -4 2x -9
-4 2x -9 = -4x +24 |:(-4 )
2x -9 = x -6 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
2x -9 = ( x -6 ) 2
2x -9 = x 2 -12x +36 | - x 2 +12x -36

- x 2 +14x -45 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -14 ± 14 2 -4 · ( -1 ) · ( -45 ) 2( -1 )

x1,2 = -14 ± 196 -180 -2

x1,2 = -14 ± 16 -2

x1 = -14 + 16 -2 = -14 +4 -2 = -10 -2 = 5

x2 = -14 - 16 -2 = -14 -4 -2 = -18 -2 = 9

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +14x -45 = 0 |: -1

x 2 -14x +45 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -7 ) 2 - 45 = 49 - 45 = 4

x1,2 = 7 ± 4

x1 = 7 - 2 = 5

x2 = 7 + 2 = 9

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = 5

Linke Seite:

x = 5 in 6x -29

= 65 -29

= 30 -29

= 1

= 1

Rechte Seite:

x = 5 in 2x -9 +2

= 25 -9 +2

= 10 -9 +2

= 1 +2

= 1 +2

= 3

Also 1 ≠ 3

x = 5 ist somit keine Lösung !

Probe für x = 9

Linke Seite:

x = 9 in 6x -29

= 69 -29

= 54 -29

= 25

= 5

Rechte Seite:

x = 9 in 2x -9 +2

= 29 -9 +2

= 18 -9 +2

= 9 +2

= 3 +2

= 5

Also 5 = 5

x = 9 ist somit eine Lösung !

L={ 9 }