nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache Wurzelgleichung

Beispiel:

Löse die folgende Gleichung:

-2 -3x +1 = -4

Lösung einblenden
-2 -3x +1 = -4 |:(-2 )
-3x +1 = 2 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
-3x +1 = 2 2
-3x +1 = 4 | -1
-3x = 3 |:(-3 )
x = -1

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -1

Linke Seite:

x = -1 in -2 -3x +1

= -2 -3( -1 ) +1

= -2 3 +1

= -2 4

= -4

Rechte Seite:

x = -1 in -4

= -4

Also -4 = -4

x = -1 ist somit eine Lösung !

L={ -1 }

Wurzelgleichung (-> quadr.)

Beispiel:

Löse die folgende Gleichung:

2x +8 = x

Lösung einblenden
2x +8 = x |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
2x +8 = ( x ) 2
2x +8 = x 2 | - x 2

- x 2 +2x +8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · ( -1 ) · 8 2( -1 )

x1,2 = -2 ± 4 +32 -2

x1,2 = -2 ± 36 -2

x1 = -2 + 36 -2 = -2 +6 -2 = 4 -2 = -2

x2 = -2 - 36 -2 = -2 -6 -2 = -8 -2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +2x +8 = 0 |: -1

x 2 -2x -8 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -8 ) = 1+ 8 = 9

x1,2 = 1 ± 9

x1 = 1 - 3 = -2

x2 = 1 + 3 = 4

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -2

Linke Seite:

x = -2 in 2x +8

= 2( -2 ) +8

= -4 +8

= 4

= 2

Rechte Seite:

x = -2 in x

= -2

Also 2 ≠ -2

x = -2 ist somit keine Lösung !

Probe für x = 4

Linke Seite:

x = 4 in 2x +8

= 24 +8

= 8 +8

= 16

= 4

Rechte Seite:

x = 4 in x

= 4

Also 4 = 4

x = 4 ist somit eine Lösung !

L={ 4 }

Wurzelgleichung (rechts linear)

Beispiel:

Löse die folgende Gleichung:

52x -35 = -2x -5

Lösung einblenden
52x -35 = -2x -5 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
52x -35 = ( -2x -5 ) 2
52x -35 = 4 x 2 +20x +25 | -4 x 2 -20x -25
-4 x 2 +32x -60 = 0 |:4

- x 2 +8x -15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -8 ± 8 2 -4 · ( -1 ) · ( -15 ) 2( -1 )

x1,2 = -8 ± 64 -60 -2

x1,2 = -8 ± 4 -2

x1 = -8 + 4 -2 = -8 +2 -2 = -6 -2 = 3

x2 = -8 - 4 -2 = -8 -2 -2 = -10 -2 = 5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +8x -15 = 0 |: -1

x 2 -8x +15 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -4 ) 2 - 15 = 16 - 15 = 1

x1,2 = 4 ± 1

x1 = 4 - 1 = 3

x2 = 4 + 1 = 5

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = 3

Linke Seite:

x = 3 in 52x -35

= 523 -35

= 156 -35

= 121

= 11

Rechte Seite:

x = 3 in -2x -5

= -23 -5

= -6 -5

= -11

Also 11 ≠ -11

x = 3 ist somit keine Lösung !

Probe für x = 5

Linke Seite:

x = 5 in 52x -35

= 525 -35

= 260 -35

= 225

= 15

Rechte Seite:

x = 5 in -2x -5

= -25 -5

= -10 -5

= -15

Also 15 ≠ -15

x = 5 ist somit keine Lösung !

L={}

Wurzelgleichung (2 Wurzeln, 1x quadr.)

Beispiel:

Löse die folgende Gleichung:

13x +25 = 2 3x +7

Lösung einblenden
13x +25 = 2 3x +7 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
13x +25 = ( 2 3x +7 ) 2
13x +25 = 4( 3x +7 )
13x +25 = 12x +28 | -25
13x = 12x +3 | -12x
x = 3

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = 3

Linke Seite:

x = 3 in 13x +25

= 133 +25

= 39 +25

= 64

= 8

Rechte Seite:

x = 3 in 2 3x +7

= 2 33 +7

= 2 9 +7

= 2 16

= 8

Also 8 = 8

x = 3 ist somit eine Lösung !

L={ 3 }

Wurzelgleichung (2 Wurzeln, 2x quadr.)

Beispiel:

Löse die folgende Gleichung:

3x +49 = x +24 +1

Lösung einblenden
3x +49 = x +24 +1 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
3x +49 = ( x +24 +1 ) 2
3x +49 = 2 x +24 + x +25 | -3x -49 -2 x +24
-2 x +24 = -2x -24 |:(-2 )
x +24 = x +12 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
x +24 = ( x +12 ) 2
x +24 = x 2 +24x +144 | - x 2 -24x -144

- x 2 -23x -120 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +23 ± ( -23 ) 2 -4 · ( -1 ) · ( -120 ) 2( -1 )

x1,2 = +23 ± 529 -480 -2

x1,2 = +23 ± 49 -2

x1 = 23 + 49 -2 = 23 +7 -2 = 30 -2 = -15

x2 = 23 - 49 -2 = 23 -7 -2 = 16 -2 = -8

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -23x -120 = 0 |: -1

x 2 +23x +120 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 23 2 ) 2 - 120 = 529 4 - 120 = 529 4 - 480 4 = 49 4

x1,2 = - 23 2 ± 49 4

x1 = - 23 2 - 7 2 = - 30 2 = -15

x2 = - 23 2 + 7 2 = - 16 2 = -8

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -15

Linke Seite:

x = -15 in 3x +49

= 3( -15 ) +49

= -45 +49

= 4

= 2

Rechte Seite:

x = -15 in x +24 +1

= -15 +24 +1

= 9 +1

= 3 +1

= 4

Also 2 ≠ 4

x = -15 ist somit keine Lösung !

Probe für x = -8

Linke Seite:

x = -8 in 3x +49

= 3( -8 ) +49

= -24 +49

= 25

= 5

Rechte Seite:

x = -8 in x +24 +1

= -8 +24 +1

= 16 +1

= 4 +1

= 5

Also 5 = 5

x = -8 ist somit eine Lösung !

L={ -8 }