nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache Wurzelgleichung

Beispiel:

Löse die folgende Gleichung:

-3 -3x +28 = -12

Lösung einblenden
-3 -3x +28 = -12 |:(-3 )
-3x +28 = 4 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
-3x +28 = 4 2
-3x +28 = 16 | -28
-3x = -12 |:(-3 )
x = 4

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = 4

Linke Seite:

x = 4 in -3 -3x +28

= -3 -34 +28

= -3 -12 +28

= -3 16

= -12

Rechte Seite:

x = 4 in -12

= -12

Also -12 = -12

x = 4 ist somit eine Lösung !

L={ 4 }

Wurzelgleichung (-> quadr.)

Beispiel:

Löse die folgende Gleichung:

7x -12 = x

Lösung einblenden
7x -12 = x |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
7x -12 = ( x ) 2
7x -12 = x 2 | - x 2

- x 2 +7x -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -7 ± 7 2 -4 · ( -1 ) · ( -12 ) 2( -1 )

x1,2 = -7 ± 49 -48 -2

x1,2 = -7 ± 1 -2

x1 = -7 + 1 -2 = -7 +1 -2 = -6 -2 = 3

x2 = -7 - 1 -2 = -7 -1 -2 = -8 -2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +7x -12 = 0 |: -1

x 2 -7x +12 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 7 2 ) 2 - 12 = 49 4 - 12 = 49 4 - 48 4 = 1 4

x1,2 = 7 2 ± 1 4

x1 = 7 2 - 1 2 = 6 2 = 3

x2 = 7 2 + 1 2 = 8 2 = 4

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = 3

Linke Seite:

x = 3 in 7x -12

= 73 -12

= 21 -12

= 9

= 3

Rechte Seite:

x = 3 in x

= 3

Also 3 = 3

x = 3 ist somit eine Lösung !

Probe für x = 4

Linke Seite:

x = 4 in 7x -12

= 74 -12

= 28 -12

= 16

= 4

Rechte Seite:

x = 4 in x

= 4

Also 4 = 4

x = 4 ist somit eine Lösung !

L={ 3 ; 4 }

Wurzelgleichung (rechts linear)

Beispiel:

Löse die folgende Gleichung:

-52x -35 = 2x -5

Lösung einblenden
-52x -35 = 2x -5 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
-52x -35 = ( 2x -5 ) 2
-52x -35 = 4 x 2 -20x +25 | -4 x 2 +20x -25
-4 x 2 -32x -60 = 0 |:4

- x 2 -8x -15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +8 ± ( -8 ) 2 -4 · ( -1 ) · ( -15 ) 2( -1 )

x1,2 = +8 ± 64 -60 -2

x1,2 = +8 ± 4 -2

x1 = 8 + 4 -2 = 8 +2 -2 = 10 -2 = -5

x2 = 8 - 4 -2 = 8 -2 -2 = 6 -2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -8x -15 = 0 |: -1

x 2 +8x +15 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 4 2 - 15 = 16 - 15 = 1

x1,2 = -4 ± 1

x1 = -4 - 1 = -5

x2 = -4 + 1 = -3

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -5

Linke Seite:

x = -5 in -52x -35

= -52( -5 ) -35

= 260 -35

= 225

= 15

Rechte Seite:

x = -5 in 2x -5

= 2( -5 ) -5

= -10 -5

= -15

Also 15 ≠ -15

x = -5 ist somit keine Lösung !

Probe für x = -3

Linke Seite:

x = -3 in -52x -35

= -52( -3 ) -35

= 156 -35

= 121

= 11

Rechte Seite:

x = -3 in 2x -5

= 2( -3 ) -5

= -6 -5

= -11

Also 11 ≠ -11

x = -3 ist somit keine Lösung !

L={}

Wurzelgleichung (2 Wurzeln, 1x quadr.)

Beispiel:

Löse die folgende Gleichung:

48x +33 = 3 5x +4

Lösung einblenden
48x +33 = 3 5x +4 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
48x +33 = ( 3 5x +4 ) 2
48x +33 = 9( 5x +4 )
48x +33 = 45x +36 | -33
48x = 45x +3 | -45x
3x = 3 |:3
x = 1

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = 1

Linke Seite:

x = 1 in 48x +33

= 481 +33

= 48 +33

= 81

= 9

Rechte Seite:

x = 1 in 3 5x +4

= 3 51 +4

= 3 5 +4

= 3 9

= 9

Also 9 = 9

x = 1 ist somit eine Lösung !

L={ 1 }

Wurzelgleichung (2 Wurzeln, 2x quadr.)

Beispiel:

Löse die folgende Gleichung:

7x +23 = 5x +14 +1

Lösung einblenden
7x +23 = 5x +14 +1 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
7x +23 = ( 5x +14 +1 ) 2
7x +23 = 2 5x +14 +5x +15 | -7x -23 -2 5x +14
-2 5x +14 = -2x -8 |:(-2 )
5x +14 = x +4 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
5x +14 = ( x +4 ) 2
5x +14 = x 2 +8x +16 | - x 2 -8x -16

- x 2 -3x -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · ( -1 ) · ( -2 ) 2( -1 )

x1,2 = +3 ± 9 -8 -2

x1,2 = +3 ± 1 -2

x1 = 3 + 1 -2 = 3 +1 -2 = 4 -2 = -2

x2 = 3 - 1 -2 = 3 -1 -2 = 2 -2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -3x -2 = 0 |: -1

x 2 +3x +2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - 2 = 9 4 - 2 = 9 4 - 8 4 = 1 4

x1,2 = - 3 2 ± 1 4

x1 = - 3 2 - 1 2 = - 4 2 = -2

x2 = - 3 2 + 1 2 = - 2 2 = -1

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -2

Linke Seite:

x = -2 in 7x +23

= 7( -2 ) +23

= -14 +23

= 9

= 3

Rechte Seite:

x = -2 in 5x +14 +1

= 5( -2 ) +14 +1

= -10 +14 +1

= 4 +1

= 2 +1

= 3

Also 3 = 3

x = -2 ist somit eine Lösung !

Probe für x = -1

Linke Seite:

x = -1 in 7x +23

= 7( -1 ) +23

= -7 +23

= 16

= 4

Rechte Seite:

x = -1 in 5x +14 +1

= 5( -1 ) +14 +1

= -5 +14 +1

= 9 +1

= 3 +1

= 4

Also 4 = 4

x = -1 ist somit eine Lösung !

L={ -2 ; -1 }