Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
10er-Potenzen
Beispiel:
Berechne im Kopf: 1,3 ⋅
Wenn man 1,3 mit = 100 multipliziert, muss man einfach das Komma um 2 Stellen nach rechts verschieben und evtl. die dafür notwendigen Nullen einfügen:
1,3 ⋅ = 1,3 ⋅ 100 = 130
Mult. und Divid. mit 10er-Potenzen
Beispiel:
Berechne:
3,314 · 10000
Beim Multiplizieren durch 10000 muss man ja einfach nur das Komma um 4 Stellen (Anzahl der Nullen von 10000) nach rechts verschieben:
3,314 · 10000
= 33140
10er-Potenzen rückwärts
Beispiel:
Welche Zahl muss in das Kästchen ⬜?
84,821 · ⬜ = 8482,1
Da das Komma durch das Multiplizieren um 2 Stellen nach rechts verschoben wurde, muss die gesuchte Zahl 2 Nullen haben, also 100 :
Probe: 84,821 · 100 = 100
Multiplizieren (einfach)
Beispiel:
Berechne:
0,06· 0,01
Wir multiplizieren erst mal die ganzen Zahlen 6 und 1 :
6 · 1 = 6
Jetzt müssen wir das noch das Komma an die richtige Stelle bringen:
Da ja aber 0,06 nur von 6 ist, müssen wir auch das richtige Ergebis der Multiplikation noch durch 100 teilen.
Und ja 0,01 nur von 1 ist, müssen wir auch das richtige Ergebis der Multiplikation noch durch 100 teilen.
Insgesamt müssen wir also durch 100 und durch 100 teilen, also das Komma um 2 + 2 = 4 Stellen nach links verschieben:
0,06 · 0,01 = 0,0006
Punkt vor Strich (rational)
Beispiel:
Berechne: 7,2
7,2
Rechenvorteile
Beispiel:
Berechne möglichst geschickt. Suche nach Rechenvorteile:
Man kann erkennen, dass es einfacher ist die 0.25 jeweils nur mit einem der beiden Summanden 4 und 0.8 zu multiplizieren, als mit der Summe der beiden. Deswegen empfiehlt es sich hier erst einmal Auszumultiplizieren:
=
=
= 1,2
Dezimalzahl durch Zahl
Beispiel:
Berechne:
40,8 : 2
Zuerst ignorieren wir mal das Komma komplett, nehmen also die Ziffern einfach als ganze Zahlen und berechnen:
408 : 2 = (400+8) : 2 = 204
Da ja aber 40,8 nur von 408 ist, müssen wir auch das Ergebnis dieser Division noch durch 10 teilen, also um 1 Stellen nach rechts verschieben:
40,8 : 2
= 20,4
Dezimalzahlen dividieren
Beispiel:
Berechne:
0,18 : 0,002
Wenn man zwei Dezimalzahlen dividiert, kann man das Komma bei beiden Zahlen um gleich viele Stellen nach rechts
verschieben, ohne dass sich etwas am Ergebnis ändert:
Beispiel: 0,17 : 0,4 = = =
= = 17 : 40
Wir verschieben also das Komma bei beiden Zahlen so weit nach rechts, bis der Divisor (die Zahl durch die geteilt wird) ganzzahlig wird, also um 3 Stellen nach rechts:
0,18 : 0,002 = 180 : 2
= 90
Multipl. und Divid. im Kopf (rational)
Beispiel:
Berechne im Kopf: 0,4 ⋅ 0,3
Am einfachsten rechnet man die Aufgabe im Kopf mit dem 10-fachen und verschiebt dann das Komma entsprechend:
0,4 ⋅ 0,3 = 0,12
Dezimalzahlen dividieren rückwärts
Beispiel:
Welche Zahl muss in das Kästchen ⬜?:
450 : ⬜ = 500
Wenn 450 : ⬜ = 500 ergibt, dann muss doch 450 gerade das Produkt von ⬜ und 500 sein, also 450 = ⬜ · 500.
Wenn man aber das Kästchen ⬜ mit 500 multiplizieren muss, um 450 zu kommen, dann kann man doch 450 durch 500 teilen, um auf das Kästchen ⬜ zu kommen:
⬜ = 450 : 500 = 0,9
