nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

10er-Potenzen

Beispiel:

Berechne im Kopf: 9,76 ⋅ 10 2

Lösung einblenden

Wenn man 9,76 mit 10 2 = 100 multipliziert, muss man einfach das Komma um 2 Stellen nach rechts verschieben und evtl. die dafür notwendigen Nullen einfügen:

9,76 ⋅ 10 2 = 9,76 ⋅ 100 = 976

Mult. und Divid. mit 10er-Potenzen

Beispiel:

Berechne:

743,6 · 10

Lösung einblenden

Beim Multiplizieren durch 10 muss man ja einfach nur das Komma um 1 Stelle (Anzahl der Nullen von 10) nach rechts verschieben:

743,6 · 10

= 7436

10er-Potenzen rückwärts

Beispiel:

Welche Zahl muss in das Kästchen ⬜?

9,93 : ⬜ = 0,000993

Lösung einblenden

Da das Komma durch das Dividieren um 4 Stellen nach links verschoben wurde, muss die gesuchte Zahl 4 Nullen haben, also 10000 :

Probe: 9,93 : 10000 = 10000

Multiplizieren (einfach)

Beispiel:

Berechne:

1· 0,8

Lösung einblenden

Wir multiplizieren erst mal die ganzen Zahlen 1 und 8 :

1 · 8 = 8

Jetzt müssen wir das noch das Komma an die richtige Stelle bringen:

Da ja aber 1 nur 1 1 von 1 ist, müssen wir auch das richtige Ergebis der Multiplikation noch durch 1 teilen.

Und ja 0,8 nur 1 10 von 8 ist, müssen wir auch das richtige Ergebis der Multiplikation noch durch 10 teilen.

Insgesamt müssen wir also durch 1 und durch 10 teilen, also das Komma um 0 + 1 = 1 Stellen nach links verschieben:

1 · 0,8 = 0,8

Potenzen (rational)

Beispiel:

Berechne: 0,3 3

Lösung einblenden

0,3 3 = 0,3 ⋅ 0,3 ⋅ 0,3 = 0,027

Punkt vor Strich (rational)

Beispiel:

Berechne: 1,2 -0,9 ⋅ 4

Lösung einblenden

1,2 -0,9 ⋅ 4 = 1,2 -3,6 = -2,4

Rechenvorteile

Beispiel:

Berechne möglichst geschickt. Suche nach Rechenvorteile:

0,7 · 2,4 + 0,3 · 2,4

Lösung einblenden

Man kann gut erkennen, dass in beiden Produkten jeweils der Faktor 2.4 auftritt und sich somit ausklammern lässt. Auch die beiden anderen Zahlen 0.7 und 0.3 lassen sich dann gut miteinander verrechnen:

0,7 · 2,4 + 0,3 · 2,4

= ( 0,7 +0,3 ) · 2,4

= 1 · 2,4

= 2,4

Dezimalzahl durch Zahl

Beispiel:

Berechne:

0,088 : 11

Lösung einblenden

Zuerst ignorieren wir mal das Komma komplett, nehmen also die Ziffern einfach als ganze Zahlen und berechnen:

88 : 11 = (0.99999999999999+87) : 11 = 8

Da ja aber 0,088 nur 1 1000 von 88 ist, müssen wir auch das Ergebnis dieser Division noch durch 1000 teilen, also um 3 Stellen nach rechts verschieben:

0,088 : 11

= 0,008

Dezimalzahlen dividieren

Beispiel:

Berechne:

4,2 : 0,07

Lösung einblenden

Wenn man zwei Dezimalzahlen dividiert, kann man das Komma bei beiden Zahlen um gleich viele Stellen nach rechts verschieben, ohne dass sich etwas am Ergebnis ändert:
Beispiel: 0,17 : 0,4 = 0,17 0,4 = 0,17 ⋅ 100 0,4 ⋅ 100 = = 17 40 = 17 : 40

Wir verschieben also das Komma bei beiden Zahlen so weit nach rechts, bis der Divisor (die Zahl durch die geteilt wird) ganzzahlig wird, also um 2 Stellen nach rechts:

4,2 : 0,07 = 420 : 7

= 60

Multipl. und Divid. im Kopf (rational)

Beispiel:

Berechne im Kopf: 2,4 : 4

Lösung einblenden

Am einfachsten rechnet man die Aufgabe im Kopf mit dem 10-fachen und verschiebt dann das Komma entsprechend:

2,4 : 4 = 0,6

Dezimalzahlen dividieren rückwärts

Beispiel:

Welche Zahl muss in das Kästchen ⬜?:

⬜ : 0,02 = 400

Lösung einblenden

Wenn ⬜ : 0,02 = 400 ergibt, dann muss doch das Kästchen gerade das Produkt von 0,02 und 400 sein, also :

⬜ = 0,02 · 400 = 8

2 · 400 = 800; und dann eben das Komma wieder um 2 + 0 = 2 Stellen nach links verschieben.