nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Sinus und Thaleskreis (leicht)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das große Dreieck ist gleichschenklig.

Der blaue Halbkreis hat einen Durchmesser von u = 5.5 cm.

Die Länge der gemeinsamen Kante der beiden Dreiecke beträgt v = 4.73 cm.

Bestimme die fehlende Winkelweite α.

Lösung einblenden

Am blauen Thaleskreis erkennt man sofort, dass γ ein rechter Winkel sein muss.

Nach der Definition des Sinus gilt im rechtwinkligen Dreieck sin(β)= Gegenkathete Hypotenuse

Damit folgt sin(β)= 4.73cm 5.5cm =0.86 und somit β=59.3°

Wegen der Winkelsumme im Dreieck muss gelten: 90° + β + φ = 180°.
Somit gilt φ = 90° - β° = 30.7°.

Wegen der Gleichschenkligkeit des großen Dreiecks muss nun aber β und (α+φ) gleich groß sein.

Mit α+30.7°=β=59.3° gilt nun: α = 28.6°

Sinus und Thaleskreis (schwer)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das große Dreieck ist gleichschenklig. Bestimme die Länge der Strecke PQ.

Lösung einblenden

Am blauen Thaleskreis über dem ersten Dreieck erkennt man sofort, dass γ ein rechter Winkel sein muss.

Aufgrund der Winkelsumme im ersten Dreieck folgt β + γ + 33° = 180°.

Daraus folgt β = 180° - 90° - 33° = 57°

Mit Hilfe des Sinus kann man nun die Länge der gemeinsamen Seite g der beiden Dreiecke berechnen:

Da g die Gegenkathete von β ist, gilt: sin(β)=sin(57°) = g 7cm

Damit folgt g = sin(57°) ⋅ 7cm ≈ 5.9cm

Als Nebenwinkel von γ muss natürlich auch δ ein rechter Winkel sein.

Aufgrund der Gleichschenkligkeit des großen Dreiecks muss β und (α+33°) gleich groß sein. Damit gilt 57° = α + 33°, woraus folgt: α = 24°

Mit der Winkelsumme im zweiten Dreieck folgt nun ε = 90° - α = 90° - 24° = 66°

Nun können wir in diesem Dreieck den Sinus anwenden und so die gesuchte Seite PQ herausfinden: sin(ε)= g PQ

Setzt man die bekannten Werte ein, so folgt sin(66°)= 5.9 PQ

Damit folgt: PQ = 5.9 sin(66°) ≈ 6.5cm

Winkel zw. Punkten im Koordinatensystem

Beispiel:

Berechne alle Längen und Winkel im Dreick ABC mit A(-3|-1), B(4|5) und C(-3|5).

Runde die Ergebnisse auf eine Nachkommastelle.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wenn man die drei Punkte in ein Koordinatensystem einträgt, erkennt man sofort, dass (zwischen B und C) a = 7 und (zwischen A und C) b = 6 sein müssen. Weil das Dreieck rechtwinklig ist, kann man c (zwischen A und B), also die Hypotenuse, mit dem Satz des Pythagoras berechnen:

Dreiecks mit Hilfe des Satzes des Pythagoras berechnen.

c2 = 72 + 62

c2 = 49 + 36

c2 = 85

c = 85 9.22

Da a (zwischen B und C) und b (zwischen A und C) parallel zu den Koordinatenachsen sind, muss der Winkel in C γ = 90° sein.

Den Winkel α können wir mit dem Tangens berechnen:

tan(α) = Gegenkathete Ankathete = 7 6 ≈ 1.167

Daraus folgt: α = arctan(1.167) ≈ 49.4°.

Wegen der Winkelsumme von 180° im Dreieck folgt: β = 90°-49.4° = 40.6°

Trigonometrie Anwendungen

Beispiel:

Von einem Fenster in 15m Höhe kann man den entfernten Rand eines Kanals unter dem Winkel α=70° gegenüber der Senkrechten betrachten. Der vordere Rand des Kanals erscheinet unter dem Winkel β=40° gegenüber der Senkrechten. Wie breit ist der Kanal?

Lösung einblenden

In beiden Dreiecken gilt für den Tangens: tan(α)= Gegenkathete Ankathete .
Da nach der Gegenkathete gesucht wird, stellen wir um zu
Gegenkathete g1=Ankathete ⋅ tan(α)=15 ⋅ tan(70°) ≈41.2122

Genau gleich verfahren wir mit dem anderen Dreieck:
Gegenkathete g2=Ankathete ⋅ tan(β)=15 ⋅ tan(40°) ≈12.5865

Die gesuchte Strecke ist nun gerade die Differenz der beiden Gegenkatheten:
s=41.212 - 12.586 ≈ 28.626 m.