nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Sinus und Thaleskreis (leicht)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das große Dreieck ist gleichschenklig.

Der blaue Halbkreis hat einen Durchmesser von u = 6.5 cm.

Die Länge der gemeinsamen Kante der beiden Dreiecke beträgt v = 5.58 cm.

Bestimme die fehlende Winkelweite α.

Lösung einblenden

Am blauen Thaleskreis erkennt man sofort, dass γ ein rechter Winkel sein muss.

Nach der Definition des Sinus gilt im rechtwinkligen Dreieck sin(β)= Gegenkathete Hypotenuse

Damit folgt sin(β)= 5.58cm 6.5cm =0.858 und somit β=59.1°

Wegen der Winkelsumme im Dreieck muss gelten: 90° + β + φ = 180°.
Somit gilt φ = 90° - β° = 30.9°.

Wegen der Gleichschenkligkeit des großen Dreiecks muss nun aber β und (α+φ) gleich groß sein.

Mit α+30.9°=β=59.1° gilt nun: α = 28.3°

Sinus und Thaleskreis (schwer)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das große Dreieck ist gleichschenklig. Bestimme die Länge der Strecke PQ.

Lösung einblenden

Am blauen Thaleskreis über dem ersten Dreieck erkennt man sofort, dass γ ein rechter Winkel sein muss.

Aufgrund der Winkelsumme im ersten Dreieck folgt β + γ + 34° = 180°.

Daraus folgt β = 180° - 90° - 34° = 56°

Mit Hilfe des Sinus kann man nun die Länge der gemeinsamen Seite g der beiden Dreiecke berechnen:

Da g die Gegenkathete von β ist, gilt: sin(β)=sin(56°) = g 6.5cm

Damit folgt g = sin(56°) ⋅ 6.5cm ≈ 5.4cm

Als Nebenwinkel von γ muss natürlich auch δ ein rechter Winkel sein.

Aufgrund der Gleichschenkligkeit des großen Dreiecks muss β und (α+34°) gleich groß sein. Damit gilt 56° = α + 34°, woraus folgt: α = 22°

Mit der Winkelsumme im zweiten Dreieck folgt nun ε = 90° - α = 90° - 22° = 68°

Nun können wir in diesem Dreieck den Sinus anwenden und so die gesuchte Seite PQ herausfinden: sin(ε)= g PQ

Setzt man die bekannten Werte ein, so folgt sin(68°)= 5.4 PQ

Damit folgt: PQ = 5.4 sin(68°) ≈ 5.8cm

Winkel zw. Punkten im Koordinatensystem

Beispiel:

Berechne alle Längen und Winkel im Dreick ABC mit A(0|-4), B(3|-4) und C(3|2).

Runde die Ergebnisse auf eine Nachkommastelle.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wenn man die drei Punkte in ein Koordinatensystem einträgt, erkennt man sofort, dass (zwischen B und C) a = 6 und (zwischen A und B) c = 3 sein müssen. Weil das Dreieck rechtwinklig ist, kann man b (zwischen A und C), also die Hypotenuse, mit dem Satz des Pythagoras berechnen:

Dreiecks mit Hilfe des Satzes des Pythagoras berechnen.

b2 = 62 + 32

b2 = 36 + 9

b2 = 45

b = 45 6.71

Da a (zwischen B und C) und c (zwischen A und B) parallel zu den Koordinatenachsen sind, muss der Winkel in B β = 90° sein.

Den Winkel α können wir mit dem Tangens berechnen:

tan(α) = Gegenkathete Ankathete = 6 3 = 2

Daraus folgt: α = arctan(2) ≈ 63.4°.

Wegen der Winkelsumme von 180° im Dreieck folgt: γ = 90°-63.4° = 26.6°

Trigonometrie Anwendungen

Beispiel:

Von einem Fenster in 10m Höhe kann man den entfernten Rand eines Kanals unter dem Winkel α=60° gegenüber der Senkrechten betrachten. Der vordere Rand des Kanals erscheinet unter dem Winkel β=25° gegenüber der Senkrechten. Wie breit ist der Kanal?

Lösung einblenden

In beiden Dreiecken gilt für den Tangens: tan(α)= Gegenkathete Ankathete .
Da nach der Gegenkathete gesucht wird, stellen wir um zu
Gegenkathete g1=Ankathete ⋅ tan(α)=10 ⋅ tan(60°) ≈17.3205

Genau gleich verfahren wir mit dem anderen Dreieck:
Gegenkathete g2=Ankathete ⋅ tan(β)=10 ⋅ tan(25°) ≈4.6631

Die gesuchte Strecke ist nun gerade die Differenz der beiden Gegenkatheten:
s=17.321 - 4.663 ≈ 12.657 m.