Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Sinus und Thaleskreis (leicht)
Beispiel:
Das große Dreieck ist gleichschenklig.
Der blaue Halbkreis hat einen Durchmesser von u = 6 cm.
Die Länge der gemeinsamen Kante der beiden Dreiecke beträgt v = 5.18 cm.
Bestimme die fehlende Winkelweite α.
Am blauen Thaleskreis erkennt man sofort, dass γ ein rechter Winkel sein muss.
Nach der Definition des Sinus gilt im rechtwinkligen Dreieck sin(β)=
Damit folgt sin(β)==0.863 und somit β=59.7°
Wegen der Winkelsumme im Dreieck muss gelten: 90° + β + α = 180°.
Somit gilt α = 90° - β° = 30.3°.
Sinus und Thaleskreis (schwer)
Beispiel:
Das große Dreieck ist gleichschenklig. Bestimme die Länge der Strecke PQ.
Am blauen Thaleskreis über dem ersten Dreieck erkennt man sofort, dass γ ein rechter Winkel sein muss.
Aufgrund der Winkelsumme im ersten Dreieck folgt β + γ + 32° = 180°.
Daraus folgt β = 180° - 90° - 32° = 58°
Mit Hilfe des Sinus kann man nun die Länge der gemeinsamen Seite g der beiden Dreiecke berechnen:
Da g die Gegenkathete von β ist, gilt: sin(β)=sin(58°) =
Damit folgt g = sin(58°) ⋅ 5.5cm ≈ 4.7cm
Als Nebenwinkel von γ muss natürlich auch δ ein rechter Winkel sein.
Aufgrund der Gleichschenkligkeit des großen Dreiecks muss β und (α+32°) gleich groß sein. Damit gilt 58° = α + 32°, woraus folgt: α = 26°
Mit der Winkelsumme im zweiten Dreieck folgt nun ε = 90° - α = 90° - 26° = 64°
Nun können wir in diesem Dreieck den Sinus anwenden und so die gesuchte Seite PQ herausfinden: sin(ε)=
Setzt man die bekannten Werte ein, so folgt sin(64°)=
Damit folgt: PQ = ≈ 5.2cm
Winkel zw. Punkten im Koordinatensystem
Beispiel:
Berechne alle Längen und Winkel im Dreick ABC mit A(-3|0), B(2|0) und C(2|5).
Runde die Ergebnisse auf eine Nachkommastelle.
Wenn man die drei Punkte in ein Koordinatensystem einträgt, erkennt man sofort, dass (zwischen B und C) a = 5 und (zwischen A und B) c = 5 sein müssen. Weil das Dreieck rechtwinklig ist, kann man b (zwischen A und C), also die Hypotenuse, mit dem Satz des Pythagoras berechnen:
Dreiecks mit Hilfe des Satzes des Pythagoras berechnen.b2 = 52 + 52
b2 = 25 + 25
b2 = 50
b = ≈ 7.07
Da a (zwischen B und C) und c (zwischen A und B) parallel zu den Koordinatenachsen sind, muss der Winkel in B β = 90° sein.
Den Winkel α können wir mit dem Tangens berechnen:
tan(α) = = = 1
Daraus folgt: α = arctan(1) ≈ 45°.
Wegen der Winkelsumme von 180° im Dreieck folgt: γ = 90°-45° = 45°
Trigonometrie Anwendungen
Beispiel:

Von einem Fenster in 13m Höhe kann man den entfernten Rand eines Kanals unter dem Winkel α=70° gegenüber der Senkrechten betrachten. Der vordere Rand des Kanals erscheinet unter dem Winkel β=30° gegenüber der Senkrechten. Wie breit ist der Kanal?

In beiden Dreiecken gilt für den Tangens: tan(α)=.
Da nach der Gegenkathete gesucht wird, stellen wir um zu
Gegenkathete g1=Ankathete ⋅ tan(α)=13 ⋅ tan(70°)
≈35.7172
Genau gleich verfahren wir mit dem anderen Dreieck:
Gegenkathete g2=Ankathete ⋅ tan(β)=13 ⋅ tan(30°)
≈7.5056
Die gesuchte Strecke ist nun gerade die Differenz der beiden Gegenkatheten:
s=35.717 - 7.506 ≈ 28.212 m.
