Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Sinus und Thaleskreis (leicht)
Beispiel:
Das große Dreieck ist gleichschenklig.
Der blaue Halbkreis hat einen Durchmesser von u = 6.5 cm.
Die Länge der gemeinsamen Kante der beiden Dreiecke beträgt v = 5.63 cm.
Bestimme die fehlende Winkelweite α.
Am blauen Thaleskreis erkennt man sofort, dass γ ein rechter Winkel sein muss.
Nach der Definition des Sinus gilt im rechtwinkligen Dreieck sin(β)=
Damit folgt sin(β)==0.866 und somit β=60°
Wegen der Winkelsumme im Dreieck muss gelten: 90° + β + φ = 180°.
Somit gilt φ = 90° - β° = 30°.
Wegen der Gleichschenkligkeit des großen Dreiecks muss nun aber β und (α+φ) gleich groß sein.
Mit α+30°=β=60° gilt nun: α = 30°
Sinus und Thaleskreis (schwer)
Beispiel:
Das große Dreieck ist gleichschenklig. Bestimme die Länge der Strecke PQ.
Am blauen Thaleskreis über dem ersten Dreieck erkennt man sofort, dass γ ein rechter Winkel sein muss.
Aufgrund der Winkelsumme im ersten Dreieck folgt β + γ + 32° = 180°.
Daraus folgt β = 180° - 90° - 32° = 58°
Mit Hilfe des Sinus kann man nun die Länge der gemeinsamen Seite g der beiden Dreiecke berechnen:
Da g die Gegenkathete von β ist, gilt: sin(β)=sin(58°) =
Damit folgt g = sin(58°) ⋅ 6cm ≈ 5.1cm
Als Nebenwinkel von γ muss natürlich auch δ ein rechter Winkel sein.
Aufgrund der Gleichschenkligkeit des großen Dreiecks muss β und (α+32°) gleich groß sein. Damit gilt 58° = α + 32°, woraus folgt: α = 26°
Mit der Winkelsumme im zweiten Dreieck folgt nun ε = 90° - α = 90° - 26° = 64°
Nun können wir in diesem Dreieck den Sinus anwenden und so die gesuchte Seite PQ herausfinden: sin(ε)=
Setzt man die bekannten Werte ein, so folgt sin(64°)=
Damit folgt: PQ = ≈ 5.7cm
Winkel zw. Punkten im Koordinatensystem
Beispiel:
Berechne alle Längen und Winkel im Dreick ABC mit A(-2|-1), B(2|2) und C(-2|2).
Runde die Ergebnisse auf eine Nachkommastelle.
Wenn man die drei Punkte in ein Koordinatensystem einträgt, erkennt man sofort, dass (zwischen B und C) a = 4 und (zwischen A und C) b = 3 sein müssen. Weil das Dreieck rechtwinklig ist, kann man c (zwischen A und B), also die Hypotenuse, mit dem Satz des Pythagoras berechnen:
Dreiecks mit Hilfe des Satzes des Pythagoras berechnen.c2 = 42 + 32
c2 = 16 + 9
c2 = 25
c = ≈ 5
Da a (zwischen B und C) und b (zwischen A und C) parallel zu den Koordinatenachsen sind, muss der Winkel in C γ = 90° sein.
Den Winkel α können wir mit dem Tangens berechnen:
tan(α) = = ≈ 1.333
Daraus folgt: α = arctan(1.333) ≈ 53.1°.
Wegen der Winkelsumme von 180° im Dreieck folgt: β = 90°-53.1° = 36.9°
Trigonometrie Anwendungen
Beispiel:

Von einem Fenster in 13m Höhe kann man den entfernten Rand eines Kanals unter dem Winkel α=60° gegenüber der Senkrechten betrachten. Der vordere Rand des Kanals erscheinet unter dem Winkel β=35° gegenüber der Senkrechten. Wie breit ist der Kanal?

In beiden Dreiecken gilt für den Tangens: tan(α)=.
Da nach der Gegenkathete gesucht wird, stellen wir um zu
Gegenkathete g1=Ankathete ⋅ tan(α)=13 ⋅ tan(60°)
≈22.5167
Genau gleich verfahren wir mit dem anderen Dreieck:
Gegenkathete g2=Ankathete ⋅ tan(β)=13 ⋅ tan(35°)
≈9.1027
Die gesuchte Strecke ist nun gerade die Differenz der beiden Gegenkatheten:
s=22.517 - 9.103 ≈ 13.414 m.
