Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Sinus und Thaleskreis (leicht)
Beispiel:
Das große Dreieck ist gleichschenklig.
Der blaue Halbkreis hat einen Durchmesser von u = 7 cm.
Die Länge der gemeinsamen Kante der beiden Dreiecke beträgt v = 5.88 cm.
Bestimme die fehlende Winkelweite α.
Am blauen Thaleskreis erkennt man sofort, dass γ ein rechter Winkel sein muss.
Nach der Definition des Sinus gilt im rechtwinkligen Dreieck sin(β)=
Damit folgt sin(β)==0.84 und somit β=57.1°
Wegen der Winkelsumme im Dreieck muss gelten: 90° + β + α = 180°.
Somit gilt α = 90° - β° = 32.9°.
Sinus und Thaleskreis (schwer)
Beispiel:
Das große Dreieck ist gleichschenklig. Bestimme die Länge der Strecke PQ.
Am blauen Thaleskreis über dem ersten Dreieck erkennt man sofort, dass γ ein rechter Winkel sein muss.
Aufgrund der Winkelsumme im ersten Dreieck folgt β + γ + 29° = 180°.
Daraus folgt β = 180° - 90° - 29° = 61°
Mit Hilfe des Sinus kann man nun die Länge der gemeinsamen Seite g der beiden Dreiecke berechnen:
Da g die Gegenkathete von β ist, gilt: sin(β)=sin(61°) =
Damit folgt g = sin(61°) ⋅ 5.5cm ≈ 4.8cm
Als Nebenwinkel von γ muss natürlich auch δ ein rechter Winkel sein.
Aufgrund der Gleichschenkligkeit des großen Dreiecks muss β und (α+29°) gleich groß sein. Damit gilt 61° = α + 29°, woraus folgt: α = 32°
Mit der Winkelsumme im zweiten Dreieck folgt nun ε = 90° - α = 90° - 32° = 58°
Nun können wir in diesem Dreieck den Sinus anwenden und so die gesuchte Seite PQ herausfinden: sin(ε)=
Setzt man die bekannten Werte ein, so folgt sin(58°)=
Damit folgt: PQ = ≈ 5.7cm
Winkel zw. Punkten im Koordinatensystem
Beispiel:
Berechne alle Längen und Winkel im Dreick ABC mit A(0|-3), B(3|4) und C(0|4).
Runde die Ergebnisse auf eine Nachkommastelle.
Wenn man die drei Punkte in ein Koordinatensystem einträgt, erkennt man sofort, dass (zwischen B und C) a = 3 und (zwischen A und C) b = 7 sein müssen. Weil das Dreieck rechtwinklig ist, kann man c (zwischen A und B), also die Hypotenuse, mit dem Satz des Pythagoras berechnen:
Dreiecks mit Hilfe des Satzes des Pythagoras berechnen.c2 = 32 + 72
c2 = 9 + 49
c2 = 58
c = ≈ 7.62
Da a (zwischen B und C) und b (zwischen A und C) parallel zu den Koordinatenachsen sind, muss der Winkel in C γ = 90° sein.
Den Winkel α können wir mit dem Tangens berechnen:
tan(α) = = ≈ 0.429
Daraus folgt: α = arctan(0.429) ≈ 23.2°.
Wegen der Winkelsumme von 180° im Dreieck folgt: β = 90°-23.2° = 66.8°
Trigonometrie Anwendungen
Beispiel:

Von einem Fenster in 8m Höhe kann man den entfernten Rand eines Kanals unter dem Winkel α=80° gegenüber der Senkrechten betrachten. Der vordere Rand des Kanals erscheinet unter dem Winkel β=40° gegenüber der Senkrechten. Wie breit ist der Kanal?

In beiden Dreiecken gilt für den Tangens: tan(α)=.
Da nach der Gegenkathete gesucht wird, stellen wir um zu
Gegenkathete g1=Ankathete ⋅ tan(α)=8 ⋅ tan(80°)
≈45.3703
Genau gleich verfahren wir mit dem anderen Dreieck:
Gegenkathete g2=Ankathete ⋅ tan(β)=8 ⋅ tan(40°)
≈6.7128
Die gesuchte Strecke ist nun gerade die Differenz der beiden Gegenkatheten:
s=45.37 - 6.713 ≈ 38.657 m.
