nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

alle Teiler einer Zahl

Beispiel:

Bestimme alle Teiler von 20 an:

Lösung einblenden

Wir suchen alle Teiler von 20. Dabei beginnen wir mit der 1 und testen die weiteren Zahlen.

Wenn eine Zahl ein Teiler von 20 ist, teilen wir 20 durch diese Zahl und erhalten so automatisch einen weiteren Teiler. Wir erhalten so also immer Teiler-Paare mit einem größerem und einem kleineren Teiler (die multipliziert wieder 20 ergeben).

Somit genügt es, nur die kleineren Teiler zu finden, weil wir ja so die Größeren automatisch mit erhalten.

1 ist Teiler von 20, denn 20 = 1 ⋅ 20, also ist auch 20 ein Teiler.

2 ist Teiler von 20, denn 20 = 2 ⋅ 10, also ist auch 10 ein Teiler.

3 ist kein Teiler von 20, denn 20 = 3 ⋅ 6 + 2.

4 ist Teiler von 20, denn 20 = 4 ⋅ 5, also ist auch 5 ein Teiler.

Jetzt können wir das Ausprobieren beenden, weil wir ja bereits 5 bei den größeren Teiler drin haben, also kann es jetzt keine weiteren (kleine) Teiler mehr geben.

Richtig sortiert ergibt sich also für die Teilermenge von 20:
1, 2, 4, 5, 10, 20

Teilbarkeitsregeln rückwärts

Beispiel:

Bestimme eine Ziffer, die man für das Kästchen ⬜ einsetzen kann, damit 1⬜2 sowohl durch 3 als auch durch 4 teilbar ist.

Lösung einblenden

Wir schauen zuerst, welche Ziffern möglich sind, dass die Zahl durch 4 teilbar ist.
Dazu müssen wir ja nur die letzten beiden Stellen betrachten, also ⬜2.

Da an der letzten Stelle eine 2 steht, muss an der vorletzten Stelle eine ungerade Zahl (also 1, 3, 5, 7 oder 9) stehen, damit sie durch 4 teilbar ist (weil eben nur 12, 32, 52, 72, 92 durch 4 teilbar sind).

Diese verbleibenden Möglichkeiten überprüfen wir nun noch auf Teilbarkeit durch 3.

1: Dann wäre die Zahl 112, für die Quersumme gilt dann: 1 + 1 + 2 = 4, also nicht durch 3 teilbar.

3: Dann wäre die Zahl 132, für die Quersumme gilt dann: 1 + 3 + 2 = 6, also durch 3 teilbar.

5: Dann wäre die Zahl 152, für die Quersumme gilt dann: 1 + 5 + 2 = 8, also nicht durch 3 teilbar.

7: Dann wäre die Zahl 172, für die Quersumme gilt dann: 1 + 7 + 2 = 10, also nicht durch 3 teilbar.

9: Dann wäre die Zahl 192, für die Quersumme gilt dann: 1 + 9 + 2 = 12, also durch 3 teilbar.

Die möglichen Ziffern sind also 3 und 9.

Summe von Primzahlen

Beispiel:

Schreibe 12 als Summe von zwei Primzahlen:

Lösung einblenden

Wir testen der Reihe nach alle Primzahlen, ob sie mit einer weiteren Primzahl die Summe von 12 bilden:

2 + 10 = 12, dabei ist 10 aber keine Primzahl

3 + 9 = 12, dabei ist 9 aber keine Primzahl

5 + 7 = 12, dabei ist 7 auch eine Primzahl

5 und 7 wären also zwei Primzahlen mit 5 + 7 = 12

Primfaktorzerlegung

Beispiel:

Bestimme die Primfaktorzerlegung von 90 :

Lösung einblenden

Wir testen der Reihe nach alle Primzahlen, ob sie Teiler von 90 sind und zerlegen dann immer die Zahl in die Primzahl und den anderen Faktor:

90
= 2 ⋅ 45
= 2 ⋅ 3 ⋅ 15
= 2 ⋅ 3 ⋅ 3 ⋅ 5

Primfaktorzerlegung + Teiler

Beispiel:

Bestimme die Primfaktorzerlegung von 126 und gib alle Teiler von 126 an:

Lösung einblenden

Wir testen der Reihe nach alle Primzahlen, ob sie Teiler von 126 sind und zerlegen dann immer die Zahl in die Primzahl und den anderen Faktor:

126
= 2 ⋅ 63
= 2 ⋅ 3 ⋅ 21
= 2 ⋅ 3 ⋅ 3 ⋅ 7

Jetzt suchen wir mithilfe dieser Primfaktorzerlegung alle Teiler von 126 :

1 Teiler

2 = 2
3 = 3
7 = 7

2 Teiler

2 ⋅ 3 = 6
2 ⋅ 7 = 14
3 ⋅ 3 = 9
3 ⋅ 7 = 21

3 Teiler

2 ⋅ 3 ⋅ 3 = 18
2 ⋅ 3 ⋅ 7 = 42
3 ⋅ 3 ⋅ 7 = 63

4 Teiler

2 ⋅ 3 ⋅ 3 ⋅ 7 = 126

Dazu kommt natürlich immer noch die 1, die ja von jeder Zahl ein Teiler ist.

Richtig sortiert ergibt sich also für die Teilermenge von 126:
1; 2; 3; 6; 7; 9; 14; 18; 21; 42; 63; 126