nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Zwei gleiche Glücksräder wie rechts in der Abbildung werden gleichzeitig gedreht. Die Zufallsgröße X beschreibt die Differenz: Zahl des ersten Glücksrads - Zahl des zweiten Glücksrads. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz Glücksrad 1 - Glücksrad 2' sind folgende Werte möglich:

Zufallsgröße X-2-1012
zugehörige
Ereignisse
1 - 31 - 2
2 - 3
1 - 1
2 - 2
3 - 3
2 - 1
3 - 2
3 - 1

Zufallsgröße WS-Verteilung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Zwei gleiche Glücksräder wie rechts in der Abbildung werden gleichzeitig gedreht. Die Zufallsgröße X beschreibt die Differenz der größeren Zahl minus der kleineren Zahl (bzw. der beiden gleichgroßen Zahlen) der beiden Glücksräder. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz der beiden Glücksräder' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 1X = 2
zugehörige
Ergebnisse
1 → 1
2 → 2
3 → 3
1 → 2
2 → 1
2 → 3
3 → 2
1 → 3
3 → 1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 1X = 2
zugehörige
Wahrscheinlichkeit P(X)
3 8 3 8
+ 3 8 3 8
+ 1 4 1 4
3 8 3 8
+ 3 8 3 8
+ 3 8 1 4
+ 1 4 3 8
3 8 1 4
+ 1 4 3 8
  = 9 64 + 9 64 + 1 16 9 64 + 9 64 + 3 32 + 3 32 3 32 + 3 32



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X012
P(X=k) 11 32 15 32 3 16

Zufallsgr. WS-Vert. (auch ohne zur.)

Beispiel:

In einer Urne sind vier Kugeln, die mit der Zahl 2 beschriftet sind und zwei Kugeln, die mit der Zahl 6 beschriftet sind. Es werden zwei Kugeln ohne Zurücklegen gezogen.Die Zufallsgröße X beschreibt das Produkt der Zahlen der beiden gezogenen Kugeln. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Produkt der beiden Kugeln' sind folgende Werte möglich:

Zufallsgröße XX = 4X = 12X = 36
zugehörige
Ergebnisse
2 → 22 → 6
6 → 2
6 → 6
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 4X = 12X = 36
zugehörige
Wahrscheinlichkeit P(X)
2 3 3 5 2 3 2 5
+ 1 3 4 5
1 3 1 5
  = 2 5 4 15 + 4 15 1 15



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X41236
P(X=k) 2 5 8 15 1 15

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

In einer Urne sind 10 rote und 4 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Die Zufallsgröße X beschreibt dabei die Anzahl der Ziehungen, bis die erste rote Kugel gezogen worden ist. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 4 Kugeln vom Typ 'blau' vorhanden sind, muss spätestens im 5-ten Versuch (wenn dann alle Kugeln vom Typ 'blau' bereits gezogen und damit weg sind) eine Kugel vom Typ 'rot' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 5 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X12345
P(X=k) 5 7 20 91 5 91 10 1001 1 1001

Zufallsgröße rückwärts

Beispiel:

Ein Glücksrad hat drei Sektoren, die mit den Zahlen 1, 2 und 3 beschriftet sind. Es wird zwei mal gedreht. Die Zufallsgröße X beschreibt dabei das Produkt der Zahlen die bei den beiden Glücksraddrehungen erscheinen. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle). Wie groß müssen jeweils die Winkel der Sektoren sein?

Zufallsgröße X123469
P(X=k) 1 16 ???? 121 324

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Für X=1 gibt es nur das Ereignis: '1'-'1', also dass zwei mal hintereinander '1' kommt.

Wenn p1 die Wahrscheinlichkeit von '1' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '1' kommt, gelten: P(X=1) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=1) = 1 16 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 1 16 und somit p1 = 1 4 .

Ebenso gibt es für X=9 nur das Ereignis: '3'-'3', also dass zwei mal hintereinander '3' kommt.

Wenn p3 die Wahrscheinlichkeit von '3' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '3' kommt, gelten: P(X=9) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=9) = 121 324 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 121 324 und somit p3 = 11 18 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 1 4 - 11 18 = 36 36 - 9 36 - 22 36 = 5 36

Um nun noch die Mittelpunktswinkel der drei Sektoren zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 360° multiplizieren, weil ja für die Wahrscheinlichkeit eines Sektors mit Mittelpunktswinkel α gilt: p = α 360°

Somit erhalten wir:

α1 = 1 4 ⋅ 360° = 90°

α2 = 5 36 ⋅ 360° = 50°

α3 = 11 18 ⋅ 360° = 220°

Erwartungswerte

Beispiel:

Bei einer Tombola steht auf jedem zehnten Los 300 Punkte, auf jedem fünften Los 40 Punkte, auf jedem vierten Los 8 Punkte und auf allen anderen 1 Punkt. Wie viele Punkte bringt ein Los durchschnttlich ein?

Lösung einblenden

Die Zufallsgröße X beschreibt die Anzahl der Punkte auf einem Los.

Erwartungswert der Zufallsgröße X

Ereignis 300 40 8 1
Zufallsgröße xi 300 40 8 1
P(X=xi) 1 10 1 5 1 4 9 20
xi ⋅ P(X=xi) 30 8 2 9 20

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 300⋅ 1 10 + 40⋅ 1 5 + 8⋅ 1 4 + 1⋅ 9 20

= 30+ 8+ 2+ 9 20
= 809 20

40.45

Faires Spiel - fehlende Auszahlung best.

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Bei einem Glücksrad wie rechts abgebildet soll das noch fehlende Feld mit einem Betrag so bestückt werden, dass das Spiel bei einem Einsatz von 9,5€ fair ist.

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis 2 8 20 ?
Zufallsgröße xi 2 8 20 x
Zufallsgröße yi (Gewinn) -7.5 -1.5 10.5 x-9.5
P(X=xi) 4 8 2 8 1 8 1 8
xi ⋅ P(X=xi) 1 2 5 2 1 8 ⋅ x
yi ⋅ P(Y=yi) - 15 4 - 3 8 10.5 8 1 8 ⋅(x-9.5)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 9.5

4 8 · 2 + 2 8 · 8 + 1 8 · 20 + 1 8 x = 9.5

1 +2 + 5 2 + 1 8 x = 9.5

1 +2 + 5 2 + 1 8 x = 9,5
1 8 x + 11 2 = 9,5 |⋅ 8
8( 1 8 x + 11 2 ) = 76
x +44 = 76 | -44
x = 32

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

4 8 · ( -7,5 ) + 2 8 · ( -1,5 ) + 1 8 · 10,5 + 1 8 ( x -9,5 ) = 0

- 7,5 2 - 1,5 4 + 10,5 8 + 1 8 · x + 1 8 · ( -9,5 ) = 0

- 7,5 2 - 1,5 4 + 10,5 8 + 1 8 · x + 1 8 · ( -9,5 ) = 0
-3,75 -0,375 +1,3125 + 1 8 x -1,1875 = 0
1 8 x -4 = 0 |⋅ 8
8( 1 8 x -4 ) = 0
x -32 = 0 | +32
x = 32

In beiden Fällen ist also der gesuchte Betrag: 32

Erwartungswert ganz offen

Beispiel:

Eine Klasse möchte beim Schulfest ein Glücksrad mit Spielgeld anbieten. Dabei soll das Glücksrad in Sektoren aufgeteilt werden, in denen der Auszahlungsbetrag (z.B. 3€) drin steht. Nach langer Diskussion einigt man sich auf folgende Punkte:

  • Das Spiel mit dem Glücksrad muss fair sein
  • Der Einsatz soll 8€ betragen
  • Der minimale Auszahlungsbetrag soll 1€ sein
  • Der maximale Auszahlungsbetrag soll soll 35€ sein
  • Es sollen genau 4 Sektoren mit verschiedenen Auszahlungsbeträgen auf dem Glücksrad sein
Finde eine Möglichkeit für solch ein Glücksrad und trage diese in die Tabelle ein.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 1 35
Y Gewinn (Ausz. - Einsatz) -7 27
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 1 35
Y Gewinn (Ausz. - Einsatz) -7 27
P(X) = P(Y) 1 7 1 27
Y ⋅ P(Y) -1 1

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 7 + 1 27 = 34 189
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 34 189 = 155 189 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 1 35
Y Gewinn (Ausz. - Einsatz) -7 27
P(X) = P(Y) 1 7 155 378 155 378 1 27
Y ⋅ P(Y) -1 1

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 7 2 ) setzt.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 1 4.5 11.5 35
Y Gewinn (Ausz. - Einsatz) -7 -3.5 3.5 27
P(X) = P(Y) 1 7 155 378 155 378 1 27
Winkel 51.43° 147.62° 147.62° 13.33°
Y ⋅ P(Y) -1 - 155 108 155 108 1

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -7⋅ 1 7 + -3.5⋅ 155 378 + 3.5⋅ 155 378 + 27⋅ 1 27

= -1 - 155 108 + 155 108 + 1
= - 108 108 - 155 108 + 155 108 + 108 108
= 0 108
= 0

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 21 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Mit wie vielen Hausaufgabenüberprüfungen muss die Lehrerin im Durchschnitt rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'Mädchen' im 1-ten Versuch st: 7 8

Die Wahrscheinlichkeit für ein 'Mädchen' im 2-ten Versuch st: 21 184

Die Wahrscheinlichkeit für ein 'Mädchen' im 3-ten Versuch st: 21 2024

Die Wahrscheinlichkeit für ein 'Mädchen' im 4-ten Versuch st: 1 2024

Die Zufallsgröße X beschreibt Anzahl der eingesammelten Hausaufgaben bis das erste Mädchen gezogen wird.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3 4
Zufallsgröße xi 1 2 3 4
P(X=xi) 7 8 21 184 21 2024 1 2024
xi ⋅ P(X=xi) 7 8 21 92 63 2024 1 506

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 7 8 + 2⋅ 21 184 + 3⋅ 21 2024 + 4⋅ 1 2024

= 7 8 + 21 92 + 63 2024 + 1 506
= 1771 2024 + 462 2024 + 63 2024 + 4 2024
= 2300 2024
= 25 22

1.14

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

Auf einen Schüleraustausch bewerben sich 18 Mädchen und 6 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Bestimme den Erwartungswert (als Bruch oder Dezimalzahl) für die Anzahl an Mädchen bei den ersten 3 verlosten Plätzen.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
Mädchen -> Mädchen -> Mädchen 102 253
Mädchen -> Mädchen -> Jungs 153 1012
Mädchen -> Jungs -> Mädchen 153 1012
Mädchen -> Jungs -> Jungs 45 1012
Jungs -> Mädchen -> Mädchen 153 1012
Jungs -> Mädchen -> Jungs 45 1012
Jungs -> Jungs -> Mädchen 45 1012
Jungs -> Jungs -> Jungs 5 506

Die Wahrscheinlichkeit für 0 mal 'Mädchen' ist: 5 506

Die Wahrscheinlichkeit für 1 mal 'Mädchen' ist: 45 1012 + 45 1012 + 45 1012 = 135 1012

Die Wahrscheinlichkeit für 2 mal 'Mädchen' ist: 153 1012 + 153 1012 + 153 1012 = 459 1012

Die Wahrscheinlichkeit für 3 mal 'Mädchen' ist: 102 253

Die Zufallsgröße X beschreibt die Anzahl an Mädchen unter den drei verlosten Plätzen.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 1 2 3
P(X=xi) 5 506 135 1012 459 1012 102 253
xi ⋅ P(X=xi) 0 135 1012 459 506 306 253

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 5 506 + 1⋅ 135 1012 + 2⋅ 459 1012 + 3⋅ 102 253

= 0+ 135 1012 + 459 506 + 306 253
= 0 1012 + 135 1012 + 918 1012 + 1224 1012
= 2277 1012
= 9 4

2.25

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Zwei Glücksräder wie rechts in der Abbildung werden gleichzeitig gedreht. Erscheinen zwei Kronen, so erhält man 20€. Bei einer Krone erhält man immer hin noch 8€. Erscheinen zwei gleiche Dinge (außer Kronen), so erhält man 5€. In allen anderen Fällen geht man leer aus. Mit wie viel Euro kann man bei einem Spiel durchschnittlich rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
Blume -> Blume 1 4
Blume -> Raute 1 8
Blume -> Stein 1 16
Blume -> Krone 1 16
Raute -> Blume 1 8
Raute -> Raute 1 16
Raute -> Stein 1 32
Raute -> Krone 1 32
Stein -> Blume 1 16
Stein -> Raute 1 32
Stein -> Stein 1 64
Stein -> Krone 1 64
Krone -> Blume 1 16
Krone -> Raute 1 32
Krone -> Stein 1 64
Krone -> Krone 1 64

Die Wahrscheinlichkeit für '2 gleiche' ist:

P('Blume'-'Blume') + P('Raute'-'Raute') + P('Stein'-'Stein')
= 1 4 + 1 16 + 1 64 = 21 64

Die Wahrscheinlichkeit für '1 Krone' ist:

P('Blume'-'Krone') + P('Raute'-'Krone') + P('Stein'-'Krone') + P('Krone'-'Blume') + P('Krone'-'Raute') + P('Krone'-'Stein')
= 1 16 + 1 32 + 1 64 + 1 16 + 1 32 + 1 64 = 7 32

Die Wahrscheinlichkeit für '2 Kronen' ist:

P('Krone'-'Krone')
= 1 64

Die Zufallsgröße X beschreibt den ausbezahlten Gewinn bei einem Spiel.

Erwartungswert der Zufallsgröße X

Ereignis 2 gleiche 1 Krone 2 Kronen
Zufallsgröße xi 5 8 20
P(X=xi) 21 64 7 32 1 64
xi ⋅ P(X=xi) 105 64 7 4 5 16

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 5⋅ 21 64 + 8⋅ 7 32 + 20⋅ 1 64

= 105 64 + 7 4 + 5 16
= 105 64 + 112 64 + 20 64
= 237 64

3.7