nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Zwei gleiche Glücksräder wie rechts in der Abbildung werden gleichzeitig gedreht. Die Zufallsgröße X beschreibt die Differenz: Zahl des ersten Glücksrads - Zahl des zweiten Glücksrads. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz Glücksrad 1 - Glücksrad 2' sind folgende Werte möglich:

Zufallsgröße X-2-1012
zugehörige
Ereignisse
1 - 31 - 2
2 - 3
1 - 1
2 - 2
3 - 3
2 - 1
3 - 2
3 - 1

Zufallsgröße WS-Verteilung

Beispiel:

Drei normale Würfel werden gleichzeitig geworfen. Die Zufallsgröße X beschreibt die Anzahl der gewürfelten 6er. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Anzahl der 6er' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 1X = 2X = 3
zugehörige
Ergebnisse
0 → 0 → 00 → 0 → 1
0 → 1 → 0
1 → 0 → 0
0 → 1 → 1
1 → 0 → 1
1 → 1 → 0
1 → 1 → 1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 1X = 2X = 3
zugehörige
Wahrscheinlichkeit P(X)
5 6 5 6 5 6 5 6 5 6 1 6
+ 5 6 1 6 5 6
+ 1 6 5 6 5 6
5 6 1 6 1 6
+ 1 6 5 6 1 6
+ 1 6 1 6 5 6
1 6 1 6 1 6
  = 125 216 25 216 + 25 216 + 25 216 5 216 + 5 216 + 5 216 1 216



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X0123
P(X=k) 125 216 25 72 5 72 1 216

Zufallsgr. WS-Vert. (auch ohne zur.)

Beispiel:

In einer Urne sind vier Kugeln, die mit der Zahl 5 beschriftet sind und sechs Kugeln, die mit der Zahl 9 beschriftet sind. Es werden zwei Kugeln ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Zahlen der beiden gezogenen Kugeln. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Summe der beiden Kugeln' sind folgende Werte möglich:

Zufallsgröße XX = 10X = 14X = 18
zugehörige
Ergebnisse
5 → 55 → 9
9 → 5
9 → 9
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 10X = 14X = 18
zugehörige
Wahrscheinlichkeit P(X)
2 5 3 9 2 5 6 9
+ 3 5 4 9
3 5 5 9
  = 2 15 4 15 + 4 15 1 3



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X101418
P(X=k) 2 15 8 15 1 3

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 2 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 24 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird.Die Zufallsgröße X beschreibt dabei die Anzahl der nach diesem Verfahren einsammelten Hausaufgaben. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 2 Hausaufgaben vom Typ 'Jungs' vorhanden sind, muss spätestens im 3-ten Versuch (wenn dann alle Hausaufgaben vom Typ 'Jungs' bereits gezogen und damit weg sind) eine Hausaufgabe vom Typ 'Mädchen' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 3 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X123
P(X=k) 12 13 24 325 1 325

Zufallsgröße rückwärts

Beispiel:

Ein Glücksrad hat drei Sektoren, die mit den Zahlen 1, 2 und 3 beschriftet sind. Es wird zwei mal gedreht. Die Zufallsgröße X beschreibt dabei das Produkt der Zahlen die bei den beiden Glücksraddrehungen erscheinen. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle). Wie groß müssen jeweils die Winkel der Sektoren sein?

Zufallsgröße X123469
P(X=k) 4 9 ???? 1 36

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Für X=1 gibt es nur das Ereignis: '1'-'1', also dass zwei mal hintereinander '1' kommt.

Wenn p1 die Wahrscheinlichkeit von '1' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '1' kommt, gelten: P(X=1) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=1) = 4 9 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 4 9 und somit p1 = 2 3 .

Ebenso gibt es für X=9 nur das Ereignis: '3'-'3', also dass zwei mal hintereinander '3' kommt.

Wenn p3 die Wahrscheinlichkeit von '3' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '3' kommt, gelten: P(X=9) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=9) = 1 36 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 1 36 und somit p3 = 1 6 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 2 3 - 1 6 = 6 6 - 4 6 - 1 6 = 1 6

Um nun noch die Mittelpunktswinkel der drei Sektoren zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 360° multiplizieren, weil ja für die Wahrscheinlichkeit eines Sektors mit Mittelpunktswinkel α gilt: p = α 360°

Somit erhalten wir:

α1 = 2 3 ⋅ 360° = 240°

α2 = 1 6 ⋅ 360° = 60°

α3 = 1 6 ⋅ 360° = 60°

Erwartungswerte

Beispiel:

Bei einer Tombola steht auf jedem zehnten Los 100 Punkte, auf jedem fünften Los 35 Punkte, auf jedem vierten Los 12 Punkte und auf allen anderen 1 Punkt. Wie viele Punkte bringt ein Los durchschnttlich ein?

Lösung einblenden

Die Zufallsgröße X beschreibt die Anzahl der Punkte auf einem Los.

Erwartungswert der Zufallsgröße X

Ereignis 100 35 12 1
Zufallsgröße xi 100 35 12 1
P(X=xi) 1 10 1 5 1 4 9 20
xi ⋅ P(X=xi) 10 7 3 9 20

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 100⋅ 1 10 + 35⋅ 1 5 + 12⋅ 1 4 + 1⋅ 9 20

= 10+ 7+ 3+ 9 20
= 409 20

20.45

Faires Spiel - fehlende Auszahlung best.

Beispiel:

Ein Spieler darf aus einer Urne mit 3 blauen, 4 roten, 6 grünen und 7 weißen Kugeln eine Kugel ziehen. Erwischt er eine blaue, so erhält er 40€. Bei rot erhält er 25€ und bei grün erhält er 10€. Welchen Betrag muss er bei weiß erhalten damit das Spiel fair ist, wenn der Einsatz 21€ beträgt ?

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis blau rot grün weiß
Zufallsgröße xi 40 25 10 x
Zufallsgröße yi (Gewinn) 19 4 -11 x-21
P(X=xi) 3 20 4 20 6 20 7 20
xi ⋅ P(X=xi) 6 5 3 7 20 ⋅ x
yi ⋅ P(Y=yi) 57 20 4 5 - 33 10 7 20 ⋅(x-21)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 21

3 20 · 40 + 4 20 · 25 + 6 20 · 10 + 7 20 x = 21

6 +5 +3 + 7 20 x = 21

6 +5 +3 + 7 20 x = 21
7 20 x +14 = 21 |⋅ 20
20( 7 20 x +14 ) = 420
7x +280 = 420 | -280
7x = 140 |:7
x = 20

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

3 20 · 19 + 4 20 · 4 + 6 20 · ( -11 ) + 7 20 ( x -21 ) = 0

57 20 + 4 5 - 33 10 + 7 20 · x + 7 20 · ( -21 ) = 0

57 20 + 4 5 - 33 10 + 7 20 · x + 7 20 · ( -21 ) = 0
57 20 + 4 5 - 33 10 + 7 20 x - 147 20 = 0
7 20 x -7 = 0 |⋅ 20
20( 7 20 x -7 ) = 0
7x -140 = 0 | +140
7x = 140 |:7
x = 20

In beiden Fällen ist also der gesuchte Betrag: 20

Erwartungswert ganz offen

Beispiel:

Ein Spielautomatenhersteller bekommt von einem Kunden den Auftrag einen Automaten zu entwickeln, der folgenden Bedingungen erfüllt.

  • Der Einsatz für ein Spiel soll 2€ betragen
  • auf lange Sicht soll er 10ct Gewinn pro Spiel für den Betreiber abwerfen
  • es sollen 5 verschiedene Felder (Kirsche, Zitrone, Apfel, Banane, Erdbeere) mit verschiedenen Auszahlungsbeträgen sein
  • bei einem Feld soll keine Auszahlung erfolgen
  • um Kunden zu locken soll bei einem Feld 24€ ausgezahlt werden
Ordne den 5 Optionen so Wahrscheinlichkeiten und Auszahlungsbeträge zu, dass diese Bedingungen erfüllt sind.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 24
Y Gewinn (Ausz. - Einsatz) -2 22
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 24
Y Gewinn (Ausz. - Einsatz) -2 22
P(X) = P(Y) 1 2 1 22
Y ⋅ P(Y) -1 1

Bei der mittleren Option setzen wir den Betrag einfach gleich wie den Einsatz, so dass diese den Erwartungswert nicht verändert.
Als Wahrscheinlichkeit wählen wir einen Bruch so, dass die Restwahrscheinlichkeit für die verbleibenden zwei Optionen nicht allzu kompliziert wird.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 2 24
Y Gewinn (Ausz. - Einsatz) -2 0 22
P(X) = P(Y) 1 2 9 44 1 22
Y ⋅ P(Y) -1 0 1

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 2 + 9 44 + 1 22 = 3 4
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 3 4 = 1 4 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 2 24
Y Gewinn (Ausz. - Einsatz) -2 0 22
P(X) = P(Y) 1 2 1 8 9 44 1 8 1 22
Y ⋅ P(Y) -1 0 1

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 1) setzt.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 1 2 3 24
Y Gewinn (Ausz. - Einsatz) -2 -1 0 1 22
P(X) = P(Y) 1 2 1 8 9 44 1 8 1 22
Y ⋅ P(Y) -1 - 1 8 0 1 8 1

Weil der Erwartungswert ja aber nicht 0 sondern - 1 10 sein soll, müssen wir nun noch den Auszahlungsbetrag bei der 2. Option (betragsmäßig) vergrößern. Und zwar so, dass er mit der Wahrscheinlichkeit 1 8 multipliziert gerade um - 1 10 wächst.
Also x ⋅ 1 8 = - 1 10 => x= - 1 10 : 1 8 = - 4 5 = -0.8
Die neue Auszahlung für 'Zitrone' ist also 0.2

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 0.2 2 3 24
Y Gewinn (Ausz. - Einsatz) -2 -1.8 0 1 22
P(X) = P(Y) 1 2 1 8 9 44 1 8 1 22
Y ⋅ P(Y) -1 - 9 40 0 1 8 1

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -2⋅ 1 2 + -1.8⋅ 1 8 + 0⋅ 9 44 + 1⋅ 1 8 + 22⋅ 1 22

= -1 - 9 40 + 0+ 1 8 + 1
= - 40 40 - 9 40 + 0 40 + 5 40 + 40 40
= - 4 40
= - 1 10

-0.1

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

Aus einem Kartenstapel mit 10 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Bestimme den Erwartungswert für die Anzahl der Ziehungen, bis das erste Herz erscheint.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'Herz' im 1-ten Versuch st: 5 7

Die Wahrscheinlichkeit für ein 'Herz' im 2-ten Versuch st: 20 91

Die Wahrscheinlichkeit für ein 'Herz' im 3-ten Versuch st: 5 91

Die Wahrscheinlichkeit für ein 'Herz' im 4-ten Versuch st: 10 1001

Die Wahrscheinlichkeit für ein 'Herz' im 5-ten Versuch st: 1 1001

Die Zufallsgröße X beschreibt die Anzahl der Ziehungen. bis das erste Herz gekommen ist.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3 4 5
Zufallsgröße xi 1 2 3 4 5
P(X=xi) 5 7 20 91 5 91 10 1001 1 1001
xi ⋅ P(X=xi) 5 7 40 91 15 91 40 1001 5 1001

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 5 7 + 2⋅ 20 91 + 3⋅ 5 91 + 4⋅ 10 1001 + 5⋅ 1 1001

= 5 7 + 40 91 + 15 91 + 40 1001 + 5 1001
= 715 1001 + 440 1001 + 165 1001 + 40 1001 + 5 1001
= 1365 1001
= 15 11

1.36

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

Auf einen Schüleraustausch bewerben sich 18 Mädchen und 7 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Bestimme den Erwartungswert (als Bruch oder Dezimalzahl) für die Anzahl an Mädchen bei den ersten 3 verlosten Plätzen.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
Mädchen -> Mädchen -> Mädchen 204 575
Mädchen -> Mädchen -> Jungs 357 2300
Mädchen -> Jungs -> Mädchen 357 2300
Mädchen -> Jungs -> Jungs 63 1150
Jungs -> Mädchen -> Mädchen 357 2300
Jungs -> Mädchen -> Jungs 63 1150
Jungs -> Jungs -> Mädchen 63 1150
Jungs -> Jungs -> Jungs 7 460

Die Wahrscheinlichkeit für 0 mal 'Mädchen' ist: 7 460

Die Wahrscheinlichkeit für 1 mal 'Mädchen' ist: 63 1150 + 63 1150 + 63 1150 = 189 1150

Die Wahrscheinlichkeit für 2 mal 'Mädchen' ist: 357 2300 + 357 2300 + 357 2300 = 1071 2300

Die Wahrscheinlichkeit für 3 mal 'Mädchen' ist: 204 575

Die Zufallsgröße X beschreibt die Anzahl an Mädchen unter den drei verlosten Plätzen.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 1 2 3
P(X=xi) 7 460 189 1150 1071 2300 204 575
xi ⋅ P(X=xi) 0 189 1150 1071 1150 612 575

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 7 460 + 1⋅ 189 1150 + 2⋅ 1071 2300 + 3⋅ 204 575

= 0+ 189 1150 + 1071 1150 + 612 575
= 0 1150 + 189 1150 + 1071 1150 + 1224 1150
= 2484 1150
= 54 25

2.16

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

In einem Stapel Karten mit 4 Asse, 7 Könige, 2 Damen und 7 Buben werden 2 Karten gezogen. Dabei zählen 2 Asse 500, 2 Könige 400, 2 Damen 100 und 2 Buben 70 Punkte. Außerdem gibt es für ein Paar aus Dame und König 25 Punkte. Wie viele Punkte kann man bei diesem Spiel erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
As -> As 3 95
As -> König 7 95
As -> Dame 2 95
As -> Bube 7 95
König -> As 7 95
König -> König 21 190
König -> Dame 7 190
König -> Bube 49 380
Dame -> As 2 95
Dame -> König 7 190
Dame -> Dame 1 190
Dame -> Bube 7 190
Bube -> As 7 95
Bube -> König 49 380
Bube -> Dame 7 190
Bube -> Bube 21 190

Die Wahrscheinlichkeit für '2 Asse' ist:

P('As'-'As')
= 3 95

Die Wahrscheinlichkeit für '2 Könige' ist:

P('König'-'König')
= 21 190

Die Wahrscheinlichkeit für '2 Damen' ist:

P('Dame'-'Dame')
= 1 190

Die Wahrscheinlichkeit für '2 Buben' ist:

P('Bube'-'Bube')
= 21 190

Die Wahrscheinlichkeit für 'Paar (D&K)' ist:

P('König'-'Dame') + P('Dame'-'König')
= 7 190 + 7 190 = 7 95

Die Zufallsgröße X beschreibt die gewonnenen Punkte.

Erwartungswert der Zufallsgröße X

Ereignis 2 Asse 2 Könige 2 Damen 2 Buben Paar (D&K)
Zufallsgröße xi 500 400 100 70 25
P(X=xi) 3 95 21 190 1 190 21 190 7 95
xi ⋅ P(X=xi) 300 19 840 19 10 19 147 19 35 19

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 500⋅ 3 95 + 400⋅ 21 190 + 100⋅ 1 190 + 70⋅ 21 190 + 25⋅ 7 95

= 300 19 + 840 19 + 10 19 + 147 19 + 35 19
= 1332 19

70.11