nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Zwei gleiche Glücksräder wie rechts in der Abbildung werden gleichzeitig gedreht. Die Zufallsgröße X beschreibt das Produkt der Zahlen die bei den beiden Glücksräder erscheinen. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Produkt der beiden Glücksräder' sind folgende Werte möglich:

Zufallsgröße X123469
zugehörige
Ereignisse
1 - 11 - 2
2 - 1
1 - 3
3 - 1
2 - 22 - 3
3 - 2
3 - 3

Zufallsgröße WS-Verteilung

Beispiel:

Drei normale Würfel werden gleichzeitig geworfen. Die Zufallsgröße X beschreibt die Anzahl der gewürfelten 6er. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Anzahl der 6er' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 1X = 2X = 3
zugehörige
Ergebnisse
0 → 0 → 00 → 0 → 1
0 → 1 → 0
1 → 0 → 0
0 → 1 → 1
1 → 0 → 1
1 → 1 → 0
1 → 1 → 1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 1X = 2X = 3
zugehörige
Wahrscheinlichkeit P(X)
5 6 5 6 5 6 5 6 5 6 1 6
+ 5 6 1 6 5 6
+ 1 6 5 6 5 6
5 6 1 6 1 6
+ 1 6 5 6 1 6
+ 1 6 1 6 5 6
1 6 1 6 1 6
  = 125 216 25 216 + 25 216 + 25 216 5 216 + 5 216 + 5 216 1 216



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X0123
P(X=k) 125 216 25 72 5 72 1 216

Zufallsgr. WS-Vert. (auch ohne zur.)

Beispiel:

In einer Urne sind sechs Kugeln, die mit der Zahl 1 beschriftet sind und vier Kugeln, die mit der Zahl 9 beschriftet sind. Es werden zwei Kugeln ohne Zurücklegen gezogen.Die Zufallsgröße X beschreibt das Produkt der Zahlen der beiden gezogenen Kugeln. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Produkt der beiden Kugeln' sind folgende Werte möglich:

Zufallsgröße XX = 1X = 9X = 81
zugehörige
Ergebnisse
1 → 11 → 9
9 → 1
9 → 9
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 1X = 9X = 81
zugehörige
Wahrscheinlichkeit P(X)
3 5 5 9 3 5 4 9
+ 2 5 6 9
2 5 3 9
  = 1 3 4 15 + 4 15 2 15



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X1981
P(X=k) 1 3 8 15 2 15

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

Aus einem Kartenstapel mit 1 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Die Zufallsgröße X beschreibt dabei die Anzahl der Ziehungen, bis die erste Herz-Karte gezogen worden ist. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 4 Karten vom Typ 'kein Herz' vorhanden sind, muss spätestens im 5-ten Versuch (wenn dann alle Karten vom Typ 'kein Herz' bereits gezogen und damit weg sind) eine Karte vom Typ 'Herz' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 5 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X12345
P(X=k) 1 5 1 5 1 5 1 5 1 5

Zufallsgröße rückwärts

Beispiel:

In einer Urne sind 20 Kugeln, die mit verschiedenen Zahlen beschriftet sind. Dabei gibt es nur die Zahlen 2, 6 und 8 als Beschriftung. Es werden zwei Kugeln mit Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Zahlen der beiden gezogenen Kugeln. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle). Wie viele Kugeln mit den oben genannten Zahlen als Beschriftung müssen jeweils in der Urne sein?

Zufallsgröße X4810121416
P(X=k) 4 25 ???? 49 400

Lösung einblenden

Für X=4 gibt es nur das Ereignis: '2'-'2', also dass zwei mal hintereinander '2' kommt.

Wenn p1 die Wahrscheinlichkeit von '2' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '2' kommt, gelten: P(X=4) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=4) = 4 25 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 4 25 und somit p1 = 2 5 .

Ebenso gibt es für X=16 nur das Ereignis: '8'-'8', also dass zwei mal hintereinander '8' kommt.

Wenn p3 die Wahrscheinlichkeit von '8' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '8' kommt, gelten: P(X=16) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=16) = 49 400 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 49 400 und somit p3 = 7 20 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 2 5 - 7 20 = 20 20 - 8 20 - 7 20 = 5 20 = 1 4

Um nun noch die jeweilige Anzahl der Kugeln mit gleicher Zahl zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 20 multiplizieren, weil ja für die Wahrscheinlichkeit für eine der n Kugeln mit einer bestimmten Zahl gilt: p = n 20

Somit erhalten wir:

n2 = 2 5 ⋅ 20 = 8

n6 = 1 4 ⋅ 20 = 5

n8 = 7 20 ⋅ 20 = 7

Erwartungswerte

Beispiel:

Bei einer Tombola steht auf jedem zehnten Los 100 Punkte, auf jedem fünften Los 25 Punkte, auf jedem vierten Los 12 Punkte und auf allen anderen 1 Punkt. Wie viele Punkte bringt ein Los durchschnttlich ein?

Lösung einblenden

Die Zufallsgröße X beschreibt die Anzahl der Punkte auf einem Los.

Erwartungswert der Zufallsgröße X

Ereignis 100 25 12 1
Zufallsgröße xi 100 25 12 1
P(X=xi) 1 10 1 5 1 4 9 20
xi ⋅ P(X=xi) 10 5 3 9 20

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 100⋅ 1 10 + 25⋅ 1 5 + 12⋅ 1 4 + 1⋅ 9 20

= 10+ 5+ 3+ 9 20
= 369 20

18.45

Faires Spiel - fehlende Auszahlung best.

Beispiel:

In einer Urne sind 7 Kugeln, die mit 8€ beschriftet sind, 4 Kugeln, die mit 16€ und 6 Kugeln, die mit 24€ beschriftet sind. Bei dem Spiel bekommt man den Betrag, der auf der Kugel steht, ausbezahlt. Außerdem sind noch weitere 3 Kugeln in der Urne. Mit welchem Betrag müsste man diese beschriften, damit das Spiel bei einem Einsatz von 19,2€ fair wäre?

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis 8 16 24 ?
Zufallsgröße xi 8 16 24 x
Zufallsgröße yi (Gewinn) -11.2 -3.2 4.8 x-19.2
P(X=xi) 7 20 4 20 6 20 3 20
xi ⋅ P(X=xi) 14 5 16 5 36 5 3 20 ⋅ x
yi ⋅ P(Y=yi) - 78.4 20 - 12.8 20 28.8 20 3 20 ⋅(x-19.2)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 19.2

7 20 · 8 + 4 20 · 16 + 6 20 · 24 + 3 20 x = 19.2

14 5 + 16 5 + 36 5 + 3 20 x = 19.2

14 5 + 16 5 + 36 5 + 3 20 x = 19,2
3 20 x + 66 5 = 19,2 |⋅ 20
20( 3 20 x + 66 5 ) = 384
3x +264 = 384 | -264
3x = 120 |:3
x = 40

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

7 20 · ( -11,2 ) + 4 20 · ( -3,2 ) + 6 20 · 4,8 + 3 20 ( x -19,2 ) = 0

- 78,4 20 - 3,2 5 + 14,4 10 + 3 20 · x + 3 20 · ( -19,2 ) = 0

- 78,4 20 - 3,2 5 + 14,4 10 + 3 20 · x + 3 20 · ( -19,2 ) = 0
-3,92 -0,64 +1,44 + 3 20 x -2,88 = 0
3 20 x -6 = 0 |⋅ 20
20( 3 20 x -6 ) = 0
3x -120 = 0 | +120
3x = 120 |:3
x = 40

In beiden Fällen ist also der gesuchte Betrag: 40

Erwartungswert ganz offen

Beispiel:

Eine Klasse möchte beim Schulfest ein Glücksrad mit Spielgeld anbieten. Dabei soll das Glücksrad in Sektoren aufgeteilt werden, in denen der Auszahlungsbetrag (z.B. 3€) drin steht. Nach langer Diskussion einigt man sich auf folgende Punkte:

  • Das Spiel mit dem Glücksrad muss fair sein
  • Der Einsatz soll 7€ betragen
  • Der minimale Auszahlungsbetrag soll 4€ sein
  • Der maximale Auszahlungsbetrag soll soll 18€ sein
  • Es sollen genau 4 Sektoren mit verschiedenen Auszahlungsbeträgen auf dem Glücksrad sein
Finde eine Möglichkeit für solch ein Glücksrad und trage diese in die Tabelle ein.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 4 18
Y Gewinn (Ausz. - Einsatz) -3 11
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 4 18
Y Gewinn (Ausz. - Einsatz) -3 11
P(X) = P(Y) 1 3 1 11
Y ⋅ P(Y) -1 1

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 3 + 1 11 = 14 33
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 14 33 = 19 33 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 4 18
Y Gewinn (Ausz. - Einsatz) -3 11
P(X) = P(Y) 1 3 19 66 19 66 1 11
Y ⋅ P(Y) -1 1

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 3 2 ) setzt.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 4 5.5 8.5 18
Y Gewinn (Ausz. - Einsatz) -3 -1.5 1.5 11
P(X) = P(Y) 1 3 19 66 19 66 1 11
Winkel 120° 103.64° 103.64° 32.73°
Y ⋅ P(Y) -1 - 19 44 19 44 1

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -3⋅ 1 3 + -1.5⋅ 19 66 + 1.5⋅ 19 66 + 11⋅ 1 11

= -1 - 19 44 + 19 44 + 1
= - 44 44 - 19 44 + 19 44 + 44 44
= 0 44
= 0

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

In einer Urne sind 1 rote und 2 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Bestimme den Erwartungswert für die Anzahl der Ziehungen, bis die erste rote Kugel gezogen ist.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'rot' im 1-ten Versuch st: 1 3

Die Wahrscheinlichkeit für ein 'rot' im 2-ten Versuch st: 1 3

Die Wahrscheinlichkeit für ein 'rot' im 3-ten Versuch st: 1 3

Die Zufallsgröße X beschreibt die Anzahl der Ziehungen. bis die erste rote Kugel gezogen ist.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3
Zufallsgröße xi 1 2 3
P(X=xi) 1 3 1 3 1 3
xi ⋅ P(X=xi) 1 3 2 3 1

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 1 3 + 2⋅ 1 3 + 3⋅ 1 3

= 1 3 + 2 3 + 1
= 1 3 + 2 3 + 3 3
= 6 3
= 2

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

Ein Spieler darf aus einer Urne mit 9 blauen und 3 roten Kugeln 3 Kugeln ohne zurücklegen ziehen. Zieht er dabei 3 blaue Kugeln, so erhält er 512€, bei 2 blauen bekommt er noch 32€, bei einer 8€. Ist gar keine blaue Kugel dabei, erhält er 0€. Welchen Gewinn kann er erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
blau -> blau -> blau 21 55
blau -> blau -> rot 9 55
blau -> rot -> blau 9 55
blau -> rot -> rot 9 220
rot -> blau -> blau 9 55
rot -> blau -> rot 9 220
rot -> rot -> blau 9 220
rot -> rot -> rot 1 220

Die Wahrscheinlichkeit für 0 mal 'blau' ist: 1 220

Die Wahrscheinlichkeit für 1 mal 'blau' ist: 9 220 + 9 220 + 9 220 = 27 220

Die Wahrscheinlichkeit für 2 mal 'blau' ist: 9 55 + 9 55 + 9 55 = 27 55

Die Wahrscheinlichkeit für 3 mal 'blau' ist: 21 55

Die Zufallsgröße X beschreibt den ausbezahlten Euro-Betrag.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 8 32 512
P(X=xi) 1 220 27 220 27 55 21 55
xi ⋅ P(X=xi) 0 54 55 864 55 10752 55

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 1 220 + 8⋅ 27 220 + 32⋅ 27 55 + 512⋅ 21 55

= 0+ 54 55 + 864 55 + 10752 55
= 0 55 + 54 55 + 864 55 + 10752 55
= 11670 55
= 2334 11

212.18

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

In einem Stapel Karten mit 10 Asse, 8 Könige, 8 Damen und 4 Buben werden 2 Karten gezogen. Dabei zählen 2 Asse 500, 2 Könige 450, 2 Damen 180 und 2 Buben 70 Punkte. Außerdem gibt es für ein Paar aus Dame und König 25 Punkte. Wie viele Punkte kann man bei diesem Spiel erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
As -> As 3 29
As -> König 8 87
As -> Dame 8 87
As -> Bube 4 87
König -> As 8 87
König -> König 28 435
König -> Dame 32 435
König -> Bube 16 435
Dame -> As 8 87
Dame -> König 32 435
Dame -> Dame 28 435
Dame -> Bube 16 435
Bube -> As 4 87
Bube -> König 16 435
Bube -> Dame 16 435
Bube -> Bube 2 145

Die Wahrscheinlichkeit für '2 Asse' ist:

P('As'-'As')
= 3 29

Die Wahrscheinlichkeit für '2 Könige' ist:

P('König'-'König')
= 28 435

Die Wahrscheinlichkeit für '2 Damen' ist:

P('Dame'-'Dame')
= 28 435

Die Wahrscheinlichkeit für '2 Buben' ist:

P('Bube'-'Bube')
= 2 145

Die Wahrscheinlichkeit für 'Paar (D&K)' ist:

P('König'-'Dame') + P('Dame'-'König')
= 32 435 + 32 435 = 64 435

Die Zufallsgröße X beschreibt die gewonnenen Punkte.

Erwartungswert der Zufallsgröße X

Ereignis 2 Asse 2 Könige 2 Damen 2 Buben Paar (D&K)
Zufallsgröße xi 500 450 180 70 25
P(X=xi) 3 29 28 435 28 435 2 145 64 435
xi ⋅ P(X=xi) 1500 29 840 29 336 29 28 29 320 87

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 500⋅ 3 29 + 450⋅ 28 435 + 180⋅ 28 435 + 70⋅ 2 145 + 25⋅ 64 435

= 1500 29 + 840 29 + 336 29 + 28 29 + 320 87
= 8432 87

96.92