nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

In einer Urne sind fünf Kugeln, die mit der Zahl 1 beschriftet sind, zwei Kugeln, die mit der Zahl 4 beschriftet sind und drei Kugeln, die mit der Zahl 9 beschriftet sind. Es werden zwei Kugeln mit Zurücklegen gezogen.Die Zufallsgröße X beschreibt die Differenz zwischen der größeren Zahl und der kleineren (oder gleich großen) Zahl der beiden gezogenen Kugeln. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz der beiden Kugeln' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 3X = 5X = 8
zugehörige
Ereignisse
1 - 1
4 - 4
9 - 9
1 - 4
4 - 1
4 - 9
9 - 4
1 - 9
9 - 1

Zufallsgröße WS-Verteilung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(
Ein Würfel mit nebenstehendem Netz wird 2 mal geworfen. Die Zufallsgröße X beschreibt dabei die Summe der Augenzahlen der beiden Würfe. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Summe der beiden Augenzahlen' sind folgende Werte möglich:

Zufallsgröße XX = 6X = 7X = 8X = 9X = 10
zugehörige
Ergebnisse
3 - 33 - 4
4 - 3
3 - 5
4 - 4
5 - 3
4 - 5
5 - 4
5 - 5
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 6X = 7X = 8X = 9X = 10
zugehörige
Wahrscheinlichkeit P(X)
1 3 1 3 1 3 1 3
+ 1 3 1 3
1 3 1 3
+ 1 3 1 3
+ 1 3 1 3
1 3 1 3
+ 1 3 1 3
1 3 1 3
  = 1 9 1 9 + 1 9 1 9 + 1 9 + 1 9 1 9 + 1 9 1 9



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X678910
P(X=k) 1 9 2 9 1 3 2 9 1 9

Zufallsgr. WS-Vert. (auch ohne zur.)

Beispiel:

In einer Urne sind sechs Kugeln, die mit der Zahl 1 beschriftet, vier Kugeln, die mit der Zahl 6 sind, und vier Kugeln, die mit der Zahl 7 beschriftet sind. Es werden zwei Kugeln ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Differenz zwischen der größten und der anderen Zahl der beiden gezogenen Kugeln. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz der beiden Kugeln' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 1X = 5X = 6
zugehörige
Ergebnisse
1 - 1
6 - 6
7 - 7
6 - 7
7 - 6
1 - 6
6 - 1
1 - 7
7 - 1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 1X = 5X = 6
zugehörige
Wahrscheinlichkeit P(X)
3 7 5 13
+ 2 7 3 13
+ 2 7 3 13
2 7 4 13
+ 2 7 4 13
3 7 4 13
+ 2 7 6 13
3 7 4 13
+ 2 7 6 13
  = 15 91 + 6 91 + 6 91 8 91 + 8 91 12 91 + 12 91 12 91 + 12 91



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X0156
P(X=k) 27 91 16 91 24 91 24 91

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

Aus einem Kartenstapel mit 6 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Die Zufallsgröße X beschreibt dabei die Anzahl der Ziehungen, bis die erste Herz-Karte gezogen worden ist. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 4 Karten vom Typ 'kein Herz' vorhanden sind, muss spätestens im 5-ten Versuch (wenn dann alle Karten vom Typ 'kein Herz' bereits gezogen und damit weg sind) eine Karte vom Typ 'Herz' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 5 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X12345
P(X=k) 3 5 4 15 1 10 1 35 1 210

Zufallsgröße rückwärts

Beispiel:

In einer Urne sind 15 Kugeln, die mit verschiedenen Zahlen beschriftet sind. Dabei gibt es nur die Zahlen 2, 4 und 9 als Beschriftung. Es werden zwei Kugeln mit Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Zahlen der beiden gezogenen Kugeln. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle). Wie viele Kugeln mit den oben genannten Zahlen als Beschriftung müssen jeweils in der Urne sein?

Zufallsgröße X468111318
P(X=k) 1 25 ???? 16 225

Lösung einblenden

Für X=4 gibt es nur das Ereignis: '2'-'2', also dass zwei mal hintereinander '2' kommt.

Wenn p1 die Wahrscheinlichkeit von '2' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '2' kommt, gelten: P(X=4) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=4) = 1 25 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 1 25 und somit p1 = 1 5 .

Ebenso gibt es für X=18 nur das Ereignis: '9'-'9', also dass zwei mal hintereinander '9' kommt.

Wenn p3 die Wahrscheinlichkeit von '9' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '9' kommt, gelten: P(X=18) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=18) = 16 225 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 16 225 und somit p3 = 4 15 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 1 5 - 4 15 = 15 15 - 3 15 - 4 15 = 8 15

Um nun noch die jeweilige Anzahl der Kugeln mit gleicher Zahl zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 15 multiplizieren, weil ja für die Wahrscheinlichkeit für eine der n Kugeln mit einer bestimmten Zahl gilt: p = n 15

Somit erhalten wir:

n2 = 1 5 ⋅ 15 = 3

n4 = 8 15 ⋅ 15 = 8

n9 = 4 15 ⋅ 15 = 4

Erwartungswerte

Beispiel:

Ein Spieler darf einmal Würfeln. Bei einer 6 bekommt er 18€, bei einer 5 bekommt er 24€, bei einer 4 bekommt er 12€. Würfelt er eine 1, 2 oder 3 so bekommt er 6€. Wie hoch müsste der Einsatz sein, damit das Spiel fair ist (also so, dass der Einsatz gleich dem Erwartungswert der Auszahlung ist)?

Lösung einblenden

Die Zufallsgröße X beschreibt den Auszahlungsbetrag.

Erwartungswert der Zufallsgröße X

Ereignis 1-3 4 5 6
Zufallsgröße xi 6 12 24 18
P(X=xi) 1 2 1 6 1 6 1 6
xi ⋅ P(X=xi) 3 2 4 3

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 6⋅ 1 2 + 12⋅ 1 6 + 24⋅ 1 6 + 18⋅ 1 6

= 3+ 2+ 4+ 3
= 12

Wenn der Erwartungswert für die Auszahlung 12€ ist, muss somit auch der Einsatz 12 betragen, damit das Spiel fair ist.

Faires Spiel - fehlende Auszahlung best.

Beispiel:

In einer Urne sind 10 Kugeln, die mit 10€ beschriftet sind, 4 Kugeln, die mit 16€ und 5 Kugeln, die mit 22€ beschriftet sind. Bei dem Spiel bekommt man den Betrag, der auf der Kugel steht, ausbezahlt. Außerdem sind noch weitere 5 Kugeln in der Urne. Mit welchem Betrag müsste man diese beschriften, damit das Spiel bei einem Einsatz von 18,08€ fair wäre?

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis 10 16 22 ?
Zufallsgröße xi 10 16 22 x
Zufallsgröße yi (Gewinn) -8.08 -2.08 3.92 x-18.08
P(X=xi) 10 24 4 24 5 24 5 24
xi ⋅ P(X=xi) 25 6 8 3 55 12 5 24 ⋅ x
yi ⋅ P(Y=yi) - 80.8 24 - 8.32 24 19.6 24 5 24 ⋅(x-18.08)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 18.08

10 24 · 10 + 4 24 · 16 + 5 24 · 22 + 5 24 x = 18.08

25 6 + 8 3 + 55 12 + 5 24 x = 18.08

25 6 + 8 3 + 55 12 + 5 24 x = 18,08
5 24 x + 137 12 = 18,08 |⋅ 24
24( 5 24 x + 137 12 ) = 433,92
5x +274 = 433,92 | -274
5x = 159,92 |:5
x = 31,984

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

10 24 · ( -8,08 ) + 4 24 · ( -2,08 ) + 5 24 · 3,92 + 5 24 ( x -18,08 ) = 0

- 40,4 12 - 2,08 6 + 19,6 24 + 5 24 · x + 5 24 · ( -18,08 ) = 0

- 40,4 12 - 2,08 6 + 19,6 24 + 5 24 · x + 5 24 · ( -18,08 ) = 0
-3,3667 -0,3467 +0,8167 + 5 24 x - 90,4 24 = 0
5 24 x - 159,92 24 = 0 |⋅ 24
24( 5 24 x - 159,92 24 ) = 0
5x -159,92 = 0 | +159,92
5x = 159,92 |:5
x = 31,984

In beiden Fällen ist also der gesuchte Betrag: 32

Erwartungswert ganz offen

Beispiel:

Ein Spielautomatenhersteller bekommt von einem Kunden den Auftrag einen Automaten zu entwickeln, der folgenden Bedingungen erfüllt.

  • Der Einsatz für ein Spiel soll 2€ betragen
  • auf lange Sicht soll er 10ct Gewinn pro Spiel für den Betreiber abwerfen
  • es sollen 5 verschiedene Felder (Kirsche, Zitrone, Apfel, Banane, Erdbeere) mit verschiedenen Auszahlungsbeträgen sein
  • bei einem Feld soll keine Auszahlung erfolgen
  • um Kunden zu locken soll bei einem Feld 34€ ausgezahlt werden
Ordne den 5 Optionen so Wahrscheinlichkeiten und Auszahlungsbeträge zu, dass diese Bedingungen erfüllt sind.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 34
Y Gewinn (Ausz. - Einsatz) -2 32
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 34
Y Gewinn (Ausz. - Einsatz) -2 32
P(X) = P(Y) 1 2 1 32
Y ⋅ P(Y) -1 1

Bei der mittleren Option setzen wir den Betrag einfach gleich wie den Einsatz, so dass diese den Erwartungswert nicht verändert.
Als Wahrscheinlichkeit wählen wir einen Bruch so, dass die Restwahrscheinlichkeit für die verbleibenden zwei Optionen nicht allzu kompliziert wird.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 2 34
Y Gewinn (Ausz. - Einsatz) -2 0 32
P(X) = P(Y) 1 2 7 32 1 32
Y ⋅ P(Y) -1 0 1

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 2 + 7 32 + 1 32 = 3 4
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 3 4 = 1 4 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 2 34
Y Gewinn (Ausz. - Einsatz) -2 0 32
P(X) = P(Y) 1 2 1 8 7 32 1 8 1 32
Y ⋅ P(Y) -1 0 1

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 1) setzt.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 1 2 3 34
Y Gewinn (Ausz. - Einsatz) -2 -1 0 1 32
P(X) = P(Y) 1 2 1 8 7 32 1 8 1 32
Y ⋅ P(Y) -1 - 1 8 0 1 8 1

Weil der Erwartungswert ja aber nicht 0 sondern - 1 10 sein soll, müssen wir nun noch den Auszahlungsbetrag bei der 2. Option (betragsmäßig) vergrößern. Und zwar so, dass er mit der Wahrscheinlichkeit 1 8 multipliziert gerade um - 1 10 wächst.
Also x ⋅ 1 8 = - 1 10 => x= - 1 10 : 1 8 = - 4 5 = -0.8
Die neue Auszahlung für 'Zitrone' ist also 0.2

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 0.2 2 3 34
Y Gewinn (Ausz. - Einsatz) -2 -1.8 0 1 32
P(X) = P(Y) 1 2 1 8 7 32 1 8 1 32
Y ⋅ P(Y) -1 - 9 40 0 1 8 1

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -2⋅ 1 2 + -1.8⋅ 1 8 + 0⋅ 7 32 + 1⋅ 1 8 + 32⋅ 1 32

= -1 - 9 40 + 0+ 1 8 + 1
= - 40 40 - 9 40 + 0 40 + 5 40 + 40 40
= - 4 40
= - 1 10

-0.1

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 18 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Mit wie vielen Hausaufgabenüberprüfungen muss die Lehrerin im Durchschnitt rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'Mädchen' im 1-ten Versuch st: 6 7

Die Wahrscheinlichkeit für ein 'Mädchen' im 2-ten Versuch st: 9 70

Die Wahrscheinlichkeit für ein 'Mädchen' im 3-ten Versuch st: 9 665

Die Wahrscheinlichkeit für ein 'Mädchen' im 4-ten Versuch st: 1 1330

Die Zufallsgröße X beschreibt Anzahl der eingesammelten Hausaufgaben bis das erste Mädchen gezogen wird.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3 4
Zufallsgröße xi 1 2 3 4
P(X=xi) 6 7 9 70 9 665 1 1330
xi ⋅ P(X=xi) 6 7 9 35 27 665 2 665

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 6 7 + 2⋅ 9 70 + 3⋅ 9 665 + 4⋅ 1 1330

= 6 7 + 9 35 + 27 665 + 2 665
= 570 665 + 171 665 + 27 665 + 2 665
= 770 665
= 22 19

1.16

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

Ein Spieler darf aus einer Urne mit 3 blauen und 7 roten Kugeln 3 Kugeln ohne zurücklegen ziehen. Zieht er dabei 3 blaue Kugeln, so erhält er 36€, bei 2 blauen bekommt er noch 12€, bei einer 7€. Ist gar keine blaue Kugel dabei, erhält er 0€. Welchen Gewinn kann er erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
blau -> blau -> blau 1 120
blau -> blau -> rot 7 120
blau -> rot -> blau 7 120
blau -> rot -> rot 7 40
rot -> blau -> blau 7 120
rot -> blau -> rot 7 40
rot -> rot -> blau 7 40
rot -> rot -> rot 7 24

Die Wahrscheinlichkeit für 0 mal 'blau' ist: 7 24

Die Wahrscheinlichkeit für 1 mal 'blau' ist: 7 40 + 7 40 + 7 40 = 21 40

Die Wahrscheinlichkeit für 2 mal 'blau' ist: 7 120 + 7 120 + 7 120 = 7 40

Die Wahrscheinlichkeit für 3 mal 'blau' ist: 1 120

Die Zufallsgröße X beschreibt den ausbezahlten Euro-Betrag.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 7 12 36
P(X=xi) 7 24 21 40 7 40 1 120
xi ⋅ P(X=xi) 0 147 40 21 10 3 10

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 7 24 + 7⋅ 21 40 + 12⋅ 7 40 + 36⋅ 1 120

= 0+ 147 40 + 21 10 + 3 10
= 0 40 + 147 40 + 84 40 + 12 40
= 243 40

6.08

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

In einem Stapel Karten mit 8 Asse, 10 Könige, 4 Damen und 3 Buben werden 2 Karten gezogen. Dabei zählen 2 Asse 1000, 2 Könige 300, 2 Damen 100 und 2 Buben 50 Punkte. Außerdem gibt es für ein Paar aus Dame und König 20 Punkte. Wie viele Punkte kann man bei diesem Spiel erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
As -> As 7 75
As -> König 2 15
As -> Dame 4 75
As -> Bube 1 25
König -> As 2 15
König -> König 3 20
König -> Dame 1 15
König -> Bube 1 20
Dame -> As 4 75
Dame -> König 1 15
Dame -> Dame 1 50
Dame -> Bube 1 50
Bube -> As 1 25
Bube -> König 1 20
Bube -> Dame 1 50
Bube -> Bube 1 100

Die Wahrscheinlichkeit für '2 Asse' ist:

P('As'-'As')
= 7 75

Die Wahrscheinlichkeit für '2 Könige' ist:

P('König'-'König')
= 3 20

Die Wahrscheinlichkeit für '2 Damen' ist:

P('Dame'-'Dame')
= 1 50

Die Wahrscheinlichkeit für '2 Buben' ist:

P('Bube'-'Bube')
= 1 100

Die Wahrscheinlichkeit für 'Paar (D&K)' ist:

P('König'-'Dame') + P('Dame'-'König')
= 1 15 + 1 15 = 2 15

Die Zufallsgröße X beschreibt die gewonnenen Punkte.

Erwartungswert der Zufallsgröße X

Ereignis 2 Asse 2 Könige 2 Damen 2 Buben Paar (D&K)
Zufallsgröße xi 1000 300 100 50 20
P(X=xi) 7 75 3 20 1 50 1 100 2 15
xi ⋅ P(X=xi) 280 3 45 2 1 2 8 3

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1000⋅ 7 75 + 300⋅ 3 20 + 100⋅ 1 50 + 50⋅ 1 100 + 20⋅ 2 15

= 280 3 + 45+ 2+ 1 2 + 8 3
= 560 6 + 270 6 + 12 6 + 3 6 + 16 6
= 861 6
= 287 2

143.5