nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Zwei gleiche Glücksräder wie rechts in der Abbildung werden gleichzeitig gedreht. Die Zufallsgröße X beschreibt die Differenz: Zahl des ersten Glücksrads - Zahl des zweiten Glücksrads. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz Glücksrad 1 - Glücksrad 2' sind folgende Werte möglich:

Zufallsgröße X-2-1012
zugehörige
Ereignisse
1 - 31 - 2
2 - 3
1 - 1
2 - 2
3 - 3
2 - 1
3 - 2
3 - 1

Zufallsgröße WS-Verteilung

Beispiel:

Drei normale Würfel werden gleichzeitig geworfen. Die Zufallsgröße X beschreibt die Anzahl der gewürfelten 6er. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Anzahl der 6er' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 1X = 2X = 3
zugehörige
Ergebnisse
0 → 0 → 00 → 0 → 1
0 → 1 → 0
1 → 0 → 0
0 → 1 → 1
1 → 0 → 1
1 → 1 → 0
1 → 1 → 1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 1X = 2X = 3
zugehörige
Wahrscheinlichkeit P(X)
5 6 5 6 5 6 5 6 5 6 1 6
+ 5 6 1 6 5 6
+ 1 6 5 6 5 6
5 6 1 6 1 6
+ 1 6 5 6 1 6
+ 1 6 1 6 5 6
1 6 1 6 1 6
  = 125 216 25 216 + 25 216 + 25 216 5 216 + 5 216 + 5 216 1 216



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X0123
P(X=k) 125 216 25 72 5 72 1 216

Zufallsgr. WS-Vert. (auch ohne zur.)

Beispiel:

In einer Urne sind zwei Kugeln, die mit der Zahl 2 beschriftet sind und sechs Kugeln, die mit der Zahl 6 beschriftet sind. Es werden zwei Kugeln ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Zahlen der beiden gezogenen Kugeln. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Summe der beiden Kugeln' sind folgende Werte möglich:

Zufallsgröße XX = 4X = 8X = 12
zugehörige
Ergebnisse
2 → 22 → 6
6 → 2
6 → 6
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 4X = 8X = 12
zugehörige
Wahrscheinlichkeit P(X)
1 4 1 7 1 4 6 7
+ 3 4 2 7
3 4 5 7
  = 1 28 3 14 + 3 14 15 28



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X4812
P(X=k) 1 28 3 7 15 28

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

In einer Urne sind 1 rote und 3 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Die Zufallsgröße X beschreibt dabei die Anzahl der Ziehungen, bis die erste rote Kugel gezogen worden ist. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 3 Kugeln vom Typ 'blau' vorhanden sind, muss spätestens im 4-ten Versuch (wenn dann alle Kugeln vom Typ 'blau' bereits gezogen und damit weg sind) eine Kugel vom Typ 'rot' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 4 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X1234
P(X=k) 1 4 1 4 1 4 1 4

Zufallsgröße rückwärts

Beispiel:

In einer Urne sind 24 Kugeln, die mit verschiedenen Zahlen beschriftet sind. Dabei gibt es nur die Zahlen 1, 6 und 9 als Beschriftung. Es werden zwei Kugeln mit Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Zahlen der beiden gezogenen Kugeln. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle). Wie viele Kugeln mit den oben genannten Zahlen als Beschriftung müssen jeweils in der Urne sein?

Zufallsgröße X2710121518
P(X=k) 25 144 ???? 25 576

Lösung einblenden

Für X=2 gibt es nur das Ereignis: '1'-'1', also dass zwei mal hintereinander '1' kommt.

Wenn p1 die Wahrscheinlichkeit von '1' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '1' kommt, gelten: P(X=2) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=2) = 25 144 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 25 144 und somit p1 = 5 12 .

Ebenso gibt es für X=18 nur das Ereignis: '9'-'9', also dass zwei mal hintereinander '9' kommt.

Wenn p3 die Wahrscheinlichkeit von '9' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '9' kommt, gelten: P(X=18) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=18) = 25 576 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 25 576 und somit p3 = 5 24 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 5 12 - 5 24 = 24 24 - 10 24 - 5 24 = 9 24 = 3 8

Um nun noch die jeweilige Anzahl der Kugeln mit gleicher Zahl zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 24 multiplizieren, weil ja für die Wahrscheinlichkeit für eine der n Kugeln mit einer bestimmten Zahl gilt: p = n 24

Somit erhalten wir:

n1 = 5 12 ⋅ 24 = 10

n6 = 3 8 ⋅ 24 = 9

n9 = 5 24 ⋅ 24 = 5

Erwartungswerte

Beispiel:

Ein Spieler darf aus einer Urne mit 5 blauen, 9 roten, 4 grünen und 6 weißen Kugeln eine Kugel ziehen. Erwischt er eine blaue, so erhält er 24€. Bei rot erhält er 8€, bei grün erhält er 30€ und bei weiß erhält er 16€. Wieviel bringt ein Zug durchschnittlich ein?

Lösung einblenden

Die Zufallsgröße X beschreibt den ausbezahlten €-Euro-Betrag.

Erwartungswert der Zufallsgröße X

Ereignis blau rot grün weiß
Zufallsgröße xi 24 8 30 16
P(X=xi) 5 24 9 24 4 24 6 24
xi ⋅ P(X=xi) 5 3 5 4

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 24⋅ 5 24 + 8⋅ 9 24 + 30⋅ 4 24 + 16⋅ 6 24

= 5+ 3+ 5+ 4
= 17

Faires Spiel - fehlende Auszahlung best.

Beispiel:

In einer Urne sind 4 Kugeln, die mit 4€ beschriftet sind, 5 Kugeln, die mit 12€ und 3 Kugeln, die mit 30€ beschriftet sind. Bei dem Spiel bekommt man den Betrag, der auf der Kugel steht, ausbezahlt. Außerdem sind noch weitere 3 Kugeln in der Urne. Mit welchem Betrag müsste man diese beschriften, damit das Spiel bei einem Einsatz von 17,47€ fair wäre?

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis 4 12 30 ?
Zufallsgröße xi 4 12 30 x
Zufallsgröße yi (Gewinn) -13.47 -5.47 12.53 x-17.47
P(X=xi) 4 15 5 15 3 15 3 15
xi ⋅ P(X=xi) 16 15 4 6 3 15 ⋅ x
yi ⋅ P(Y=yi) - 53.88 15 - 27.35 15 37.59 15 3 15 ⋅(x-17.47)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 17.47

4 15 · 4 + 5 15 · 12 + 3 15 · 30 + 3 15 x = 17.47

16 15 +4 +6 + 3 15 x = 17.47

16 15 +4 +6 + 1 5 x = 17,47
1 5 x + 166 15 = 17,47 |⋅ 15
15( 1 5 x + 166 15 ) = 262,05
3x +166 = 262,05 | -166
3x = 96,05 |:3
x = 32,0167

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

4 15 · ( -13,47 ) + 5 15 · ( -5,47 ) + 3 15 · 12,53 + 3 15 ( x -17,47 ) = 0

- 53,88 15 - 5,47 3 + 12,53 5 + 1 5 · x + 1 5 · ( -17,47 ) = 0

- 53,88 15 - 5,47 3 + 12,53 5 + 1 5 · x + 1 5 · ( -17,47 ) = 0
-3,592 -1,8233 +2,506 + 1 5 x -3,494 = 0
1 5 x -6,4033 = 0 |⋅ 5
5( 1 5 x -6,4033 ) = 0
x -32,0167 = 0 | +32,0167
x = 32,0167

In beiden Fällen ist also der gesuchte Betrag: 32

Erwartungswert ganz offen

Beispiel:

Eine Klasse möchte beim Schulfest ein Glücksrad mit Spielgeld anbieten. Dabei soll das Glücksrad in Sektoren aufgeteilt werden, in denen der Auszahlungsbetrag (z.B. 3€) drin steht. Nach langer Diskussion einigt man sich auf folgende Punkte:

  • Das Spiel mit dem Glücksrad muss fair sein
  • Der Einsatz soll 10€ betragen
  • Der minimale Auszahlungsbetrag soll 9€ sein
  • Der maximale Auszahlungsbetrag soll soll 40€ sein
  • Es sollen genau 4 Sektoren mit verschiedenen Auszahlungsbeträgen auf dem Glücksrad sein
Finde eine Möglichkeit für solch ein Glücksrad und trage diese in die Tabelle ein.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 9 40
Y Gewinn (Ausz. - Einsatz) -1 30
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 9 40
Y Gewinn (Ausz. - Einsatz) -1 30
P(X) = P(Y) 1 2 1 60
Y ⋅ P(Y) - 1 2 1 2

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 2 + 1 60 = 31 60
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 31 60 = 29 60 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 9 40
Y Gewinn (Ausz. - Einsatz) -1 30
P(X) = P(Y) 1 2 29 120 29 120 1 60
Y ⋅ P(Y) - 1 2 1 2

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 1 2 ) setzt.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 9 9.5 10.5 40
Y Gewinn (Ausz. - Einsatz) -1 -0.5 0.5 30
P(X) = P(Y) 1 2 29 120 29 120 1 60
Winkel 180° 87° 87°
Y ⋅ P(Y) - 1 2 - 29 240 29 240 1 2

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -1⋅ 1 2 + -0.5⋅ 29 120 + 0.5⋅ 29 120 + 30⋅ 1 60

= - 1 2 - 29 240 + 29 240 + 1 2
= - 120 240 - 29 240 + 29 240 + 120 240
= 0 240
= 0

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

In einer Urne sind 7 rote und 4 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Bestimme den Erwartungswert für die Anzahl der Ziehungen, bis die erste rote Kugel gezogen ist.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'rot' im 1-ten Versuch st: 7 11

Die Wahrscheinlichkeit für ein 'rot' im 2-ten Versuch st: 14 55

Die Wahrscheinlichkeit für ein 'rot' im 3-ten Versuch st: 14 165

Die Wahrscheinlichkeit für ein 'rot' im 4-ten Versuch st: 7 330

Die Wahrscheinlichkeit für ein 'rot' im 5-ten Versuch st: 1 330

Die Zufallsgröße X beschreibt die Anzahl der Ziehungen. bis die erste rote Kugel gezogen ist.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3 4 5
Zufallsgröße xi 1 2 3 4 5
P(X=xi) 7 11 14 55 14 165 7 330 1 330
xi ⋅ P(X=xi) 7 11 28 55 14 55 14 165 1 66

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 7 11 + 2⋅ 14 55 + 3⋅ 14 165 + 4⋅ 7 330 + 5⋅ 1 330

= 7 11 + 28 55 + 14 55 + 14 165 + 1 66
= 210 330 + 168 330 + 84 330 + 28 330 + 5 330
= 495 330
= 3 2

1.5

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

Auf einen Schüleraustausch bewerben sich 15 Mädchen und 9 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Bestimme den Erwartungswert (als Bruch oder Dezimalzahl) für die Anzahl an Mädchen bei den ersten 3 verlosten Plätzen.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
Mädchen -> Mädchen -> Mädchen 455 2024
Mädchen -> Mädchen -> Jungs 315 2024
Mädchen -> Jungs -> Mädchen 315 2024
Mädchen -> Jungs -> Jungs 45 506
Jungs -> Mädchen -> Mädchen 315 2024
Jungs -> Mädchen -> Jungs 45 506
Jungs -> Jungs -> Mädchen 45 506
Jungs -> Jungs -> Jungs 21 506

Die Wahrscheinlichkeit für 0 mal 'Mädchen' ist: 21 506

Die Wahrscheinlichkeit für 1 mal 'Mädchen' ist: 45 506 + 45 506 + 45 506 = 135 506

Die Wahrscheinlichkeit für 2 mal 'Mädchen' ist: 315 2024 + 315 2024 + 315 2024 = 945 2024

Die Wahrscheinlichkeit für 3 mal 'Mädchen' ist: 455 2024

Die Zufallsgröße X beschreibt die Anzahl an Mädchen unter den drei verlosten Plätzen.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 1 2 3
P(X=xi) 21 506 135 506 945 2024 455 2024
xi ⋅ P(X=xi) 0 135 506 945 1012 1365 2024

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 21 506 + 1⋅ 135 506 + 2⋅ 945 2024 + 3⋅ 455 2024

= 0+ 135 506 + 945 1012 + 1365 2024
= 0 2024 + 540 2024 + 1890 2024 + 1365 2024
= 3795 2024
= 15 8

1.88

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

Ein leidenschaftlicher Mäxle-Spieler möchte eine Mäxle-Spielautomat bauen. Wie beim richtigen Mäxle sollen auch hier zwei normale Würfel gleichzeitig geworfen werden (bzw. dies eben simuliert). Bei einem Mäxle (also eine 1 und eine 2) soll dann 12€ ausbezahlt werden, bei einem Pasch (also zwei gleiche Augenzahlen) 5€ und bei 61-65 also (also ein Würfel 6 und der andere keine 6) noch 3€. Wie groß müsste der Einsatz sein, damit das Spiel fair wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Die Wahrscheinlichkeit für 'Mäxle' ist:

P('1'-'2') + P('2'-'1')
= 1 36 + 1 36 = 1 18

Die Wahrscheinlichkeit für 'Pasch' ist:

P('1'-'1') + P('2'-'2') + P('3'-'3') + P('4'-'4') + P('5'-'5') + P('6'-'6')
= 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 = 1 6

Die Wahrscheinlichkeit für '60er' ist:

P('1'-'6') + P('2'-'6') + P('3'-'6') + P('4'-'6') + P('5'-'6') + P('6'-'1') + P('6'-'2') + P('6'-'3') + P('6'-'4') + P('6'-'5')
= 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 = 5 18

Die Zufallsgröße X beschreibt den durch die beiden Würfel ausbezahlten Euro-Betrag.

Erwartungswert der Zufallsgröße X

Ereignis Mäxle Pasch 60er
Zufallsgröße xi 12 5 3
P(X=xi) 1 18 1 6 5 18
xi ⋅ P(X=xi) 2 3 5 6 5 6

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 12⋅ 1 18 + 5⋅ 1 6 + 3⋅ 5 18

= 2 3 + 5 6 + 5 6
= 4 6 + 5 6 + 5 6
= 14 6
= 7 3

2.33