nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

In einer Urne sind vier Kugeln, die mit der Zahl 3 beschriftet sind, fünf Kugeln, die mit der Zahl 4 beschriftet sind und vier Kugeln, die mit der Zahl 8 beschriftet sind. Es werden zwei Kugeln mit Zurücklegen gezogen.Die Zufallsgröße X beschreibt die Differenz zwischen der größeren Zahl und der kleineren (oder gleich großen) Zahl der beiden gezogenen Kugeln. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz der beiden Kugeln' sind folgende Werte möglich:

Zufallsgröße X0145
zugehörige
Ereignisse
3 - 3
4 - 4
8 - 8
3 - 4
4 - 3
4 - 8
8 - 4
3 - 8
8 - 3

Zufallsgröße WS-Verteilung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(
Ein Würfel mit nebenstehendem Netz wird 2 mal geworfen. Die Zufallsgröße X beschreibt die Differenz: Augenzahl beim ersten Wurf - Augenzahl beim zweiten Wurf (es sind also auch negative Werte für diese Differenz möglich). Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz Würfel1 - Würfel2' sind folgende Werte möglich:

Zufallsgröße XX = -4X = -2X = 0X = 2X = 4
zugehörige
Ergebnisse
2 → 62 → 4
4 → 6
2 → 2
4 → 4
6 → 6
4 → 2
6 → 4
6 → 2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = -4X = -2X = 0X = 2X = 4
zugehörige
Wahrscheinlichkeit P(X)
1 3 1 3 1 3 1 3
+ 1 3 1 3
1 3 1 3
+ 1 3 1 3
+ 1 3 1 3
1 3 1 3
+ 1 3 1 3
1 3 1 3
  = 1 9 1 9 + 1 9 1 9 + 1 9 + 1 9 1 9 + 1 9 1 9



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X-4-2024
P(X=k) 1 9 2 9 1 3 2 9 1 9

Zufallsgr. WS-Vert. (auch ohne zur.)

Beispiel:

In einem Kartenstapel sind nur noch vier Karten mit dem Wert 4, zwei Karten mit dem Wert 5 und vier 8er.Es werden zwei Karten ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Differenz zwischen dem größeren und dem kleineren Wert der beiden gezogenen Karten. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz der beiden Karten' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 1X = 3X = 4
zugehörige
Ergebnisse
4 → 4
5 → 5
8 → 8
4 → 5
5 → 4
5 → 8
8 → 5
4 → 8
8 → 4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 1X = 3X = 4
zugehörige
Wahrscheinlichkeit P(X)
2 5 3 9
+ 1 5 1 9
+ 2 5 3 9
2 5 2 9
+ 1 5 4 9
1 5 4 9
+ 2 5 2 9
2 5 4 9
+ 2 5 4 9
  = 2 15 + 1 45 + 2 15 4 45 + 4 45 4 45 + 4 45 8 45 + 8 45



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X0134
P(X=k) 13 45 8 45 8 45 16 45

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

In einer Urne sind 6 rote und 3 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Die Zufallsgröße X beschreibt dabei die Anzahl der Ziehungen, bis die erste rote Kugel gezogen worden ist. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 3 Kugeln vom Typ 'blau' vorhanden sind, muss spätestens im 4-ten Versuch (wenn dann alle Kugeln vom Typ 'blau' bereits gezogen und damit weg sind) eine Kugel vom Typ 'rot' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 4 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X1234
P(X=k) 2 3 1 4 1 14 1 84

Zufallsgröße rückwärts

Beispiel:

In einer Urne sind 20 Kugeln, die mit verschiedenen Zahlen beschriftet sind. Dabei gibt es nur die Zahlen 3, 6 und 9 als Beschriftung. Es werden zwei Kugeln mit Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Zahlen der beiden gezogenen Kugeln. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle). Wie viele Kugeln mit den oben genannten Zahlen als Beschriftung müssen jeweils in der Urne sein?

Zufallsgröße X69121518
P(X=k) 49 400 ??? 9 100

Lösung einblenden

Für X=6 gibt es nur das Ereignis: '3'-'3', also dass zwei mal hintereinander '3' kommt.

Wenn p1 die Wahrscheinlichkeit von '3' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '3' kommt, gelten: P(X=6) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=6) = 49 400 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 49 400 und somit p1 = 7 20 .

Ebenso gibt es für X=18 nur das Ereignis: '9'-'9', also dass zwei mal hintereinander '9' kommt.

Wenn p3 die Wahrscheinlichkeit von '9' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '9' kommt, gelten: P(X=18) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=18) = 9 100 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 9 100 und somit p3 = 3 10 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 7 20 - 3 10 = 20 20 - 7 20 - 6 20 = 7 20

Um nun noch die jeweilige Anzahl der Kugeln mit gleicher Zahl zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 20 multiplizieren, weil ja für die Wahrscheinlichkeit für eine der n Kugeln mit einer bestimmten Zahl gilt: p = n 20

Somit erhalten wir:

n3 = 7 20 ⋅ 20 = 7

n6 = 7 20 ⋅ 20 = 7

n9 = 3 10 ⋅ 20 = 6

Erwartungswerte

Beispiel:

Ein Spieler darf aus einer Urne mit 3 blauen, 3 roten, 7 grünen und 7 weißen Kugeln eine Kugel ziehen. Erwischt er eine blaue, so erhält er 80€. Bei rot erhält er 160€, bei grün erhält er 20€ und bei weiß erhält er 40€. Wieviel bringt ein Zug durchschnittlich ein?

Lösung einblenden

Die Zufallsgröße X beschreibt den ausbezahlten €-Euro-Betrag.

Erwartungswert der Zufallsgröße X

Ereignis blau rot grün weiß
Zufallsgröße xi 80 160 20 40
P(X=xi) 3 20 3 20 7 20 7 20
xi ⋅ P(X=xi) 12 24 7 14

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 80⋅ 3 20 + 160⋅ 3 20 + 20⋅ 7 20 + 40⋅ 7 20

= 12+ 24+ 7+ 14
= 57

Faires Spiel - fehlende Auszahlung best.

Beispiel:

In einer Urne sind 9 Kugeln, die mit 6€ beschriftet sind, 9 Kugeln, die mit 12€ und 6 Kugeln, die mit 22€ beschriftet sind. Bei dem Spiel bekommt man den Betrag, der auf der Kugel steht, ausbezahlt. Außerdem sind noch weitere 6 Kugeln in der Urne. Mit welchem Betrag müsste man diese beschriften, damit das Spiel bei einem Einsatz von 17,8€ fair wäre?

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis 6 12 22 ?
Zufallsgröße xi 6 12 22 x
Zufallsgröße yi (Gewinn) -11.8 -5.8 4.2 x-17.8
P(X=xi) 9 30 9 30 6 30 6 30
xi ⋅ P(X=xi) 9 5 18 5 22 5 6 30 ⋅ x
yi ⋅ P(Y=yi) - 106.2 30 - 52.2 30 25.2 30 6 30 ⋅(x-17.8)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 17.8

9 30 · 6 + 9 30 · 12 + 6 30 · 22 + 6 30 x = 17.8

9 5 + 18 5 + 22 5 + 6 30 x = 17.8

9 5 + 18 5 + 22 5 + 1 5 x = 17,8
1 5 x + 49 5 = 17,8 |⋅ 5
5( 1 5 x + 49 5 ) = 89
x +49 = 89 | -49
x = 40

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

9 30 · ( -11,8 ) + 9 30 · ( -5,8 ) + 6 30 · 4,2 + 6 30 ( x -17,8 ) = 0

- 35,4 10 - 17,4 10 + 4,2 5 + 1 5 · x + 1 5 · ( -17,8 ) = 0

- 35,4 10 - 17,4 10 + 4,2 5 + 1 5 · x + 1 5 · ( -17,8 ) = 0
-3,54 -1,74 +0,84 + 1 5 x -3,56 = 0
1 5 x -8 = 0 |⋅ 5
5( 1 5 x -8 ) = 0
x -40 = 0 | +40
x = 40

In beiden Fällen ist also der gesuchte Betrag: 40

Erwartungswert ganz offen

Beispiel:

Ein Spielautomatenhersteller bekommt von einem Kunden den Auftrag einen Automaten zu entwickeln, der folgenden Bedingungen erfüllt.

  • Der Einsatz für ein Spiel soll 2€ betragen
  • auf lange Sicht soll er 10ct Gewinn pro Spiel für den Betreiber abwerfen
  • es sollen 5 verschiedene Felder (Kirsche, Zitrone, Apfel, Banane, Erdbeere) mit verschiedenen Auszahlungsbeträgen sein
  • bei einem Feld soll keine Auszahlung erfolgen
  • um Kunden zu locken soll bei einem Feld 44€ ausgezahlt werden
Ordne den 5 Optionen so Wahrscheinlichkeiten und Auszahlungsbeträge zu, dass diese Bedingungen erfüllt sind.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 44
Y Gewinn (Ausz. - Einsatz) -2 42
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 44
Y Gewinn (Ausz. - Einsatz) -2 42
P(X) = P(Y) 1 2 1 42
Y ⋅ P(Y) -1 1

Bei der mittleren Option setzen wir den Betrag einfach gleich wie den Einsatz, so dass diese den Erwartungswert nicht verändert.
Als Wahrscheinlichkeit wählen wir einen Bruch so, dass die Restwahrscheinlichkeit für die verbleibenden zwei Optionen nicht allzu kompliziert wird.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 2 44
Y Gewinn (Ausz. - Einsatz) -2 0 42
P(X) = P(Y) 1 2 19 84 1 42
Y ⋅ P(Y) -1 0 1

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 2 + 19 84 + 1 42 = 3 4
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 3 4 = 1 4 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 2 44
Y Gewinn (Ausz. - Einsatz) -2 0 42
P(X) = P(Y) 1 2 1 8 19 84 1 8 1 42
Y ⋅ P(Y) -1 0 1

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 1) setzt.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 1 2 3 44
Y Gewinn (Ausz. - Einsatz) -2 -1 0 1 42
P(X) = P(Y) 1 2 1 8 19 84 1 8 1 42
Y ⋅ P(Y) -1 - 1 8 0 1 8 1

Weil der Erwartungswert ja aber nicht 0 sondern - 1 10 sein soll, müssen wir nun noch den Auszahlungsbetrag bei der 2. Option (betragsmäßig) vergrößern. Und zwar so, dass er mit der Wahrscheinlichkeit 1 8 multipliziert gerade um - 1 10 wächst.
Also x ⋅ 1 8 = - 1 10 => x= - 1 10 : 1 8 = - 4 5 = -0.8
Die neue Auszahlung für 'Zitrone' ist also 0.2

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 0.2 2 3 44
Y Gewinn (Ausz. - Einsatz) -2 -1.8 0 1 42
P(X) = P(Y) 1 2 1 8 19 84 1 8 1 42
Y ⋅ P(Y) -1 - 9 40 0 1 8 1

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -2⋅ 1 2 + -1.8⋅ 1 8 + 0⋅ 19 84 + 1⋅ 1 8 + 42⋅ 1 42

= -1 - 9 40 + 0+ 1 8 + 1
= - 40 40 - 9 40 + 0 40 + 5 40 + 40 40
= - 4 40
= - 1 10

-0.1

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

In einer Urne sind 10 rote und 2 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Bestimme den Erwartungswert für die Anzahl der Ziehungen, bis die erste rote Kugel gezogen ist.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'rot' im 1-ten Versuch st: 5 6

Die Wahrscheinlichkeit für ein 'rot' im 2-ten Versuch st: 5 33

Die Wahrscheinlichkeit für ein 'rot' im 3-ten Versuch st: 1 66

Die Zufallsgröße X beschreibt die Anzahl der Ziehungen. bis die erste rote Kugel gezogen ist.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3
Zufallsgröße xi 1 2 3
P(X=xi) 5 6 5 33 1 66
xi ⋅ P(X=xi) 5 6 10 33 1 22

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 5 6 + 2⋅ 5 33 + 3⋅ 1 66

= 5 6 + 10 33 + 1 22
= 55 66 + 20 66 + 3 66
= 78 66
= 13 11

1.18

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

In einem Kartenstapel befinden sich 4 Asse und 4 weitere Karten. Nachdem diese gut gemischt wurden, darf ein Spieler 3 Karten ziehen. Für jedes As, das unter den drei Karten ist, erhält er dabei 10€. Mit welchem Gewinn kann er rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
As -> As -> As 1 14
As -> As -> andereKarte 1 7
As -> andereKarte -> As 1 7
As -> andereKarte -> andereKarte 1 7
andereKarte -> As -> As 1 7
andereKarte -> As -> andereKarte 1 7
andereKarte -> andereKarte -> As 1 7
andereKarte -> andereKarte -> andereKarte 1 14

Die Wahrscheinlichkeit für 0 mal 'As' ist: 1 14

Die Wahrscheinlichkeit für 1 mal 'As' ist: 1 7 + 1 7 + 1 7 = 3 7

Die Wahrscheinlichkeit für 2 mal 'As' ist: 1 7 + 1 7 + 1 7 = 3 7

Die Wahrscheinlichkeit für 3 mal 'As' ist: 1 14

Die Zufallsgröße X beschreibt den Gewinn für die 3 gezogenen Karten.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 10 20 30
P(X=xi) 1 14 3 7 3 7 1 14
xi ⋅ P(X=xi) 0 30 7 60 7 15 7

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 1 14 + 10⋅ 3 7 + 20⋅ 3 7 + 30⋅ 1 14

= 0+ 30 7 + 60 7 + 15 7
= 0 7 + 30 7 + 60 7 + 15 7
= 105 7
= 15

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

In einem Stapel Karten mit 5 Asse, 5 Könige, 5 Damen und 5 Buben werden 2 Karten gezogen. Dabei zählen 2 Asse 500, 2 Könige 400, 2 Damen 240 und 2 Buben 60 Punkte. Außerdem gibt es für ein Paar aus Dame und König 25 Punkte. Wie viele Punkte kann man bei diesem Spiel erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
As -> As 1 19
As -> König 5 76
As -> Dame 5 76
As -> Bube 5 76
König -> As 5 76
König -> König 1 19
König -> Dame 5 76
König -> Bube 5 76
Dame -> As 5 76
Dame -> König 5 76
Dame -> Dame 1 19
Dame -> Bube 5 76
Bube -> As 5 76
Bube -> König 5 76
Bube -> Dame 5 76
Bube -> Bube 1 19

Die Wahrscheinlichkeit für '2 Asse' ist:

P('As'-'As')
= 1 19

Die Wahrscheinlichkeit für '2 Könige' ist:

P('König'-'König')
= 1 19

Die Wahrscheinlichkeit für '2 Damen' ist:

P('Dame'-'Dame')
= 1 19

Die Wahrscheinlichkeit für '2 Buben' ist:

P('Bube'-'Bube')
= 1 19

Die Wahrscheinlichkeit für 'Paar (D&K)' ist:

P('König'-'Dame') + P('Dame'-'König')
= 5 76 + 5 76 = 5 38

Die Zufallsgröße X beschreibt die gewonnenen Punkte.

Erwartungswert der Zufallsgröße X

Ereignis 2 Asse 2 Könige 2 Damen 2 Buben Paar (D&K)
Zufallsgröße xi 500 400 240 60 25
P(X=xi) 1 19 1 19 1 19 1 19 5 38
xi ⋅ P(X=xi) 500 19 400 19 240 19 60 19 125 38

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 500⋅ 1 19 + 400⋅ 1 19 + 240⋅ 1 19 + 60⋅ 1 19 + 25⋅ 5 38

= 500 19 + 400 19 + 240 19 + 60 19 + 125 38
= 2525 38

66.45