nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Substitution bei Polynomen

Beispiel:

Löse die folgende Gleichung:

x 4 +7x - 8 x 2 = 0

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 2 weg!

x 4 +7x - 8 x 2 = 0 |⋅( x 2 )
x 4 · x 2 + 7x · x 2 - 8 x 2 · x 2 = 0
x 4 · x 2 +7 x · x 2 -8 = 0
x 6 +7 x 3 -8 = 0
x 6 +7 x 3 -8 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 3

Draus ergibt sich die quadratische Gleichung:

u 2 +7u -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -7 ± 7 2 -4 · 1 · ( -8 ) 21

u1,2 = -7 ± 49 +32 2

u1,2 = -7 ± 81 2

u1 = -7 + 81 2 = -7 +9 2 = 2 2 = 1

u2 = -7 - 81 2 = -7 -9 2 = -16 2 = -8

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 7 2 ) 2 - ( -8 ) = 49 4 + 8 = 49 4 + 32 4 = 81 4

x1,2 = - 7 2 ± 81 4

x1 = - 7 2 - 9 2 = - 16 2 = -8

x2 = - 7 2 + 9 2 = 2 2 = 1

Rücksubstitution:

u1: x 3 = 1

x 3 = 1 | 3
x1 = 1 3 = 1

u2: x 3 = -8

x 3 = -8 | 3
x2 = - 8 3 = -2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -2 ; 1 }