nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Konstruierbarkeit mit Kongruenzs.

Beispiel:

Gegeben sind die folgenden Seitenlängen und Winkel eines Dreiecks: a=4.5cm, b=6.5cm und β=60°

Entscheide mit Hilfe der Kongruenzsätze, ob sich dieses Dreieck eindeutig konstruieren lässt. Falls dies der Fall ist, konstruiere es in deinem Heft und miss die Höhe ha ab.

Lösung einblenden

Wir erkennen, dass gegenüber dem gegebenen Winkel β die längere Seite b gegeben ist. Also lässt sich der Kongruenzsatz Ssw anwenden und das Dreieck eindeutig konstruieren:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
  1. Zuerst zeichnen wir die Strecke, die an dem gegebenen Winkel anliegt, also a ein und benennen die Enden Strecke C und B. (schwarz)

  2. Jetzt zeichnen wir in B den Winkel β=60° ein (blau).

  3. Die Strecke b=6.5 liegt zwischen C und A, also muss der Punkt A den Abstand b=6.5 vom Punkt C haben und somit auf dem Kreis um C mit Radius 6.5 liegen. Deswegen zeichnen wir diesen Kreisbogen (in rot) ein.

  4. Dieser Kreisbogen schneidet die Halbgerade im Punkt A.

  5. Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
  6. Wir verbinden den neuen Punkt A nun noch mit B und erhalten das fertige Dreieck.

Jetzt können wir die gesuchte Höhe ha ins Dreieck einzeichnen und abmessen: ha ≈ 6.5cm

Kongruenzsätze

Beispiel:

Gegeben sind die folgenden Seitenlängen und Winkel eines Dreiecks: c=5.5cm, a=6.5cm und α=90°

Entscheide auch mit Hilfe der Kongruenzsätze, ob sich dieses Dreieck eindeutig konstruieren lässt, bzw. überhaupt konstruieren lässt.

Lösung einblenden

Wir erkennen, dass gegenüber dem gegebenen Winkel α die längere Seite a gegeben ist. Also lässt sich der Kongruenzsatz Ssw anwenden und das Dreieck eindeutig konstruieren:

Ähnliche Dreiecke

Beispiel:

Ein Dreieck hat die Seitenlängen a=6cm, b=4cm und c=6cm. Finde ein dazu ähnliches Dreieck mit der Seitenlänge c'=9cm.

Klicke dazu mit der Maus dort auf die Zeichenfläche wo der gesuchte Punkt C' sein müsste.

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zuerst berechnen wir den Faktor mit dem die Strecke c auf c' gestreckt wurde:

k = 9 6 = 1.5

Da bei ähnlichen Dreiecken die Seitenverhältnisse gleich bleiben, müssen auch die beiden anderen Seiten a und b mit diesem Streckfaktor gestreckt werden:

b' = k ⋅ b = 1.5 ⋅ 4 = 6
a' = k ⋅ a = 1.5 ⋅ 6 = 9

Ähnliche Dreiecke (Zahleneingabe)

Beispiel:

Ein Dreieck hat die Seitenlängen a=4.5cm, b=5.5cm und c=3.5cm. Finde ein dazu ähnliches Dreieck mit der Seitenlänge c'=6.3cm.

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zuerst berechnen wir den Faktor mit dem die Strecke c auf c' gestreckt wurde:

k = 6.3 3.5 = 1.8

Da bei ähnlichen Dreiecken die Seitenverhältnisse gleich bleiben, müssen auch die beiden anderen Seiten a und b mit diesem Streckfaktor gestreckt werden:

b' = k ⋅ b = 1.8 ⋅ 5.5 = 9.9
a' = k ⋅ a = 1.8 ⋅ 4.5 = 8.1