Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Exponentialgleichungen
Beispiel:
Löse die folgende Gleichung:
=
Wir schreiben einfach um:
=
=
Jetzt stehen links und rechts zwei Potenzen mit der gleichen Basis 7.
Um die Gleichung zu lösen, können wir also einfach die beiden Exponenten (links: und rechts: -1) gleichsetzen:
| = | | | ||
| = | |: | ||
| = |
L={ }
Exponentialgl. mit 2 e-Termen
Beispiel:
Löse die folgende Gleichung:
=
Da links und rechts jeweils die gleiche Basis (und der gleiche Koeffizient)
steht,
sind die linke und die rechte Seite genau dann gleich, wenn die Exponenten gleich sind.
Wir setzen also nur die Exponenten gleich:
| = | | | ||
| = | |: | ||
| = |
L={
Parameter finden mit f(x0)=y0 (e-Fktn)
Beispiel:
Für welches t liegt der Punkt A(| ) auf dem Graph der Funktion f mit ?
Wir machen einfach eine Punktprobe mit A(| ) in f mit :
= f()
=
=
=
Jetzt müssen wir also nur noch die Gleichung = nach t auflösen.
| = | | | ||
| = | |:() | ||
| = |
Für t= liegt also der Punkt A auf dem Graph von f.
Exponentialgl. Substitution BF
Beispiel:
Löse die folgende Gleichung:
=
| = |
Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!
Setze u =
Draus ergibt sich die quadratische Gleichung:
= 0
Lösen mit der a-b-c-Formel (Mitternachtsformel):
eingesetzt in x1,2 = ergibt:
u1,2 =
u1,2 =
u1,2 =
u1 =
= =
u2 =
Lösen mit der p-q-Formel (x² + px + q = 0):
vor dem Einsetzen in x1,2 =
berechnen wir zuerst die Diskriminante D =
D =
x1,2 =
x1 =
x2 =
Rücksubstitution:
u1:
|
|
= | |ln(⋅) | |
| x1 | = |
|
≈ 1.9459 |
u2:
|
|
= | |ln(⋅) | |
| x2 | = | ≈ 0 |
L={
