nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

2 4 x = 32

Lösung einblenden
2 4 x = 32 |:2
4 x = 16 |lg(⋅)
lg( 4 x ) = lg( 16 )
x · lg( 4 ) = lg( 16 ) |: lg( 4 )
x = lg( 16 ) lg( 4 )
x = 2

L={ 2 }

Im Idealfall erkennt man bereits:

4 x = 16

4 x = 4 2

und kann so schneller und ohne WTR auf die Lösung x=2 kommen.

Exponentialgl. vermischt

Beispiel:

Löse die folgende Gleichung:

( 8 e 4x -5 ) · ( x 2 +2x ) = 0

Lösung einblenden
( 8 e 4x -5 ) ( x 2 +2x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

8 e 4x -5 = 0 | +5
8 e 4x = 5 |:8
e 4x = 5 8 |ln(⋅)
4x = ln( 5 8 ) |:4
x1 = 1 4 ln( 5 8 ) ≈ -0.1175

2. Fall:

x 2 +2x = 0
x ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x2 = 0

2. Fall:

x +2 = 0 | -2
x3 = -2

L={ -2 ; 1 4 ln( 5 8 ) ; 0}

prozentale Änderung bestimmen

Beispiel:

Gib für die exponentielle Wachstumsfunktion f mit f(t)= 150 ( 26 25 ) t die prozentuale Änderung pro Zeiteinheit an. Handelt es sich um prozentuale Zunahme oder um prozentuale Abnahme?

Lösung einblenden

f(0) = 150

f(1) = 150 26 25

f(2) = 150 26 25 26 25

f(3) = 150 26 25 26 25 26 25

f(4) = 150 26 25 26 25 26 25 26 25

...

Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit 26 25 multipliziert. Da 26 25 > 1 ist, werden die Funktionswerte mit jedem Zeitschritt größer, und zwar auf das 26 25 -fache (oder auf das 104 100 -fache), also auf 104 % des vorherigen Funktionswertes.

Die prozentuale Zunahme beträgt also 104% - 100% = 4 %

Exponentialgl. Substitution BF

Beispiel:

Löse die folgende Gleichung:

e 2x +2 e x -3 = 0

Lösung einblenden
e 2x +2 e x -3 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 +2u -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

u1,2 = -2 ± 4 +12 2

u1,2 = -2 ± 16 2

u1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

u2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -3 ) = 1+ 3 = 4

x1,2 = -1 ± 4

x1 = -1 - 2 = -3

x2 = -1 + 2 = 1

Rücksubstitution:

u1: e x = 1

e x = 1 |ln(⋅)
x1 = 0 ≈ 0

u2: e x = -3

e x = -3

Diese Gleichung hat keine Lösung!

L={0}