nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgleichungen

Beispiel:

Löse die folgende Gleichung:

3 3x +3 = 1 3

Lösung einblenden

Wir schreiben einfach um:

3 3x +3 = 1 3

3 3x +3 = 3 -1

Jetzt stehen links und rechts zwei Potenzen mit der gleichen Basis 3.

Um die Gleichung zu lösen, können wir also einfach die beiden Exponenten (links: 3x +3 und rechts: -1) gleichsetzen:

3x +3 = -1 | -3
3x = -4 |:3
x = - 4 3

L={ - 4 3 }

Exponentialgl. vermischt

Beispiel:

Löse die folgende Gleichung:

e 2x + e x -30 = 0

Lösung einblenden
e 2x + e x -30 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 + u -30 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -1 ± 1 2 -4 · 1 · ( -30 ) 21

u1,2 = -1 ± 1 +120 2

u1,2 = -1 ± 121 2

u1 = -1 + 121 2 = -1 +11 2 = 10 2 = 5

u2 = -1 - 121 2 = -1 -11 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -30 ) = 1 4 + 30 = 1 4 + 120 4 = 121 4

x1,2 = - 1 2 ± 121 4

x1 = - 1 2 - 11 2 = - 12 2 = -6

x2 = - 1 2 + 11 2 = 10 2 = 5

Rücksubstitution:

u1: e x = 5

e x = 5 |ln(⋅)
x1 = ln( 5 ) ≈ 1.6094

u2: e x = -6

e x = -6

Diese Gleichung hat keine Lösung!

L={ ln( 5 ) }

Parameter finden mit f(x0)=y0 (e-Fktn)

Beispiel:

Für welches t liegt der Punkt A(0| 3 ) auf dem Graph der Funktion f mit ft(x)= 6 t e x -6 ?

Lösung einblenden

Wir machen einfach eine Punktprobe mit A(0| 3 ) in f mit f(x)= 6 t e x -6 :

3 = f(0)

3 = 6 t e 0 -6

3 = 6 t -6

Jetzt müssen wir also nur noch die Gleichung 6t -6 = 3 nach t auflösen.

6t -6 = 3 | +6
6t = 9 |:6
t = 3 2 = 1.5

Für t= 3 2 liegt also der Punkt A auf dem Graph von f.

Exponentialgl. Substitution

Beispiel:

Löse die folgende Gleichung:

e 3x -2 e x -3 e -x = 0

Lösung einblenden
e 3x -2 e x -3 e -x = 0
( e 4x -2 e 2x -3 ) e -x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 4x -2 e 2x -3 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e 2x

Draus ergibt sich die quadratische Gleichung:

u 2 -2u -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -3 ) 21

u1,2 = +2 ± 4 +12 2

u1,2 = +2 ± 16 2

u1 = 2 + 16 2 = 2 +4 2 = 6 2 = 3

u2 = 2 - 16 2 = 2 -4 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -3 ) = 1+ 3 = 4

x1,2 = 1 ± 4

x1 = 1 - 2 = -1

x2 = 1 + 2 = 3

Rücksubstitution:

u1: e 2x = 3

e 2x = 3 |ln(⋅)
2x = ln( 3 ) |:2
x1 = 1 2 ln( 3 ) ≈ 0.5493

u2: e 2x = -1

e 2x = -1

Diese Gleichung hat keine Lösung!


2. Fall:

e -x = 0

Diese Gleichung hat keine Lösung!

L={ 1 2 ln( 3 ) }