nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgl. elementar

Beispiel:

Löse die Gleichung ohne WTR: e x +1 = e 2

Lösung einblenden

e x +1 = e 2

Wir erkennen, dass links und rechts Exponentialterme mit gleicher Basis e stehen.
Diese Terme sind genau dann gleich, wenn ihre Exponenten gleich sind. Deswegen setzen wir einfach nur diese gleich:

x +1 = 2 | -1
x = 1

Nullstellen bei ln-Funktionen

Beispiel:

Bestimme die Nullstellen der Funktion f mit f(x)= ln( x ) -3

Lösung einblenden
ln( x ) -3 = 0 | +3
ln( x ) = 3 |e(⋅)
x = e 3

L={ e 3 }

Halbwerts-/Verdoppl.-Zeit (Anwendung)

Beispiel:

In einem Land hat man festgestellt, dass die Anzahl einer bestimmten Insektenart jedes Jahr um 15% abnimmt. Wann hat sich die Anzahl dieser Insektenart halbiert?

Lösung einblenden

Die prozentuale Abnahme um 15% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 15% weggehen,
also Bneu = B - 15 100 ⋅B = (1 - 15 100 ) ⋅ B = 0,85 ⋅ B.

Somit gilt für den Wachstumsfaktor a (in f(t)= c · a t ): a=0,85.

Mit der Formel für die Halbwertszeit gilt: TH = loga( 1 2 ).

Also TH = log0.85( 1 2 ) ≈ 4.27 Jahre

Exponentialgl. Substitution BF

Beispiel:

Löse die folgende Gleichung:

e 2x - e x -20 = 0

Lösung einblenden
e 2x - e x -20 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 - u -20 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -20 ) 21

u1,2 = +1 ± 1 +80 2

u1,2 = +1 ± 81 2

u1 = 1 + 81 2 = 1 +9 2 = 10 2 = 5

u2 = 1 - 81 2 = 1 -9 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -20 ) = 1 4 + 20 = 1 4 + 80 4 = 81 4

x1,2 = 1 2 ± 81 4

x1 = 1 2 - 9 2 = - 8 2 = -4

x2 = 1 2 + 9 2 = 10 2 = 5

Rücksubstitution:

u1: e x = 5

e x = 5 |ln(⋅)
x1 = ln( 5 ) ≈ 1.6094

u2: e x = -4

e x = -4

Diese Gleichung hat keine Lösung!

L={ ln( 5 ) }