nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

e -2x = 4

Lösung einblenden
e -2x = 4 |ln(⋅)
-2x = ln( 4 ) |:-2
x = - 1 2 ln( 4 ) ≈ -0.6931
x = - ln( 2 )

L={ - ln( 2 ) }

Exponentialgl. vermischt

Beispiel:

Löse die folgende Gleichung:

e 2x -5 e x -14 = 0

Lösung einblenden
e 2x -5 e x -14 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -5u -14 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +5 ± ( -5 ) 2 -4 · 1 · ( -14 ) 21

u1,2 = +5 ± 25 +56 2

u1,2 = +5 ± 81 2

u1 = 5 + 81 2 = 5 +9 2 = 14 2 = 7

u2 = 5 - 81 2 = 5 -9 2 = -4 2 = -2

Rücksubstitution:

u1: e x = 7

e x = 7 |ln(⋅)
x1 = ln( 7 ) ≈ 1.9459

u2: e x = -2

e x = -2

Diese Gleichung hat keine Lösung!

L={ ln( 7 ) }

Halbwerts-/Verdoppl.-Zeit (Anwendung)

Beispiel:

In einem Land hat man festgestellt, dass die Anzahl einer bestimmten Insektenart jedes Jahr um 13% abnimmt. Wann hat sich die Anzahl dieser Insektenart halbiert?

Lösung einblenden

Die prozentuale Abnahme um 13% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 13% weggehen,
also Bneu = B - 13 100 ⋅B = (1 - 13 100 ) ⋅ B = 0,87 ⋅ B.

Somit gilt für den Wachstumsfaktor a (in f(t)= c · a t ): a=0,87.

Mit der Formel für die Halbwertszeit gilt: TH = loga( 1 2 ).

Also TH = log0.87( 1 2 ) ≈ 4.98 Jahre

Exponentialgl. Substitution

Beispiel:

Löse die folgende Gleichung:

e 4x +2 e 3x -3 e 2x = 0

Lösung einblenden
e 4x +2 e 3x -3 e 2x = 0
( e 2x +2 e x -3 ) e 2x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 2x +2 e x -3 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 +2u -3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

u1,2 = -2 ± 4 +12 2

u1,2 = -2 ± 16 2

u1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

u2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Rücksubstitution:

u1: e x = 1

e x = 1 |ln(⋅)
x1 = 0 ≈ 0

u2: e x = -3

e x = -3

Diese Gleichung hat keine Lösung!


2. Fall:

e 2x = 0

Diese Gleichung hat keine Lösung!

L={0}