nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

-8 e -6x = 0

Lösung einblenden
-8 e -6x = 0 |:-8
e -6x = 0

Diese Gleichung hat keine Lösung!

L={}

Nullstellen bei ln-Funktionen

Beispiel:

Bestimme die Nullstellen der Funktion f mit f(x)= -2 ln( x ) -2

Lösung einblenden
-2 ln( x ) -2 = 0 | +2
-2 ln( x ) = 2 |: ( -2 )
ln( x ) = -1 |e(⋅)
x = 1 e

L={ 1 e }

Halbwerts-/Verdoppl.-Zeit (Anwendung)

Beispiel:

Bei einer Internetseite kann man davon ausgehen, dass sich die Anzahl der Nutzer wöchentlich um 11% vermehrt. Wie lange braucht es, bis sich die Nutzerzahl verdoppelt hat?

Lösung einblenden

Die prozentuale Zunahme um 11% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 11% dazukommen,
also Bneu = B + 11 100 ⋅B = (1 + 11 100 ) ⋅ B = 1,11 ⋅ B.

Somit gilt für den Wachstumsfaktor a (in f(t)= c · a t ): a=1,11.

Mit der Formel für die Verdopplungszeit gilt: TV = loga(2).

Also TV = log1.11(2) ≈ 6.64 Wochen

Exponentialgl. Substitution

Beispiel:

Löse die folgende Gleichung:

e 4x - e x -12 e -2x = 0

Lösung einblenden
e 4x - e x -12 e -2x = 0
( e 6x - e 3x -12 ) e -2x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 6x - e 3x -12 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e 3x

Draus ergibt sich die quadratische Gleichung:

u 2 - u -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -12 ) 21

u1,2 = +1 ± 1 +48 2

u1,2 = +1 ± 49 2

u1 = 1 + 49 2 = 1 +7 2 = 8 2 = 4

u2 = 1 - 49 2 = 1 -7 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -12 ) = 1 4 + 12 = 1 4 + 48 4 = 49 4

x1,2 = 1 2 ± 49 4

x1 = 1 2 - 7 2 = - 6 2 = -3

x2 = 1 2 + 7 2 = 8 2 = 4

Rücksubstitution:

u1: e 3x = 4

e 3x = 4 |ln(⋅)
3x = ln( 4 ) |:3
x1 = 1 3 ln( 4 ) ≈ 0.4621
x1 = 2 3 ln( 2 )

u2: e 3x = -3

e 3x = -3

Diese Gleichung hat keine Lösung!


2. Fall:

e -2x = 0

Diese Gleichung hat keine Lösung!

L={ 2 3 ln( 2 ) }