nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgl. elementar

Beispiel:

Löse die Gleichung ohne WTR: e x + 3 2 = e

Lösung einblenden

e x + 3 2 = e

Zuerst versuchen wir den Term rechts auch als Exponentialterm zu schreiben.

e x + 3 2 = e 1 2

Wir erkennen, dass links und rechts Exponentialterme mit gleicher Basis e stehen.
Diese Terme sind genau dann gleich, wenn ihre Exponenten gleich sind. Deswegen setzen wir einfach nur diese gleich:

x + 3 2 = 1 2 |⋅ 2
2( x + 3 2 ) = 1
2x +3 = 1 | -3
2x = -2 |:2
x = -1

Exponentialgl. vermischt

Beispiel:

Löse die folgende Gleichung:

e 2x +3 e x -10 = 0

Lösung einblenden
e 2x +3 e x -10 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 +3u -10 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 1 · ( -10 ) 21

u1,2 = -3 ± 9 +40 2

u1,2 = -3 ± 49 2

u1 = -3 + 49 2 = -3 +7 2 = 4 2 = 2

u2 = -3 - 49 2 = -3 -7 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -10 ) = 9 4 + 10 = 9 4 + 40 4 = 49 4

x1,2 = - 3 2 ± 49 4

x1 = - 3 2 - 7 2 = - 10 2 = -5

x2 = - 3 2 + 7 2 = 4 2 = 2

Rücksubstitution:

u1: e x = 2

e x = 2 |ln(⋅)
x1 = ln( 2 ) ≈ 0.6931

u2: e x = -5

e x = -5

Diese Gleichung hat keine Lösung!

L={ ln( 2 ) }

prozentale Änderung bestimmen

Beispiel:

Gib für die exponentielle Wachstumsfunktion f mit f(t)= 52 ( 49 50 ) t die prozentuale Änderung pro Zeiteinheit an. Handelt es sich um prozentuale Zunahme oder um prozentuale Abnahme?

Lösung einblenden

f(0) = 52

f(1) = 52 49 50

f(2) = 52 49 50 49 50

f(3) = 52 49 50 49 50 49 50

f(4) = 52 49 50 49 50 49 50 49 50

...

Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit 49 50 multipliziert. Da 49 50 < 1 ist, werden die Funktionswerte mit jedem Zeitschritt kleiner, und zwar auf das 49 50 -fache (oder auf das 98 100 -fache), also auf 98 % des vorherigen Funktionswertes.

Die prozentuale Abnahme beträgt also 100% - 98% = 2 %

Exponentialgl. Substitution BF

Beispiel:

Löse die folgende Gleichung:

e 2x -11 e x +28 = 0

Lösung einblenden
e 2x -11 e x +28 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -11u +28 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +11 ± ( -11 ) 2 -4 · 1 · 28 21

u1,2 = +11 ± 121 -112 2

u1,2 = +11 ± 9 2

u1 = 11 + 9 2 = 11 +3 2 = 14 2 = 7

u2 = 11 - 9 2 = 11 -3 2 = 8 2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 11 2 ) 2 - 28 = 121 4 - 28 = 121 4 - 112 4 = 9 4

x1,2 = 11 2 ± 9 4

x1 = 11 2 - 3 2 = 8 2 = 4

x2 = 11 2 + 3 2 = 14 2 = 7

Rücksubstitution:

u1: e x = 7

e x = 7 |ln(⋅)
x1 = ln( 7 ) ≈ 1.9459

u2: e x = 4

e x = 4 |ln(⋅)
x2 = ln( 4 ) ≈ 1.3863
x2 = 2 ln( 2 )

L={ 2 ln( 2 ) ; ln( 7 ) }