nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgl. elementar

Beispiel:

Löse die Gleichung ohne WTR: e x +2 = e 2

Lösung einblenden

e x +2 = e 2

Wir erkennen, dass links und rechts Exponentialterme mit gleicher Basis e stehen.
Diese Terme sind genau dann gleich, wenn ihre Exponenten gleich sind. Deswegen setzen wir einfach nur diese gleich:

x +2 = 2 | -2
x = 0

Exponentialgleichungen (schwer)

Beispiel:

Löse die folgende Gleichung:

-192 4 x +3 4 2x = 0

Lösung einblenden

Zuerst spaltet man 3 4 2x in 3 4 2x = 3 4 x + x = 3 4 x · 4 x auf::

3 4 2x -192 4 x = 0

3 4 x + x -192 4 x = 0

3 4 x · 4 x -192 4 x = 0

4 x ( 3 4 x -192 ) = 0
( 3 4 x -192 ) · 4 x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

3 4 x -192 = 0 | +192
3 4 x = 192 |:3
4 x = 64 |lg(⋅)
lg( 4 x ) = lg( 64 )
x · lg( 4 ) = lg( 64 ) |: lg( 4 )
x1 = lg( 64 ) lg( 4 )
x1 = 3

2. Fall:

4 x = 0

Diese Gleichung hat keine Lösung!

L={ 3 }

prozentale Änderung bestimmen

Beispiel:

Gib für die exponentielle Wachstumsfunktion f mit f(t)= 49 1,3 t die prozentuale Änderung pro Zeiteinheit an. Handelt es sich um prozentuale Zunahme oder um prozentuale Abnahme?

Lösung einblenden

f(0) = 49

f(1) = 49 1,3

f(2) = 49 1,31,3

f(3) = 49 1,31,31,3

f(4) = 49 1,31,31,31,3

...

Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit 1,3 multipliziert. Da 1,3 > 1 ist, werden die Funktionswerte mit jedem Zeitschritt größer, und zwar auf das 1,3-fache, also auf 130 % des vorherigen Funktionswertes.

Die prozentuale Zunahme beträgt also 130% - 100% = 30 %

Exponentialgl. Substitution BF

Beispiel:

Löse die folgende Gleichung:

e 2x +5 e x -6 = 0

Lösung einblenden
e 2x +5 e x -6 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 +5u -6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -5 ± 5 2 -4 · 1 · ( -6 ) 21

u1,2 = -5 ± 25 +24 2

u1,2 = -5 ± 49 2

u1 = -5 + 49 2 = -5 +7 2 = 2 2 = 1

u2 = -5 - 49 2 = -5 -7 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - ( -6 ) = 25 4 + 6 = 25 4 + 24 4 = 49 4

x1,2 = - 5 2 ± 49 4

x1 = - 5 2 - 7 2 = - 12 2 = -6

x2 = - 5 2 + 7 2 = 2 2 = 1

Rücksubstitution:

u1: e x = 1

e x = 1 |ln(⋅)
x1 = 0 ≈ 0

u2: e x = -6

e x = -6

Diese Gleichung hat keine Lösung!

L={0}