nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Bruch erkennen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Gib den im Schaubild eingefärbten Bruch an.

Lösung einblenden

Wir können insgesamt 11 Sektoren erkennen.

Davon sind 7 eingefärbt.

Es sind also 7 von 11 eingefärbt, somit ist der Bruch: 7 11

Brüche erkennen (nur Winkel)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Gib den im Schaubild eingefärbten Bruch an.

Lösung einblenden

Wir können insgesamt 6 Sektoren erkennen.

Davon sind 3 eingefärbt.

Es sind also 3 von 6 eingefärbt, somit ist der Bruch: 3 6

Bruch in Tabelle klicken

Beispiel:

Färbe die Figur entsprechend dem Bruchteil 17 20

Klicke dazu einfach auf die Zellen der Tabelle, um diese einzufärben (oder wieder zu entfärben).

Lösung einblenden

Wir haben eine Tabelle mit 8 Spalten und 5 Zeilen, also insgesamt 40 Zellen. 17 20 von 40 ist 34, weil 1 20 von 40 ja = 2 ist und 17⋅2 = 34 ist.

Somit müssen 34 Kästchen eingefärbt sein.

Bruch als Streifen einzeichnen

Beispiel:

Die Umwelt-AG möchte die Pflege des Schulbeetes übernehmen und die Arbeit unter den freiwilligen Helfern gerecht auteilen.

1 Beet wird von 3 Kindern gepflegt.

Gib den Anteil für ein Kind an und markiere diesen Anteil links im Rechteck drurch Klicken.

Lösung einblenden

Wenn ein Beet von 3 Kindern gepflegt wird, muss ja jedes Kind ein Drittel des Beets pflegen.

Der gesuchte Bruch ist also: 1 3

Der grüne Strich unten zeigt den 1 3 links im Rechteck abgetragen.

Bruch in natürliche Zahl umrechnen

Beispiel:

Gib 1 5 m ohne Bruch in cm an.

Lösung einblenden

1 m sind ja 100 cm.

Also sind ein 1 5 m doch gerade 100 cm : 5 = 20 cm.

Anteile und Rest

Beispiel:

In einem Obstgarten gibt es 140 Obstbäume. 2 7 sind Apfelbäume, der Rest sind Birnbäume.

Bestimme, wie viele Apfelbäume in diesem Obstgarten sind und wie hoch der Anteil der Birnbäume ist.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Ein 1 7 von 140 Apfelbäume sind 140 : 7 = 20 Apfelbäume.

Also sind 2 7 von 140 Apfelbäume 2 ⋅ 20 = 40 Apfelbäume.

Wenn die Apfelbäume 2 7 aller Obstbäume ausmachen, bleiben ja noch 5 7 für die Birnbäume übrig.
Der Anteil der Birnbäume beträgt also: 5 7

Anteile von ganzen Dingen

Beispiel:

Wie viel sind 6 7 von 21 Kartoffeln ?

Lösung einblenden

Ein 1 7 von 21 Kartoffeln sind 21 : 7 = 3 Kartoffeln.

Also sind 6 7 von 21 Kartoffeln 6 ⋅ 3 = 18 Kartoffeln.

Anteile von Zehnereinheiten

Beispiel:

Wie viel sind 1 5 von 1 t ?

Lösung einblenden

Zuerst rechnen wir 1t in 1000 kg um.

Ein 1 5 von 1000 kg sind 1000 kg : 5 = 200 kg.

Anteile von Zeiteinheiten

Beispiel:

Wie viel sind 7 15 von 1 h ?

Lösung einblenden

Zuerst rechnen wir 1h in 60 min um.

Ein 1 15 von 60 min sind 60 min : 15 = 4 min.

7 15 von 60 min sind also 7 ⋅ 4 min = 28 min.

Zeitanteile verrechnen

Beispiel:

Rechne erst in h um:
2 3 d(Tage) - 1 4 d(Tage)

Lösung einblenden

Zuerst rechnen wir in h um.

Ein 1 3 d(Tage) ist ein 1 3 von 24 h, also 24 h : 3 = 8 h
Ein 2 3 d(Tage) sind also 2 ⋅ 8 h = 16 h

Ein 1 4 d(Tage) ist ein 1 4 von 24 h, also 24 h : 4 = 6 h

Insgesamt haben wir somit 16 h - 6 h = 10 h

Weil 10 h kleiner als 1 d(Tage) à 24 h ist, ist das Ergebnis somit 0 d(Tage) und 10 d(Tage)

Erweitern einfach

Beispiel:

Erweitere den Bruch 1 2 mit 6

Lösung einblenden

Beim Erweitern multiplizieren wir einfach Zähler und Nenner mit der gleichen Zahl 6:

1 2 = 1 ⋅ 6 2 ⋅ 6 = 6 12

Kürzen (einzel)

Beispiel:

Kürze vollständig: 27 54

Lösung einblenden

Wir probieren alle Primzahlen durch, ob sie vielleicht beide Teiler von Zähler (27) und Nenner (54) sind:

27 54 = k(3) 9 18 = k(3) 3 6 = k(3) 1 2

27 54 = 1 2

(natürlich hätte man auch gleich auf einmal mit 27 kürzen können).

Erweitern

Beispiel:

Erweitere den Bruch 8 7 auf den Nenner 28

Lösung einblenden

Der Bruch soll so erweitert werden, dass aus dem alten Nenner 7 nachher der neue Nenner 28 wird.

Wir müssen also mit 28 : 7 = 4 erweitern.

8 7 = 8 ⋅ 4 7 ⋅ 4 = 32 28

Bruch an der Zahlengerade

Beispiel:

Gib den markierten Bruch an der Zahlengeraden an:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zuerst zählen wir die Strichchen zwischen -1 und 0 und erkennen, dass diese Strichchen eine Einheit in 4 gleichgroße Teile unterteilt, von denen somit jedes die Länge 1 4 hat.

Man könnte jetzt einfach die Strichchen von der 0 bis zur Markierung zählen; schneller geht's aber, wenn man die ganzen Einheiten als 4 4 zählt. In beiden Fällen erhält man als Zähler 5, weil die Markierung eben auf dem 5-ten Strichchen liegt.

Da die Markierung links von der 0 liegt, braucht der Bruch noch ein negatives Vorzeichen.

Der gesuchte Bruch ist also: - 5 4

Darstellungwechsel Bruch - Prozent

Beispiel:

Gib 3 5 als Prozentzahl an.

Lösung einblenden

Um einen Bruch als Prozentzahl anzugeben, müssen wir den Nenner des Bruchs durch Erweitern auf 100 bringen:

3 5 = 60 100 = 60%

gemischter Bruch an der Zahlengerade

Beispiel:

Gib den markierten Bruch an der Zahlengeraden als vollständig gekürzten gemeinen (gewöhnlichen) Bruch und als gemischten Bruch an:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zuerst zählen wir die Strichchen zwischen -1 und -2 und erkennen, dass diese Strichchen eine Einheit in 6 gleichgroße Teile unterteilt, von denen somit jedes die Länge 1 6 hat.

Da die Markierung auf dem 1-ten Strichchen zwischen -1 und -2 liegt, muss der gemischte Bruch -1 1 6 sein.

Der gesuchte Bruch ist also: -1 1 6 = - 6 6 - 1 6 = - 7 6

Brüche vergleichen

Beispiel:

Entscheide in allen drei Zeilen welcher Bruch größer ist, bzw. ob die beiden Brüche gleich groß sind:

Lösung einblenden

Vergleich von 5 7 und 6 7

Man sieht sehr schnell. dass diese beiden Brüche die gleichen Nenner haben. Natürlich ist dann derjenige Bruch größer, der den größeren Zähler hat (Schließlich bleibt bei der größeren Menge mehr übrig, wenn man diese durch 7 teilt, als bei der kleineren, wenn man diese durch 7 teilt). Es gilt hier also 5 7 < 6 7

Vergleich von 11 7 und 11 6

Man sieht sehr schnell. dass diese beiden Brüche die gleichen Zähler haben. In diesem Fall ist derjenige Bruch größer, der den kleineren Nenner hat (Schließlich bleibt mehr von einer Menge übrig, wenn man diese durch weniger Leute teilt als wenn man sie durch mehr teilt). Es gilt hier also 11 7 < 11 6

Vergleich von 6 5 und 12 11

Wenn man genau hinschaut, erkennt man, dass der Zähler des 2. ten Bruch doppelt so groß ist wie der des 1. ten. Wir erweitern deswegen 1-ten Bruch mit 2: 6 5 = 12 10

Jetzt kann man gut erkennen, dass 6 5 = 12 10 > 12 11 , weil der größere Nenner den Bruch kleiner macht (Schließlich bleibt mehr von einer Menge übrig, wenn man diese durch weniger Leute teilt als wenn man sie durch mehr teilt). Es gilt hier also 6 5 > 12 11

Mitte finden (von 2 Brüchen)

Beispiel:

Welcher Bruch liegt in der Mitte von 4 13 und 5 13 ?

Lösung einblenden

Da die Nenner gleich sind, genügt es die Mitte zwischen den Zählern der beiden Brüche zu finden.

Leider gibt es keine ganze Zahl in der Mitte zwischen 4 und 5.

Wenn wir aber beide Brüche mit 2 erweitern, bleibt ja einerseits der Wert der beiden Brüche gleich, andereseits verdoppeln sich aber die Zähler der beiden Brüche, so dass auch der Abstand zwischen diesen verdoppelt wird:

Es gilt: 4 13 = 8 26 und 5 13 = 10 26

Jetzt finden wir leicht die Mitte zwischen 8 und 10, nämlich 9, somit ist also 9 26 genau in der Mitte zwischen 4 13 = 8 26 und 5 13 = 10 26 .

Mitte finden (von 2 versch. Brüchen)

Beispiel:

Welcher Bruch liegt in der Mitte von 17 24 und 5 8 ?

Lösung einblenden

Um die Mitte zwischen zwei Brüchen zu finden, müssen wir die beiden Brüche erst einmal auf den gleichen Nenner bringen.

Dazu könnten wir einfach jeweils mit dem Nenner des anderen Bruchs erweitern. Um die Zahlen in Zähler und Nenner aber nicht unnötig groß werden zu lassen, erweitern wir hier die Brüche so, dass das kleinste gemeinsame Vielfache der Nenner, also 24 im neunen Nenner steht:

17 24 = 17 24 und 5 8 = 15 24

Somit ist also 16 24 genau in der Mitte zwischen 17 24 = 17 24 und 15 24 = 5 8 .

3 Brüche sortieren

Beispiel:

Sortiere die drei Brüche 5 2 , 11 4 und 5 3 von klein nach groß.

Lösung einblenden

Als erstes formen wir die Brüche um, so dass wir alle in gemischter Schreibweise vergleichen können:

5 2 = 4 + 1 2 = 4 2 + 1 2 = 2 + 1 2 = 2 1 2

11 4 = 8 + 3 4 = 8 4 + 3 4 = 2 + 3 4 = 2 3 4

5 3 = 3 + 2 3 = 3 3 + 2 3 = 1 + 2 3 = 1 2 3

Jetzt sieht man sofort, dass 1 2 3 die kleinste Zahl sein muss.

Bleibt noch zu entscheiden, ob 2 1 2 oder 2 3 4 größer ist.
Da ja beide die 2 vorne haben, müssen wir dazu nur die Brüche 1 2 und 3 4 betrachten.

Wenn man die Brüche als Anteile sieht, kann man erkennen, dass 1 2 die kleinere Zahl sein muss.

Oder man erweitert jeweils mit dem anderen Nenner: 1 2 = 4 8 < 6 8 = 3 4

1 2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

3 4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Somit ergibt sich folgende Reihenfolge:

1 2 3 < 2 1 2 < 2 3 4 , also

5 3 < 5 2 < 11 4

Umwandlung echter - gemischter Bruch

Beispiel:

Gib den unechten Bruch 14 3 als gemischten Bruch an.

(Der Bruch soll in gekürzter Form bleiben.)

Lösung einblenden

Wir schauen zuerst, wie oft der Nenner in den Zähler passt und was dann noch als Rest übrig bleibt:

14 = 12 + 2 = 4⋅3 + 2

also gilt:

14 3 = 4⋅3 + 2 3 = 4⋅3 3 + 2 3 = 4 + 2 3

Somit gilt: 14 3 = 4 2 3