Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Bruch erkennen
Beispiel:
(Alle Sektoren sind gleich groß)
Gib den im Schaubild eingefärbten Bruch an.
Wir können insgesamt 10 Sektoren erkennen.
Davon sind 1 eingefärbt.
Es sind also 1 von 10 eingefärbt, somit ist der Bruch:
Brüche erkennen (nur Winkel)
Beispiel:
(Alle Sektoren sind gleich groß)
Gib den im Schaubild eingefärbten Bruch an.
Wir können insgesamt 5 Sektoren erkennen.
Davon sind 3 eingefärbt.
Es sind also 3 von 5 eingefärbt, somit ist der Bruch:
Bruch in Tabelle klicken
Beispiel:
Färbe die Figur entsprechend dem Bruchteil
Klicke dazu einfach auf die Zellen der Tabelle, um diese einzufärben (oder wieder zu entfärben).
Wir haben eine Tabelle mit 8 Spalten und 3 Zeilen, also insgesamt 24 Zellen. von 24 ist 8.
Somit müssen 8 Kästchen eingefärbt sein.
Bruch als Streifen einzeichnen
Beispiel:
Die Umwelt-AG möchte die Pflege des Schulbeetes übernehmen und die Arbeit unter den freiwilligen Helfern gerecht auteilen.
1 Beet wird von 7 Kindern gepflegt.
Gib den Anteil für ein Kind an und markiere diesen Anteil links im Rechteck drurch Klicken.
Wenn ein Beet von 7 Kindern gepflegt wird, muss ja jedes Kind einSiebtel des Beets pflegen.
Der gesuchte Bruch ist also:
Der grüne Strich unten zeigt den links im Rechteck abgetragen.
Bruch in natürliche Zahl umrechnen
Beispiel:
Gib km² ohne Bruch in ha an.
1 km² sind ja 100 ha.
Also sind ein km² doch gerade 100 ha : 2 = 50 ha.
Anteile und Rest
Beispiel:
In einem Obstgarten gibt es 210 Obstbäume. sind Apfelbäume, der Rest sind Birnbäume.
Bestimme, wie viele Apfelbäume in diesem Obstgarten sind und wie hoch der Anteil der Birnbäume ist.
(Alle Sektoren sind gleich groß)
Ein von 210 Apfelbäume sind 210 : 7 = 30 Apfelbäume.
Also sind von 210 Apfelbäume 6 ⋅ 30 = 180 Apfelbäume.
Wenn die Apfelbäume aller Obstbäume ausmachen, bleiben ja noch für
die Birnbäume übrig.
Der Anteil der Birnbäume beträgt also:
Anteile von ganzen Dingen
Beispiel:
Wie viel sind von 27 Kartoffeln ?
Ein von 27 Kartoffeln sind 27 : 3 = 9 Kartoffeln.
Anteile von Zehnereinheiten
Beispiel:
Wie viel sind von 1 g ?
Zuerst rechnen wir 1g in 1000 mg um.
Ein von 1000 mg sind 1000 mg : 5 = 200 mg.
von 1000 mg sind also 2 ⋅ 200 mg = 400 mg.
Anteile von Zeiteinheiten
Beispiel:
Wie viel sind von 1 h ?
Zuerst rechnen wir 1h in 60 min um.
Ein von 60 min sind 60 min : 2 = 30 min.
Zeitanteile verrechnen
Beispiel:
Rechne erst in s um:
min + min
Zuerst rechnen wir in s um.
Eine min ist ein von 60
s, also 60 s : 3 =
20 s
Eine min sind also
2 ⋅ 20
s = 40 s
Eine min ist ein von 60
s, also 60 s : 3 =
20 s
Eine min sind also
2 ⋅ 20
s = 40 s
Insgesamt haben wir somit 40 s + 40 s = 80 s
Um herauszufinden wie viele volle min in den 80 s stecken,
suchen wir das größte Vielfache von 60, das nicht größer als 80 ist. Wir teilen also 80 als
60 + 20 auf und erhalten somit:
80 s = 1 min und 20
s
Erweitern einfach
Beispiel:
Erweitere den Bruch mit 9
Beim Erweitern multiplizieren wir einfach Zähler und Nenner mit der gleichen Zahl 9:
= =
Kürzen (einzel)
Beispiel:
Kürze vollständig:
Wir probieren alle Primzahlen durch, ob sie vielleicht beide Teiler von Zähler (63) und Nenner (54) sind:
=
(natürlich hätte man auch gleich auf einmal mit 9 kürzen können).
Erweitern
Beispiel:
Erweitere den Bruch auf den Nenner 56
Der Bruch soll so erweitert werden, dass aus dem alten Nenner 8 nachher der neue Nenner 56 wird.
Wir müssen also mit 56 : 8 = 7 erweitern.
= =
Bruch an der Zahlengerade
Beispiel:
Gib den markierten Bruch an der Zahlengeraden an:
Zuerst zählen wir die Strichchen zwischen -1 und 0 und erkennen, dass diese Strichchen eine Einheit in 3 gleichgroße Teile unterteilt, von denen somit jedes die Länge hat.
Man könnte jetzt einfach die Strichchen von der 0 bis zur Markierung zählen; schneller geht's aber, wenn man die ganzen Einheiten als zählt. In beiden Fällen erhält man als Zähler 4, weil die Markierung eben auf dem 4-ten Strichchen liegt.
Da die Markierung links von der 0 liegt, braucht der Bruch noch ein negatives Vorzeichen.
Der gesuchte Bruch ist also:
Darstellungwechsel Bruch - Prozent
Beispiel:
Gib als Prozentzahl an.
Um einen Bruch als Prozentzahl anzugeben, müssen wir den Nenner des Bruchs durch Erweitern auf 100 bringen:
= = 40%
gemischter Bruch an der Zahlengerade
Beispiel:
Gib den markierten Bruch an der Zahlengeraden als vollständig gekürzten gemeinen (gewöhnlichen) Bruch und als gemischten Bruch an:
Zuerst zählen wir die Strichchen zwischen 3 und 4 und erkennen, dass diese Strichchen eine Einheit in 2 gleichgroße Teile unterteilt, von denen somit jedes die Länge hat.
Da die Markierung auf dem 1-ten Strichchen zwischen 3 und 4 liegt, muss der gemischte Bruch sein.
Der gesuchte Bruch ist also: = =
Brüche vergleichen
Beispiel:
Entscheide in allen drei Zeilen welcher Bruch größer ist, bzw. ob die beiden Brüche gleich groß sind:
Vergleich von und
Man sieht sehr schnell. dass diese beiden Brüche die gleichen Zähler haben. In diesem Fall ist derjenige Bruch größer, der den kleineren Nenner hat (Schließlich bleibt mehr von einer Menge übrig, wenn man diese durch weniger Leute teilt als wenn man sie durch mehr teilt). Es gilt hier also >
Vergleich von und
Man sieht sehr schnell. dass diese beiden Brüche die gleichen Nenner haben. Natürlich ist dann derjenige Bruch größer, der den größeren Zähler hat (Schließlich bleibt bei der größeren Menge mehr übrig, wenn man diese durch 17 teilt, als bei der kleineren, wenn man diese durch 17 teilt). Es gilt hier also >
Vergleich von und
Wenn man genau hinschaut, erkennt man, dass der Zähler des 2. ten Bruch doppelt so groß ist wie der des 1. ten. Wir erweitern deswegen 1-ten Bruch mit 2: =
Jetzt kann man gut erkennen, dass = = . Es gilt hier also =
Mitte finden (von 2 Brüchen)
Beispiel:
Welcher Bruch liegt in der Mitte von und ?
Da die Nenner gleich sind, genügt es die Mitte zwischen den Zählern der beiden Brüche zu finden.
Somit ist also genau in der Mitte zwischen und .
Mitte finden (von 2 versch. Brüchen)
Beispiel:
Welcher Bruch liegt in der Mitte von und ?
Da die Nenner gleich sind, genügt es die Mitte zwischen den Zählern der beiden Brüche zu finden.
Somit ist also genau in der Mitte zwischen = und = .
3 Brüche sortieren
Beispiel:
Sortiere die drei Brüche , und von klein nach groß.
Als erstes formen wir die Brüche um, so dass wir alle in gemischter Schreibweise vergleichen können:
= = + = + =
= = + = + =
Man erkennt, dass alle drei Brüche zwischen 4 und 5 liegen. ist dabei aber die größte Zahl, weil sie als einzige größer als ist. Das erkennt man daran, dass bei der Zähler über der Hälfte vom Nenner ist.
Bleibt noch zu entscheiden, ob oder größer ist.
Da ja beide die 4 vorne haben, müssen wir dazu nur die Brüche
und betrachten.
Und weil beide Brüche die 1 im Zähler haben, muss die kleinere Zahl sein, weil ja die 1 durch mehr geteilt werden muss als bei .
(Alle Sektoren sind gleich groß)
(Alle Sektoren sind gleich groß)
Somit ergibt sich folgende Reihenfolge:
< < , also
< <
Umwandlung echter - gemischter Bruch
Beispiel:
Gib den unechten Bruch als gemischten Bruch an.
(Der Bruch soll in gekürzter Form bleiben.)
Wir schauen zuerst, wie oft der Nenner in den Zähler passt und was dann noch als Rest übrig bleibt:
57 = 50 + 7 = 5⋅10 + 7
also gilt:
= = + = 5 +
Somit gilt: =
