nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Bruch erkennen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Gib den im Schaubild eingefärbten Bruch an.

Lösung einblenden

Wir können insgesamt 6 Quadrate erkennen.

Davon sind 2 eingefärbt.

Es sind also 2 von 6 eingefärbt, somit ist der Bruch: 2 6

Brüche erkennen (nur Winkel)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Gib den im Schaubild eingefärbten Bruch an.

Lösung einblenden

Wir können insgesamt 8 Sektoren erkennen.

Davon sind 4 eingefärbt.

Es sind also 4 von 8 eingefärbt, somit ist der Bruch: 4 8

Bruch in Tabelle klicken

Beispiel:

Färbe die Figur entsprechend dem Bruchteil 1 6

Klicke dazu einfach auf die Zellen der Tabelle, um diese einzufärben (oder wieder zu entfärben).

Lösung einblenden

Wir haben eine Tabelle mit 8 Spalten und 3 Zeilen, also insgesamt 24 Zellen. 1 6 von 24 ist 4.

Somit müssen 4 Kästchen eingefärbt sein.

Bruch als Streifen einzeichnen

Beispiel:

Die Umwelt-AG möchte die Pflege des Schulbeetes übernehmen und die Arbeit unter den freiwilligen Helfern gerecht auteilen.

1 Beet wird von 3 Kindern gepflegt.

Gib den Anteil für ein Kind an und markiere diesen Anteil links im Rechteck drurch Klicken.

Lösung einblenden

Wenn ein Beet von 3 Kindern gepflegt wird, muss ja jedes Kind ein Drittel des Beets pflegen.

Der gesuchte Bruch ist also: 1 3

Der grüne Strich unten zeigt den 1 3 links im Rechteck abgetragen.

Bruch in natürliche Zahl umrechnen

Beispiel:

Gib 3 4 km ohne Bruch in m an.

Lösung einblenden

1 km sind ja 1000 m.

Also sind ein 1 4 km doch gerade 1000 m : 4 = 250 m.

Somit sind ein 3 4 km das gleiche wie 250 m ⋅ 3 = 750 m.

Anteile und Rest

Beispiel:

In einem Obstgarten gibt es 60 Obstbäume. 1 2 sind Apfelbäume, der Rest sind Birnbäume.

Bestimme, wie viele Apfelbäume in diesem Obstgarten sind und wie hoch der Anteil der Birnbäume ist.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Ein 1 2 von 60 Apfelbäume sind 60 : 2 = 30 Apfelbäume.

Wenn die Apfelbäume 1 2 aller Obstbäume ausmachen, bleiben ja noch 1 2 für die Birnbäume übrig.
Der Anteil der Birnbäume beträgt also: 1 2

Anteile von ganzen Dingen

Beispiel:

Wie viel sind 1 3 von 15 Birnen ?

Lösung einblenden

Ein 1 3 von 15 Birnen sind 15 : 3 = 5 Birnen.

Anteile von Zehnereinheiten

Beispiel:

Wie viel sind 3 5 von 1 t ?

Lösung einblenden

Zuerst rechnen wir 1t in 1000 kg um.

Ein 1 5 von 1000 kg sind 1000 kg : 5 = 200 kg.

3 5 von 1000 kg sind also 3 ⋅ 200 kg = 600 kg.

Anteile von Zeiteinheiten

Beispiel:

Wie viel sind 1 2 von 1 h ?

Lösung einblenden

Zuerst rechnen wir 1h in 60 min um.

Ein 1 2 von 60 min sind 60 min : 2 = 30 min.

Zeitanteile verrechnen

Beispiel:

Rechne erst in h um:
1 6 d(Tage) + 5 6 d(Tage)

Lösung einblenden

Zuerst rechnen wir in h um.

Ein 1 6 d(Tage) ist ein 1 6 von 24 h, also 24 h : 6 = 4 h

Ein 1 6 d(Tage) ist ein 1 6 von 24 h, also 24 h : 6 = 4 h
Ein 5 6 d(Tage) sind also 5 ⋅ 4 h = 20 h

Insgesamt haben wir somit 4 h + 20 h = 24 h

Um herauszufinden wie viele volle d(Tage) in den 24 h stecken, suchen wir das größte Vielfache von 24, das nicht größer als 24 ist. Wir teilen also 24 als 24 + 0 auf und erhalten somit:
24 h = 1 d(Tage) und 0 h

Erweitern einfach

Beispiel:

Erweitere den Bruch 4 3 mit 6

Lösung einblenden

Beim Erweitern multiplizieren wir einfach Zähler und Nenner mit der gleichen Zahl 6:

4 3 = 4 ⋅ 6 3 ⋅ 6 = 24 18

Kürzen (einzel)

Beispiel:

Kürze vollständig: 99 72

Lösung einblenden

Wir probieren alle Primzahlen durch, ob sie vielleicht beide Teiler von Zähler (99) und Nenner (72) sind:

99 72 = k(3) 33 24 = k(3) 11 8

99 72 = 11 8

(natürlich hätte man auch gleich auf einmal mit 9 kürzen können).

Erweitern

Beispiel:

Erweitere den Bruch 8 5 auf den Nenner 30

Lösung einblenden

Der Bruch soll so erweitert werden, dass aus dem alten Nenner 5 nachher der neue Nenner 30 wird.

Wir müssen also mit 30 : 5 = 6 erweitern.

8 5 = 8 ⋅ 6 5 ⋅ 6 = 48 30

Bruch an der Zahlengerade

Beispiel:

Gib den markierten Bruch an der Zahlengeraden an:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zuerst zählen wir die Strichchen zwischen 0 und 1 und erkennen, dass diese Strichchen eine Einheit in 8 gleichgroße Teile unterteilt, von denen somit jedes die Länge 1 8 hat.

Man könnte jetzt einfach die Strichchen von der 0 bis zur Markierung zählen; schneller geht's aber, wenn man die ganzen Einheiten als 8 8 zählt. In beiden Fällen erhält man als Zähler 9, weil die Markierung eben auf dem 9-ten Strichchen liegt.

Der gesuchte Bruch ist also: 9 8

Darstellungwechsel Bruch - Prozent

Beispiel:

Gib 7 20 als Prozentzahl an.

Lösung einblenden

Um einen Bruch als Prozentzahl anzugeben, müssen wir den Nenner des Bruchs durch Erweitern auf 100 bringen:

7 20 = 35 100 = 35%

gemischter Bruch an der Zahlengerade

Beispiel:

Gib den markierten Bruch an der Zahlengeraden als vollständig gekürzten gemeinen (gewöhnlichen) Bruch und als gemischten Bruch an:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zuerst zählen wir die Strichchen zwischen 1 und 2 und erkennen, dass diese Strichchen eine Einheit in 10 gleichgroße Teile unterteilt, von denen somit jedes die Länge 1 10 hat.

Da die Markierung auf dem 3-ten Strichchen zwischen 1 und 2 liegt, muss der gemischte Bruch 1 3 10 sein.

Der gesuchte Bruch ist also: 1 3 10 = 10 10 + 3 10 = 13 10

Brüche vergleichen

Beispiel:

Entscheide in allen drei Zeilen welcher Bruch größer ist, bzw. ob die beiden Brüche gleich groß sind:

Lösung einblenden

Vergleich von 11 8 und 3 2

Da hier die Zähler und Nenner der beiden Brüche verschieden sind, bringen wir am besten die beiden Brüche auf den gleichen Nenner um sie besser vergleichen zu können:

3 2 = 12 8

Also gilt: 11 8 < 12 8 = 3 2 .

Es gilt hier also 11 8 < 3 2

Vergleich von 8 5 und 7 5

Man sieht sehr schnell. dass diese beiden Brüche die gleichen Nenner haben. Natürlich ist dann derjenige Bruch größer, der den größeren Zähler hat (Schließlich bleibt bei der größeren Menge mehr übrig, wenn man diese durch 5 teilt, als bei der kleineren, wenn man diese durch 5 teilt). Es gilt hier also 8 5 > 7 5

Vergleich von 5 6 und 1

Da hier die Zähler und Nenner der beiden Brüche verschieden sind, bringen wir am besten die beiden Brüche auf den gleichen Nenner um sie besser vergleichen zu können:

1 = 6 6

Also gilt: 5 6 < 6 6 = 1.

Es gilt hier also 5 6 < 1

Mitte finden (von 2 Brüchen)

Beispiel:

Welcher Bruch liegt in der Mitte von 15 11 und 17 11 ?

Lösung einblenden

Da die Nenner gleich sind, genügt es die Mitte zwischen den Zählern der beiden Brüche zu finden.

Somit ist also 16 11 genau in der Mitte zwischen 15 11 und 17 11 .

Mitte finden (von 2 versch. Brüchen)

Beispiel:

Welcher Bruch liegt in der Mitte von 1 5 und 8 9 ?

Lösung einblenden

Um die Mitte zwischen zwei Brüchen zu finden, müssen wir die beiden Brüche erst einmal auf den gleichen Nenner bringen.

Dazu erweitern wir hier einfach jeweils mit dem Nenner des anderen Bruchs:

1 5 = 9 45 und 8 9 = 40 45

Leider gibt es keine ganze Zahl in der Mitte zwischen 9 und 40.

Wenn wir aber beide Brüche noch mit 2 erweitern, verdoppeln sich die Zähler der beiden Brüche, so dass auch der Abstand zwischen diesen verdoppelt wird:

Es gilt: 9 45 = 18 90 und 40 45 = 80 90

Jetzt finden wir leicht die Mitte zwischen 18 und 80, nämlich 18 + 80 2 = 49, somit ist also 49 90 genau in der Mitte zwischen 1 5 = 18 90 und 8 9 = 80 90 .

3 Brüche sortieren

Beispiel:

Sortiere die drei Brüche -5, -5 2 5 und - 17 3 von klein nach groß.

Lösung einblenden

Als erstes formen wir die Brüche um, so dass wir alle in gemischter Schreibweise vergleichen können:

-5

-5 2 5

- 17 3 = 15 + 2 3 = 15 3 + 2 3 = 5 + 2 3 = -5 2 3

Jetzt sieht man sofort, dass -5 die betragsmäßig kleinste Zahl, also wegen des negativem Vorzeichens größte Zahl sein muss.

Bleibt noch zu entscheiden, ob -5 2 5 oder -5 2 3 größer ist.
Da ja beide die -5 vorne haben, müssen wir dazu nur die Brüche - 2 5 und - 2 3 betrachten.

Und weil beide Brüche die 2 im Zähler haben, muss - 2 5 die betragsmäßig kleinere Zahl sein, weil ja die 2 durch mehr geteilt werden muss als bei - 2 3 . Wegen des negativen Vorzeichens ist dann aber die betragsmäßig kleinere Zahl - 2 5 die größere von beiden.

2 5
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

2 3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Somit ergibt sich folgende Reihenfolge:

-5 2 3 < -5 2 5 < -5 , also

- 17 3 < -5 2 5 < -5

Umwandlung echter - gemischter Bruch

Beispiel:

Gib den unechten Bruch 5 2 als gemischten Bruch an.

(Der Bruch soll in gekürzter Form bleiben.)

Lösung einblenden

Wir schauen zuerst, wie oft der Nenner in den Zähler passt und was dann noch als Rest übrig bleibt:

5 = 4 + 1 = 2⋅2 + 1

also gilt:

5 2 = 2⋅2 + 1 2 = 2⋅2 2 + 1 2 = 2 + 1 2

Somit gilt: 5 2 = 2 1 2