nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Bruch erkennen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Gib den im Schaubild eingefärbten Bruch an.

Lösung einblenden

Wir können insgesamt 8 Sektoren erkennen.

Davon sind 4 eingefärbt.

Es sind also 4 von 8 eingefärbt, somit ist der Bruch: 4 8

Bruch in natürliche Zahl umrechnen

Beispiel:

Gib 1 1000 l ohne Bruch in ml an.

Lösung einblenden

1 l sind ja 1000 ml.

Also sind ein 1 1000 l doch gerade 1 ml.

Anteile von ganzen Dingen

Beispiel:

Wie viel sind 1 7 von 70 Kartoffeln ?

Lösung einblenden

Ein 1 7 von 70 Kartoffeln sind 70 : 7 = 10 Kartoffeln.

Anteile von Zehnereinheiten

Beispiel:

Wie viel sind 4 5 von 1 cm ?

Lösung einblenden

Zuerst rechnen wir 1cm in 10 mm um.

Ein 1 5 von 10 mm sind 10 mm : 5 = 2 mm.

4 5 von 10 mm sind also 4 ⋅ 2 mm = 8 mm.

Anteile von Zeiteinheiten

Beispiel:

Wie viel sind 3 4 von 1 h ?

Lösung einblenden

Zuerst rechnen wir 1h in 60 min um.

Ein 1 4 von 60 min sind 60 min : 4 = 15 min.

3 4 von 60 min sind also 3 ⋅ 15 min = 45 min.

Erweitern einfach

Beispiel:

Erweitere den Bruch 5 8 mit 3

Lösung einblenden

Beim Erweitern multiplizieren wir einfach Zähler und Nenner mit der gleichen Zahl 3:

5 8 = 5 ⋅ 3 8 ⋅ 3 = 15 24

Kürzen (einzel)

Beispiel:

Kürze vollständig: 36 27

Lösung einblenden

Wir probieren alle Primzahlen durch, ob sie vielleicht beide Teiler von Zähler (36) und Nenner (27) sind:

36 27 = k(3) 12 9 = k(3) 4 3

36 27 = 4 3

(natürlich hätte man auch gleich auf einmal mit 9 kürzen können).

Erweitern

Beispiel:

Erweitere den Bruch 2 3 auf den Nenner 6

Lösung einblenden

Der Bruch soll so erweitert werden, dass aus dem alten Nenner 3 nachher der neue Nenner 6 wird.

Wir müssen also mit 6 : 3 = 2 erweitern.

2 3 = 2 ⋅ 2 3 ⋅ 2 = 4 6

Darstellungwechsel Bruch - Prozent

Beispiel:

Gib 3 20 als Prozentzahl an.

Lösung einblenden

Um einen Bruch als Prozentzahl anzugeben, müssen wir den Nenner des Bruchs durch Erweitern auf 100 bringen:

3 20 = 15 100 = 15%

Bruch an der Zahlengerade

Beispiel:

Gib den markierten Bruch an der Zahlengeraden an:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zuerst zählen wir die Strichchen zwischen -1 und 0 und erkennen, dass diese Strichchen eine Einheit in 5 gleichgroße Teile unterteilt, von denen somit jedes die Länge 1 5 hat.

Man könnte jetzt einfach die Strichchen von der 0 bis zur Markierung zählen; schneller geht's aber, wenn man die ganzen Einheiten als 5 5 zählt. In beiden Fällen erhält man als Zähler 9, weil die Markierung eben auf dem 9-ten Strichchen liegt.

Da die Markierung links von der 0 liegt, braucht der Bruch noch ein negatives Vorzeichen.

Der gesuchte Bruch ist also: - 9 5

gemischter Bruch an der Zahlengerade

Beispiel:

Gib den markierten Bruch an der Zahlengeraden als vollständig gekürzten gemeinen (gewöhnlichen) Bruch und als gemischten Bruch an:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zuerst zählen wir die Strichchen zwischen 1 und 2 und erkennen, dass diese Strichchen eine Einheit in 2 gleichgroße Teile unterteilt, von denen somit jedes die Länge 1 2 hat.

Da die Markierung auf dem 1-ten Strichchen zwischen 1 und 2 liegt, muss der gemischte Bruch 1 1 2 sein.

Der gesuchte Bruch ist also: 1 1 2 = 2 2 + 1 2 = 3 2

Brüche vergleichen

Beispiel:

Entscheide in allen drei Zeilen welcher Bruch größer ist, bzw. ob die beiden Brüche gleich groß sind:

Lösung einblenden

Vergleich von 6 7 und 3 4

Wenn man genau hinschaut, erkennt man, dass der Zähler des 1. ten Bruch doppelt so groß ist wie der des 2. ten. Wir erweitern deswegen 2-ten Bruch mit 2: 3 4 = 6 8

Jetzt kann man gut erkennen, dass 6 7 > 6 8 = 3 4 , weil der größere Nenner den Bruch kleiner macht (Schließlich bleibt mehr von einer Menge übrig, wenn man diese durch weniger Leute teilt als wenn man sie durch mehr teilt). Es gilt hier also 6 7 > 3 4

Vergleich von 11 7 und 12 7

Man sieht sehr schnell. dass diese beiden Brüche die gleichen Nenner haben. Natürlich ist dann derjenige Bruch größer, der den größeren Zähler hat (Schließlich bleibt bei der größeren Menge mehr übrig, wenn man diese durch 7 teilt, als bei der kleineren, wenn man diese durch 7 teilt). Es gilt hier also 11 7 < 12 7

Vergleich von 4 3 und 13 9

Da hier die Zähler und Nenner der beiden Brüche verschieden sind, bringen wir am besten die beiden Brüche auf den gleichen Nenner um sie besser vergleichen zu können:

4 3 = 12 9

Also gilt: 4 3 = 12 9 < 13 9 .

Es gilt hier also 4 3 < 13 9

Mitte finden (von 2 Brüchen)

Beispiel:

Welcher Bruch liegt in der Mitte von 19 11 und 21 11 ?

Lösung einblenden

Da die Nenner gleich sind, genügt es die Mitte zwischen den Zählern der beiden Brüche zu finden.

Somit ist also 20 11 genau in der Mitte zwischen 19 11 und 21 11 .

Mitte finden (von 2 versch. Brüchen)

Beispiel:

Welcher Bruch liegt in der Mitte von - 13 7 und - 6 5 ?

Lösung einblenden

Um die Mitte zwischen zwei Brüchen zu finden, müssen wir die beiden Brüche erst einmal auf den gleichen Nenner bringen.

Dazu erweitern wir hier einfach jeweils mit dem Nenner des anderen Bruchs:

- 13 7 = - 65 35 und - 6 5 = - 42 35

Leider gibt es keine ganze Zahl in der Mitte zwischen 65 und 42.

Wenn wir aber beide Brüche noch mit 2 erweitern, verdoppeln sich die Zähler der beiden Brüche, so dass auch der Abstand zwischen diesen verdoppelt wird:

Es gilt: - 65 35 = - 130 70 und - 42 35 = - 84 70

Jetzt finden wir leicht die Mitte zwischen -130 und -84, nämlich 130 + 84 2 = -107, somit ist also - 107 70 genau in der Mitte zwischen - 13 7 = - 130 70 und - 6 5 = - 84 70 .

3 Brüche sortieren

Beispiel:

Sortiere die drei Brüche 17 9 , 13 5 und 11 4 von klein nach groß.

Lösung einblenden

Als erstes formen wir die Brüche um, so dass wir alle in gemischter Schreibweise vergleichen können:

17 9 = 9 + 8 9 = 9 9 + 8 9 = 1 + 8 9 = 1 8 9

13 5 = 10 + 3 5 = 10 5 + 3 5 = 2 + 3 5 = 2 3 5

11 4 = 8 + 3 4 = 8 4 + 3 4 = 2 + 3 4 = 2 3 4

Jetzt sieht man sofort, dass 1 8 9 die kleinste Zahl sein muss.

Bleibt noch zu entscheiden, ob 2 3 5 oder 2 3 4 größer ist.
Da ja beide die 2 vorne haben, müssen wir dazu nur die Brüche 3 5 und 3 4 betrachten.

Und weil beide Brüche die 3 im Zähler haben, muss 3 5 die kleinere Zahl sein, weil ja die 3 durch mehr geteilt werden muss als bei 3 4 .

3 5
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

3 4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Somit ergibt sich folgende Reihenfolge:

1 8 9 < 2 3 5 < 2 3 4 , also

17 9 < 13 5 < 11 4

Umwandlung echter - gemischter Bruch

Beispiel:

Gib den unechten Bruch 13 2 als gemischten Bruch an.

(Der Bruch soll in gekürzter Form bleiben.)

Lösung einblenden

Wir schauen zuerst, wie oft der Nenner in den Zähler passt und was dann noch als Rest übrig bleibt:

13 = 12 + 1 = 6⋅2 + 1

also gilt:

13 2 = 6⋅2 + 1 2 = 6⋅2 2 + 1 2 = 6 + 1 2

Somit gilt: 13 2 = 6 1 2