Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Ableiten von trigonometrischen Funktionen BF
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ableiten von trigonometrischen Funktionen
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
HP, TP oder WP bei trigon. Fktn. BF (einfach)
Beispiel:
Bestimme die Tiefpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=-3 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|-3).
Mit Hilfe von b= und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Tiefpunkt ist bei sin(x) nach Dreiviertel der Periode,
also bei x1=
Weil das gesuchte Interval [0;
Die Funktion schwingt wegen d=-3 um y=-3. Der y-Wert des Tiefpunkt ist also eine Amplitude (a=3) unter -3, also bei y=-6.
Wir erhalten also als Ergebnis einen Tiefpunkt bei (
HP, TP oder WP bei trigon. Fktn. BF
Beispiel:
Bestimme die Wendepunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=0 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|0).
Weil aber das Vorzeichen von a = -1 aber negativ ist, wird die Original-funktion f(x)=sin(x) nicht nur um den Faktor 1 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem steigender Wendepunkt in P ein fallender Wendepunkt in P(0|0) wird.
Mit Hilfe von b=2 und der Periodenformel p=
p=
Der gesuchte Wendepunkt ist bei sin(x) zu Beginn und nach der Hälfte der Periode,
also bei x1=
Die Funktion schwingt wegen d=0 um y=0. Der y-Wert des Wendepunkt ist also gerade 0.
Wir erhalten also als Ergebnis einen Wendepunkt bei (
HP, TP oder WP bei trigon. Fktn (LF)
Beispiel:
Bestimme die Tiefpunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=cos(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=cos(x) um d=-3 in
y-Richtung und um c=
Der erste Hochpunkt wäre also im Punkt P(
Mit Hilfe von b=2 und der Periodenformel p=
p=
Der gesuchte Tiefpunkt ist bei cos(x) nach der Hälfte der Periode,
also bei x1=
Weil diese Stelle aber größer als die Periode ist, müssen wir noch (mindestens) eine
Periode davon abziehen, damit der x-Wert in der ersten Periode liegt,
also x1=
Weil das gesuchte Interval [0;
Die Funktion schwingt wegen d=-3 um y=-3. Der y-Wert des Tiefpunkt ist also eine Amplitude (a=2) unter -3, also bei y=-5.
Wir erhalten also als Ergebnis einen Tiefpunkt bei (
Nullstellen mit dem WTR
Beispiel:
Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit
Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.
Daraus ergibt sich folgende Gleichung:
|
|
= | |: |
|
|
= | |sin-1(⋅) |
Der WTR liefert nun als Wert 0.3046926540154
1. Fall:
|
|
= |
|
|⋅ 3 |
|
|
= |
|
|: |
| x1 | = |
|
Am Einheitskreis erkennen wir, dass die Gleichung
Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt,
also π -
2. Fall:
|
|
= |
|
|⋅ 3 |
|
|
= |
|
|: |
| x2 | = |
|
L={
Die Nullstellen in der Periode [0;
bei x1 =
trigon. Anwendungsaufgabe 2
Beispiel:
Bei einem Riesenrad kann man die Höhe einer Gondel (in m) über dem Erdboden zur Zeit t (in Sekunden) näherungsweise durch die Funktion f mit
- Bestimme die Zeit (in s), die eine Gondel für eine Umdrehung braucht.
- Wie hoch ist die Gondel an ihrem tiefsten Punkt über dem Erdboden?
- Wie lange (in Sekunden) hat das Riesenrad eine Höhe von mindestens 35,2 m?
- Zu welcher Zeit (in s) gewinnt die Gondel am stärksten an Höhe?
- Periodenlänge
Aus dem Funktionsterm können wir den Faktor b =
herauslesen und in die Periodenformel einsetzen:1 30 π Somit gilt für die Periodenlänge: p =
=2 π b = 602 π 1 30 π - y-Wert des Minimums (TP)
Gesucht ist der tiefste Funktionswert. Aus dem Term kann man eine Verschiebung der Sinusfunktion um d = 19 nach oben und eine Amplitude von a = 18 erkennen, d.h. f schwingt um maximal 18 um 19. Somit ist der tiefste Wert bei 19 m - 18 m = 1 m.
- t-Werte mit f(t) ≥ 35.2
Um das gesuchte Intervall zu bestimmen, müssen wir erst die Stellen bestimmen, an denen der Funktionswert unserer Sinus-Funktion gerade den Wert 35.2 hat. Wir setzen also den Funktionsterm mit 35.2 gleich:
= 35.218 ⋅ sin ( 1 30 π ( t - 20 ) ) + 19 18 ⋅ sin ( 0,1047 t - 2,0944 ) + 19 = 35,2 | - 19 18 ⋅ sin ( 0,1047 t - 2,0944 ) = 16,2 |: 18 sin ( 0,1047 t - 2,0944 ) = 0,9 |sin-1(⋅) Der WTR liefert nun als Wert 1.1197695149986
1. Fall:
0,1047 x - 2,0944 = 1,12 | + 2,0944 0,1047 x = 3,2144 |: 0,1047 x1 = 30,7011 Am Einheitskreis erkennen wir, dass die Gleichung
=sin ( 0,1047 t - 2,0944 ) noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.9 schneidet den Einheitskreis in einem zweiten Punkt).0,9 Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π -
=1,12 liegen muss.2,022 2. Fall:
0,1047 x - 2,0944 = 2,022 | + 2,0944 0,1047 x = 4,1164 |: 0,1047 x2 = 39,3161 Da die Sinus-Funktion ja um 20 nach rechts verschoben ist, startet sie nach 20 s nach oben und erreicht erstmals nach 30.7 s den Wert 35.2. Danach steigt sie weiter bis zum Hochpunkt und sinkt dann wieder bis sie nach 39.32 s zum zweiten mal den Wert 35.2 erreicht. Während dieser 39.32 - 30.7 = 8.62 s ist der Wert der Funktion also höher als 35.2.
- t-Wert beim stärksten Zuwachs
Gesucht ist die Stelle mit der größten Zunahme, also der maximalen Steigung. Die maximale und minimale Tangentensteigungen befinden sich immer in den Wendepunkten. Hier ist der Wendepunkt mit der positiven Steigung gesucht. Dieser ist bei einer Sinus-Funktion aber immer zu Beginn der Periode, also nach 0 s.
Die Sinusfunktion ist aber auch noch um 20 nach rechts verschoben, d.h. sie startet auch erst bei t = 20 s mit ihrer Periode. Somit erreicht sie ihren steigenden Wendepunkt nach 20 s. Die Lösung ist also: 20 s.
Parameter für best. Periode finden
Beispiel:
Untersuche, ob es einen maximalen oder minimalen Wert für die Periode von fa mit
Bestimme das zugehörige a und die extremale Periode.
Wir berechnen zuerst die Periode von fa mit
p =
Man erkennt jetzt gut, dass je größer
Diesen minimalen Wert können wir schnell über die Nullstelle der ersten Ableitung bestimmen:
(
Für dieses a = 3 wird also
Für a = 3 ist dann die minimale Periode pmin
=
