Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Ableiten von trigonometrischen Funktionen BF
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ableiten von trigonometrischen Funktionen
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
HP, TP oder WP bei trigon. Fktn. BF (einfach)
Beispiel:
Bestimme die Wendepunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=-2 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|-2).
Mit Hilfe von b= und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Wendepunkt ist bei sin(x) zu Beginn und nach der Hälfte der Periode,
also bei x1=
Weil das gesuchte Interval [0;
Die Funktion schwingt wegen d=-2 um y=-2. Der y-Wert des Wendepunkt ist also gerade -2.
Wir erhalten also als Ergebnis einen Wendepunkt bei (
HP, TP oder WP bei trigon. Fktn. BF
Beispiel:
Bestimme die Hochpunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=0 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|0).
Mit Hilfe von b=3 und der Periodenformel p=
p=
Der gesuchte Hochpunkt ist bei sin(x) nach einem Viertel der Periode,
also bei x1=
Die Funktion schwingt wegen d=0 um y=0. Der y-Wert des Hochpunkt ist also eine Amplitude (a=1) über 0, also bei y=1.
Wir erhalten also als Ergebnis einen Hochpunkt bei (
HP, TP oder WP bei trigon. Fktn (LF)
Beispiel:
Bestimme die Hochpunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=cos(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=cos(x) um d=0 in
y-Richtung und um c=
Der erste Hochpunkt wäre also im Punkt P(
Mit Hilfe von b=
p=
Der gesuchte Hochpunkt ist bei cos(x) zu Beginn der Periode,
also bei x1=
Die Funktion schwingt wegen d=0 um y=0. Der y-Wert des Hochpunkt ist also eine Amplitude (a=3) über 0, also bei y=3.
Wir erhalten also als Ergebnis einen Hochpunkt bei (
Nullstellen mit dem WTR
Beispiel:
Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit
Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.
Daraus ergibt sich folgende Gleichung:
|
|
= | |: |
|
|
= | |cos-1(⋅) |
Am Einheitskreis erkennt man sofort:
|
|
= | |: |
|
|
|
= |
L={
Die einzige Nullstelle in der Periode [0;
trigon. Anwendungsaufgabe 2
Beispiel:
Bei einem Riesenrad kann man die Höhe einer Gondel (in m) über dem Erdboden zur Zeit t (in Sekunden) näherungsweise durch die Funktion f mit
- Bestimme die Zeit (in s), die eine Gondel für eine Umdrehung braucht.
- Wie lange (in Sekunden) hat das Riesenrad eine Höhe von mindestens 38 m?
- Zu welcher Zeit (in s) gewinnt die Gondel am stärksten an Höhe?
- Periodenlänge
Aus dem Funktionsterm können wir den Faktor b =
herauslesen und in die Periodenformel einsetzen:1 70 π Somit gilt für die Periodenlänge: p =
=2 π b = 1402 π 1 70 π - t-Werte mit f(t) ≥ 38
Um das gesuchte Intervall zu bestimmen, müssen wir erst die Stellen bestimmen, an denen der Funktionswert unserer Sinus-Funktion gerade den Wert 38 hat. Wir setzen also den Funktionsterm mit 38 gleich:
= 3820 ⋅ sin ( 1 70 π ( t - 10 ) ) + 22 20 ⋅ sin ( 0,0449 t - 0,4488 ) + 22 = 38 | - 22 20 ⋅ sin ( 0,0449 t - 0,4488 ) = 16 |: 20 sin ( 0,0449 t - 0,4488 ) = 0,8 |sin-1(⋅) Der WTR liefert nun als Wert 0.92729521800161
1. Fall:
0,0449 x - 0,4488 = 0,927 | + 0,4488 0,0449 x = 1,3758 |: 0,0449 x1 = 30,6414 Am Einheitskreis erkennen wir, dass die Gleichung
=sin ( 0,0449 t - 0,4488 ) noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.8 schneidet den Einheitskreis in einem zweiten Punkt).0,8 Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π -
=0,927 liegen muss.2,214 2. Fall:
0,0449 x - 0,4488 = 2,214 | + 0,4488 0,0449 x = 2,6628 |: 0,0449 x2 = 59,3051 Da die Sinus-Funktion ja um 10 nach rechts verschoben ist, startet sie nach 10 s nach oben und erreicht erstmals nach 30.64 s den Wert 38. Danach steigt sie weiter bis zum Hochpunkt und sinkt dann wieder bis sie nach 59.31 s zum zweiten mal den Wert 38 erreicht. Während dieser 59.31 - 30.64 = 28.67 s ist der Wert der Funktion also höher als 38.
- t-Wert beim stärksten Zuwachs
Gesucht ist die Stelle mit der größten Zunahme, also der maximalen Steigung. Die maximale und minimale Tangentensteigungen befinden sich immer in den Wendepunkten. Hier ist der Wendepunkt mit der positiven Steigung gesucht. Dieser ist bei einer Sinus-Funktion aber immer zu Beginn der Periode, also nach 0 s.
Die Sinusfunktion ist aber auch noch um 10 nach rechts verschoben, d.h. sie startet auch erst bei t = 10 s mit ihrer Periode. Somit erreicht sie ihren steigenden Wendepunkt nach 10 s. Die Lösung ist also: 10 s.
Parameter für best. Periode finden
Beispiel:
Für welchen Wert von a hat der Graph fa mit
Der Graph einer normalen Kosiniusfunktion hat ja seinen ersten Wendepunkt immmer nach einer
Demnach muss also die Periode p =
Jetzt können wir die Periodenformel p =
b =
Da bei
damit der Graph von
