Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Ableiten von trigonometrischen Funktionen BF
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ableiten von trigonometrischen Funktionen
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Extrempunkte bei trigon. Fktn. BF (einfach)
Beispiel:
Bestimme die Tiefpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=-2 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|-2).
Mit Hilfe von b= und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Tiefpunkt ist bei sin(x) nach Dreiviertel der Periode,
also bei x1=
Weil das gesuchte Interval [0;
Die Funktion schwingt wegen d=-2 um y=-2. Der y-Wert des Tiefpunkt ist also eine Amplitude (a=1) unter -2, also bei y=-3.
Wir erhalten also als Ergebnis einen Tiefpunkt bei (
Extrempunkte bei trigon. Fktn. BF
Beispiel:
Bestimme die Tiefpunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=1 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|1).
Mit Hilfe von b=
p=
Der gesuchte Tiefpunkt ist bei sin(x) nach Dreiviertel der Periode,
also bei x1=
Weil das gesuchte Interval [0;
Die Funktion schwingt wegen d=1 um y=1. Der y-Wert des Tiefpunkt ist also eine Amplitude (a=3) unter 1, also bei y=-2.
Wir erhalten also als Ergebnis einen Tiefpunkt bei (
Extrempunkte bei trigon. Fktn (LF)
Beispiel:
Bestimme die Tiefpunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=-3 in
y-Richtung und um c=
Der erste steigender Wendepunkt wäre also im Punkt P(
Weil aber das Vorzeichen von a = -2 aber negativ ist, wird die Original-funktion f(x)=sin(x)
nicht nur um den Faktor 2 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem steigender Wendepunkt in P
ein fallender Wendepunkt in P(
Mit Hilfe von b=
p=
Der gesuchte Tiefpunkt ist bei sin(x) nach Dreiviertel der Periode, bei der durch das negative Vorzeichen an der x-Achse gespiegelte Funktion
also bei x1=
Die Funktion schwingt wegen d=-3 um y=-3. Der y-Wert des Tiefpunkt ist also eine Amplitude (a=2) unter -3, also bei y=-5.
Wir erhalten also als Ergebnis einen Tiefpunkt bei (
Nullstellen mit dem WTR
Beispiel:
Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit
Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.
Daraus ergibt sich folgende Gleichung:
|
= | |: |
|
= | |cos-1(⋅) |
Der WTR liefert nun als Wert 0.64350110879328
1. Fall:
|
= |
|
|: |
x1 | = |
|
Am Einheitskreis erkennen wir, dass die Gleichung
Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt)
bei -
bzw. bei -
2. Fall:
|
= |
|
|: |
x2 | = |
|
L={
Die Nullstellen in der Periode [0;
bei x1 =
trigon. Anwendungsaufgabe 2
Beispiel:
In einem Wellenbad kann man an einer bestimmten Stelle die Wasserhöhe zur Zeit t (in Sekunden) näherungsweise durch die Funktion f mit
- Bestimme die Periode dieses Vorgangs.
- Wie lange (in Sekunden) ist die Wasserhöhe höher als 97,5cm?
- Periodenlänge
Aus dem Funktionsterm können wir den Faktor b =
2 3 π Somit gilt für die Periodenlänge: p =
2 π b 2 π 2 3 π - t-Werte mit f(t) ≥ 97.5
Um das gesuchte Intervall zu bestimmen, müssen wir erst die Stellen bestimmen, an denen der Funktionswert unserer Sinus-Funktion gerade den Wert 97.5 hat. Wir setzen also den Funktionsterm mit 97.5 gleich:
15 ⋅ sin ( 2 3 π t ) + 90 15 ⋅ sin ( 2,0944 t ) + 90 = 97,5 | - 90 15 ⋅ sin ( 2,0944 t ) = 7,5 |: 15 sin ( 2,0944 t ) = 0,5 |sin-1(⋅) Der WTR liefert nun als Wert 0.5235987755983
1. Fall:
2,0944 x = 5 6 π |: 2,0944 x1 = 0,3979 π Am Einheitskreis erkennen wir, dass die Gleichung
sin ( 2,0944 t ) noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.5 schneidet den Einheitskreis in einem zweiten Punkt).0,5 Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π -
5 6 π 1 6 π 2. Fall:
2,0944 x = 1 6 π |: 2,0944 x2 = 0,0796 π Die Sinus-Funktion startet zu Beginn nach oben und erreicht erstmals nach 0.25 s den Wert 97.5. Danach steigt sie weiter bis zum Hochpunkt und sinkt dann wieder bis sie nach 1.25 s zum zweiten mal den Wert 97.5 erreicht. Während dieser 1.25 - 0.25 = 1 s ist der Wert der Funktion also höher als 97.5.