nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Ableiten von trigonometrischen Funktionen BF

Beispiel:

Berechne die Ableitung von f mit f(x)= sin( 1 3 ( x -3 )) -1 und vereinfache:

Lösung einblenden

f(x)= sin( 1 3 ( x -3 )) -1

f'(x)= cos( 1 3 ( x -3 )) · ( 1 3 ( 1 +0) )+0

= cos( 1 3 ( x -3 )) · ( 1 3 ( 1 ) )

= 1 3 cos( 1 3 ( x -3 ))

Ableiten von trigonometrischen Funktionen

Beispiel:

Berechne die Ableitung von f mit f(x)= 2 x 2 · sin( -4x ) und vereinfache:

Lösung einblenden

f(x)= 2 x 2 · sin( -4x )

f'(x)= 2 · 2x · sin( -4x ) +2 x 2 · cos( -4x ) · ( -4 )

= 4 x · sin( -4x ) +2 x 2 · ( -4 cos( -4x ) )

= 4 x · sin( -4x ) -8 x 2 · cos( -4x )

Integral über trigon. Funktion

Beispiel:

Bestimme das Integral 0 π 4 sin( 3x ) x .

Lösung einblenden
0 π 4 sin( 3x ) x

= [ - 4 3 cos( 3x ) ] 0 π

= - 4 3 cos( 3π ) + 4 3 cos( 3( 0 ) )

= - 4 3 ( -1 ) + 4 3 1

= 4 3 + 4 3

= 8 3


≈ 2,667

HP, TP oder WP bei trigon. Fktn. BF (einfach)

Beispiel:

Bestimme die Tiefpunkte des Graphen von f mit f(x)= 2 sin( 4x ) im Intervall [0; 1 2 π ).
(Tipp: am schnellsten geht das ohne Ableitungen)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.

Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=0 in y-Richtung verschoben ist.

Der erste steigender Wendepunkt wäre also im Punkt P(0|0).

Mit Hilfe von b=4 und der Periodenformel p= b erhalten wir als Periode:
p= 4 = 1 2 π

Der gesuchte Tiefpunkt ist bei sin(x) nach Dreiviertel der Periode,
also bei x1= 3 8 π 3 8 π . .

Die Funktion schwingt wegen d=0 um y=0. Der y-Wert des Tiefpunkt ist also eine Amplitude (a=2) unter 0, also bei y=-2.

Wir erhalten also als Ergebnis einen Tiefpunkt bei ( 3 8 π |-2)

HP, TP oder WP bei trigon. Fktn. BF

Beispiel:

Bestimme die Wendepunkte des Graphen von f mit f(x)= 2 cos( 1 2 x ) -1 im Intervall [0; 4π ).
(Tipp: am schnellsten geht das ohne Ableitungen)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Originalfunktion f(x)=cos(x) ist in der Abbildung rechts in blau eingezeichnet.

Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=cos(x) um d=-1 in y-Richtung verschoben ist.

Der erste Hochpunkt wäre also im Punkt P(0|-1).

Mit Hilfe von b= 1 2 und der Periodenformel p= b erhalten wir als Periode:
p= 1 2 = 4π

Der gesuchte Wendepunkt ist bei cos(x) nach einem Viertel und nach Dreiviertel der Periode,
also bei x1= π π . und bei x2= 3π 3π . .

Die Funktion schwingt wegen d=-1 um y=-1. Der y-Wert des Wendepunkt ist also gerade -1.

Wir erhalten also als Ergebnis einen Wendepunkt bei ( π |-1) und einen bei ( 3π |-1)

HP, TP oder WP bei trigon. Fktn (LF)

Beispiel:

Bestimme die Wendepunkte des Graphen von f mit f(x)= -2 cos( 1 4 ( x +3 )) +2 im Intervall [0; 16π ).
(Tipp: am schnellsten geht das ohne Ableitungen)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Originalfunktion f(x)=cos(x) ist in der Abbildung rechts in blau eingezeichnet.

Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=cos(x) um d=2 in y-Richtung und um c= -3 nach rechts verschoben ist.

Der erste Hochpunkt wäre also im Punkt P( -3 |4).

Weil aber das Vorzeichen von a = -2 aber negativ ist, wird die Original-funktion f(x)=cos(x) nicht nur um den Faktor 2 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem Hochpunkt in P ein Tiefpunkt in P( -3 |0) wird.

Mit Hilfe von b= 1 4 und der Periodenformel p= b erhalten wir als Periode:
p= 1 4 = 8π

Der gesuchte Wendepunkt ist bei cos(x) nach einem Viertel und nach Dreiviertel der Periode,
also bei x1= -3 + 2π 3,283 . und bei x2= -3 + 6π 15,85 . .

Weil das gesuchte Interval [0; 16π ) zwei Perioden umfasst, ist auch noch 3,283 +8π ≈ 28.416 und 15,85 +8π ≈ 40.983 eine Lösung.

Die Funktion schwingt wegen d=2 um y=2. Der y-Wert des Wendepunkt ist also gerade 2.

Wir erhalten also als Ergebnis einen Wendepunkt bei ( 3,283 |2) und bei ( 15,85 |2) und bei (28.416|2) und bei (40.983|2)

Nullstellen mit dem WTR

Beispiel:

Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit f(x)= 3 cos( 1 4 x ) +0,3 innerhalb einer Periode, also im Intervall [0; 8π [.

Lösung einblenden

Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.

Daraus ergibt sich folgende Gleichung:

3 cos( 1 4 x ) +0,3 = 0 | -0,3
3 cos( 1 4 x ) = -0,3 |:3
canvas
cos( 1 4 x ) = -0,1 |cos-1(⋅)

Der WTR liefert nun als Wert 1.6709637479565

1. Fall:

1 4 x = 1,671 |⋅ 4
x1 = 6,684

Am Einheitskreis erkennen wir, dass die Gleichung cos( 1 4 x ) = -0,1 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.1 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,671
bzw. bei - 1,671 +2π= 4,612 liegen muss.

2. Fall:

1 4 x = 4,612 |⋅ 4
x2 = 18,448

L={ 6,684 ; 18,448 }

Die Nullstellen in der Periode [0; 8π ) sind also
bei x1 = 6,684 und x2 = 18,448 .

trigon. Anwendungsaufgabe 2

Beispiel:

An einem bestimmten Ort kann die Zeit (in h) zwischen Sonnenaufgang und Sonnenuntergang t Tage nach Beobachtungsbeginn näherungsweise durch die Funktion f mit f(t)= 5 sin( 1 183 π ( t -30 )) +12 (0 < t ≤ 366) angeben.

  1. Wie viele Tage nach Beobachtungsbeginn werden die Tage am schnellsten kürzer?
  2. Bestimme die maximale Zeit zwischen Sonnenaufgang und Sonnenuntergang (in h).

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Aus dem Funktionsterm können wir den Faktor b = 1 183 π herauslesen und in die Periodenformel einsetzen:

Somit gilt für die Periodenlänge: p = 2 π b = 2 π 1 183 π = 366

  1. t-Wert bei der stärksten Abnahme

    Gesucht ist die Stelle mit der größten Abnahme, also der minimalen Steigung. Die maximale und minimale Tangentensteigungen befinden sich immer in den Wendepunkten. Hier ist der Wendepunkt mit der negativen Steigung gesucht. Dieser ist bei einer Sinus-Funktion aber immer genau nach einer halben Periode, also nach 183 d.

    Die Sinusfunktion ist aber auch noch um 30 nach rechts verschoben, d.h. sie startet auch erst bei t = 30 d mit ihrer Periode. Somit erreicht sie ihren fallenenden Wendepunkt nach 183 + 30 d = 213 d. Die Lösung ist also: 213 d.

  2. y-Wert des Maximums (HP)

    Gesucht ist der höchste Funktionswert. Aus dem Term kann man eine Verschiebung der Sinusfunktion um d = 12 nach oben und eine Amplitude von a = 5 erkennen, d.h. f schwingt um maximal 5 um 12. Somit ist der höchste Wert bei 12 h + 5 h = 17 h.

Parameter für best. Periode finden

Beispiel:

Für welchen Wert von a hat der Graph fa mit fa(x)= - sin( a π x ) seinen ersten Hochpunkt mit positivem x-Wert, bei HP( 6 |1), (also den Hochpunkt mit dem kleinsten positiven x-Wert)?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Der Graph einer normalen Sinusfunktion hat ja seinen ersten Tiefpunkt immmer nach einer 3 4 Periode.
Wegen des Minus vor dem Sinus wird ja aber der Graph an der x-Achse gespiegelt, so dass der Tiefpunkt zum Hochpunkt wird. Also ist hier der erste Hochpunkt nach einer 3 4 Periode. Es gilt somit 3 4 ⋅p = 6 |⋅ 4 3

Demnach muss also die Periode p = 4 3 6 = 8 lang sein.

Jetzt können wir die Periodenformel p = b also 8 = b nach b auflösen:

8 = b |⋅b : 8

b = 2π 8 = 1 4 π

Da bei - sin( a π x ) das b ja a π ist, muss also a = 1 4 sein,
damit der Graph von f 1 4 (x)= - sin( 1 4 · π x ) seinen ersten Hochpunkt mit positivem x-Wert, bei HP( 6 |1) hat.