Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Ableiten von trigonometrischen Funktionen BF
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ableiten von trigonometrischen Funktionen
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Integral über trigon. Funktion
Beispiel:
Bestimme das Integral .
=
=
=
=
≈ 2,667
HP, TP oder WP bei trigon. Fktn. BF (einfach)
Beispiel:
Bestimme die Tiefpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=0 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|0).
Mit Hilfe von b=4 und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Tiefpunkt ist bei sin(x) nach Dreiviertel der Periode,
also bei x1=
≈
. .
Die Funktion schwingt wegen d=0 um y=0. Der y-Wert des Tiefpunkt ist also eine Amplitude (a=2) unter 0, also bei y=-2.
Wir erhalten also als Ergebnis einen Tiefpunkt bei ( |-2)
HP, TP oder WP bei trigon. Fktn. BF
Beispiel:
Bestimme die Wendepunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=cos(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=cos(x) um d=-1 in y-Richtung verschoben ist.
Der erste Hochpunkt wäre also im Punkt P(0|-1).
Mit Hilfe von b= und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Wendepunkt ist bei cos(x) nach einem Viertel und nach Dreiviertel der Periode,
also bei x1=
Die Funktion schwingt wegen d=-1 um y=-1. Der y-Wert des Wendepunkt ist also gerade -1.
Wir erhalten also als Ergebnis einen Wendepunkt bei (
HP, TP oder WP bei trigon. Fktn (LF)
Beispiel:
Bestimme die Wendepunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=cos(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=cos(x) um d=2 in
y-Richtung und um c=
Der erste Hochpunkt wäre also im Punkt P(
Weil aber das Vorzeichen von a = -2 aber negativ ist, wird die Original-funktion f(x)=cos(x)
nicht nur um den Faktor 2 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem Hochpunkt in P
ein Tiefpunkt in P(
Mit Hilfe von b=
p=
Der gesuchte Wendepunkt ist bei cos(x) nach einem Viertel und nach Dreiviertel der Periode,
also bei x1=
Weil das gesuchte Interval [0;
Die Funktion schwingt wegen d=2 um y=2. Der y-Wert des Wendepunkt ist also gerade 2.
Wir erhalten also als Ergebnis einen Wendepunkt bei (
Nullstellen mit dem WTR
Beispiel:
Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit
Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.
Daraus ergibt sich folgende Gleichung:
|
|
= | |: |
|
|
= | |cos-1(⋅) |
Der WTR liefert nun als Wert 1.6709637479565
1. Fall:
|
|
= |
|
|⋅ 4 |
| x1 | = |
|
Am Einheitskreis erkennen wir, dass die Gleichung
Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt)
bei -
bzw. bei -
2. Fall:
|
|
= |
|
|⋅ 4 |
| x2 | = |
|
L={
Die Nullstellen in der Periode [0;
bei x1 =
trigon. Anwendungsaufgabe 2
Beispiel:
An einem bestimmten Ort kann die Zeit (in h) zwischen Sonnenaufgang und Sonnenuntergang t Tage nach Beobachtungsbeginn näherungsweise durch die Funktion f mit
- Wie viele Tage nach Beobachtungsbeginn werden die Tage am schnellsten kürzer?
- Bestimme die maximale Zeit zwischen Sonnenaufgang und Sonnenuntergang (in h).
Aus dem Funktionsterm können wir den Faktor b =
Somit gilt für die Periodenlänge: p =
- t-Wert bei der stärksten Abnahme
Gesucht ist die Stelle mit der größten Abnahme, also der minimalen Steigung. Die maximale und minimale Tangentensteigungen befinden sich immer in den Wendepunkten. Hier ist der Wendepunkt mit der negativen Steigung gesucht. Dieser ist bei einer Sinus-Funktion aber immer genau nach einer halben Periode, also nach 183 d.
Die Sinusfunktion ist aber auch noch um 30 nach rechts verschoben, d.h. sie startet auch erst bei t = 30 d mit ihrer Periode. Somit erreicht sie ihren fallenenden Wendepunkt nach 183 + 30 d = 213 d. Die Lösung ist also: 213 d.
- y-Wert des Maximums (HP)
Gesucht ist der höchste Funktionswert. Aus dem Term kann man eine Verschiebung der Sinusfunktion um d = 12 nach oben und eine Amplitude von a = 5 erkennen, d.h. f schwingt um maximal 5 um 12. Somit ist der höchste Wert bei 12 h + 5 h = 17 h.
Parameter für best. Periode finden
Beispiel:
Für welchen Wert von a hat der Graph fa mit
Der Graph einer normalen Sinusfunktion hat ja seinen ersten Tiefpunkt immmer nach einer
Wegen des Minus vor dem Sinus wird ja aber der Graph an der x-Achse gespiegelt, so dass der Tiefpunkt zum
Hochpunkt wird. Also ist hier der erste Hochpunkt nach einer
Demnach muss also die Periode p =
Jetzt können wir die Periodenformel p =
b =
Da bei
damit der Graph von
