- Klasse 5-6
- Klasse 7-8
- Klasse 9-10
- Kursstufe
- COSH
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Ableiten von trigonometrischen Funktionen BF
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ableiten von trigonometrischen Funktionen
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Extrempunkte bei trigon. Fktn. BF (einfach)
Beispiel:
Bestimme die Hochpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=3 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|3).
Mit Hilfe von b=1 und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Hochpunkt ist bei sin(x) nach einem Viertel der Periode,
also bei x1=
≈
. .
Die Funktion schwingt wegen d=3 um y=3. Der y-Wert des Hochpunkt ist also eine Amplitude (a=2) über 3, also bei y=5.
Wir erhalten also als Ergebnis einen Hochpunkt bei ( |5)
Extrempunkte bei trigon. Fktn. BF
Beispiel:
Bestimme die Wendepunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=3 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|3).
Mit Hilfe von b= und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Wendepunkt ist bei sin(x) zu Beginn und nach der Hälfte der Periode,
also bei x1=
Die Funktion schwingt wegen d=3 um y=3. Der y-Wert des Wendepunkt ist also gerade 3.
Wir erhalten also als Ergebnis einen Wendepunkt bei (
Extrempunkte bei trigon. Fktn (LF)
Beispiel:
Bestimme die Hochpunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=3 in
y-Richtung und um c=
Der erste steigender Wendepunkt wäre also im Punkt P(
Mit Hilfe von b=
p=
Der gesuchte Hochpunkt ist bei sin(x) nach einem Viertel der Periode,
also bei x1=
Die Funktion schwingt wegen d=3 um y=3. Der y-Wert des Hochpunkt ist also eine Amplitude (a=2) über 3, also bei y=5.
Wir erhalten also als Ergebnis einen Hochpunkt bei (
Nullstellen mit dem WTR
Beispiel:
Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit
Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.
Daraus ergibt sich folgende Gleichung:
|
= | |: |
|
= | |sin-1(⋅) |
Am Einheitskreis erkennt man sofort:
|
= |
|
|⋅ 3 |
|
= |
|
L={
Die einzige Nullstelle in der Periode [0;
trigon. Anwendungsaufgabe 2
Beispiel:
Bei einem Riesenrad kann man die Höhe einer Gondel (in m) über dem Erdboden zur Zeit t (in Sekunden) näherungsweise durch die Funktion f mit
- Bestimme die Zeit (in s), die eine Gondel für eine Umdrehung braucht.
- Zu welcher Zeit (in s) ist die Gondel am tiefsten Punkt?
- Wie hoch ist die Gondel an ihrem tiefsten Punkt über dem Erdboden?
- Wie lange (in Sekunden) hat das Riesenrad eine Höhe von mindestens 21 m?
- Periodenlänge
Aus dem Funktionsterm können wir den Faktor b =
1 100 π Somit gilt für die Periodenlänge: p =
2 π b 2 π 1 100 π - t-Wert des Minimums (TP)
Gesucht ist die Stelle mit dem geringsten Funktionswert, also der x- bzw- t-Wert des Tiefpunkts. Dieser ist bei einer Sinusfunktion immer nach einer Dreiviertel Periode (im Einheitskreis ist man nach einer Dreiviertel-Umdrehung ganz unten bei y=-1), hier also nach 150 s.
Die Sinusfunktion ist aber auch noch um 10 nach rechts verschoben, d.h. sie startet auch erst bei t = 10 s mit ihrer Periode. Somit erreicht sie ihren Tiefpunkt nach 150 + 10 s = 160 s. Die Lösung ist also: 160 s.
- y-Wert des Minimums (TP)
Gesucht ist der tiefste Funktionswert. Aus dem Term kann man eine Verschiebung der Sinusfunktion um d = 12 nach oben und eine Amplitude von a = 10 erkennen, d.h. f schwingt um maximal 10 um 12. Somit ist der tiefste Wert bei 12 m - 10 m = 2 m.
- t-Werte mit f(t) ≥ 21
Um das gesuchte Intervall zu bestimmen, müssen wir erst die Stellen bestimmen, an denen der Funktionswert unserer Sinus-Funktion gerade den Wert 21 hat. Wir setzen also den Funktionsterm mit 21 gleich:
10 ⋅ sin ( 1 100 π ( t - 10 ) ) + 12 10 ⋅ sin ( 0,0314 t - 0,3142 ) + 12 = 21 | - 12 10 ⋅ sin ( 0,0314 t - 0,3142 ) = 9 |: 10 sin ( 0,0314 t - 0,3142 ) = 0,9 |sin-1(⋅) Der WTR liefert nun als Wert 1.1197695149986
1. Fall:
0,0314 x - 0,3142 = 1,12 | + 0,3142 0,0314 x = 1,4342 |: 0,0314 x1 = 45,6752 Am Einheitskreis erkennen wir, dass die Gleichung
sin ( 0,0314 t - 0,3142 ) noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.9 schneidet den Einheitskreis in einem zweiten Punkt).0,9 Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π -
1,12 2,022 2. Fall:
0,0314 x - 0,3142 = 2,022 | + 0,3142 0,0314 x = 2,3362 |: 0,0314 x2 = 74,4013 Da die Sinus-Funktion ja um 10 nach rechts verschoben ist, startet sie nach 10 s nach oben und erreicht erstmals nach 45.68 s den Wert 21. Danach steigt sie weiter bis zum Hochpunkt und sinkt dann wieder bis sie nach 74.4 s zum zweiten mal den Wert 21 erreicht. Während dieser 74.4 - 45.68 = 28.72 s ist der Wert der Funktion also höher als 21.
Parameter für best. Periode finden
Beispiel:
Für welchen Wert von a hat der Graph fa mit
Der Graph einer normalen Sinusfunktion hat ja seinen ersten Hochpunkt immmer nach einer
Wegen des Minus vor dem Sinus wird ja aber der Graph an der x-Achse gespiegelt, so dass der Hochpunkt zum
Tiefpunkt wird. Also ist hier der erste Tiefpunkt nach einer
Demnach muss also die Periode p =
Jetzt können wir die Periodenformel p =
b =
Da bei
damit der Graph von