Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Ableiten von trigonometrischen Funktionen BF
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ableiten von trigonometrischen Funktionen
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
HP, TP oder WP bei trigon. Fktn. BF (einfach)
Beispiel:
Bestimme die Hochpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=1 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|1).
Mit Hilfe von b=1 und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Hochpunkt ist bei sin(x) nach einem Viertel der Periode,
also bei x1=
≈
. .
Die Funktion schwingt wegen d=1 um y=1. Der y-Wert des Hochpunkt ist also eine Amplitude (a=3) über 1, also bei y=4.
Wir erhalten also als Ergebnis einen Hochpunkt bei ( |4)
HP, TP oder WP bei trigon. Fktn. BF
Beispiel:
Bestimme die Hochpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=-1 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|-1).
Weil aber das Vorzeichen von a = -1 aber negativ ist, wird die Original-funktion f(x)=sin(x) nicht nur um den Faktor 1 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem steigender Wendepunkt in P ein fallender Wendepunkt in P(0|-1) wird.
Mit Hilfe von b=1 und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Hochpunkt ist bei sin(x) nach einem Viertel der Periode, bei der durch das negative Vorzeichen an der x-Achse gespiegelte Funktion
aber nach Dreiviertel der Periode,
also bei x1=
≈
. .
Die Funktion schwingt wegen d=-1 um y=-1. Der y-Wert des Hochpunkt ist also eine Amplitude (a=1) über -1, also bei y=0.
Wir erhalten also als Ergebnis einen Hochpunkt bei ( |0)
HP, TP oder WP bei trigon. Fktn (LF)
Beispiel:
Bestimme die Tiefpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=cos(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=cos(x) um d=3 in y-Richtung und um c= nach rechts verschoben ist.
Der erste Hochpunkt wäre also im Punkt P( |5).
Mit Hilfe von b=1 und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Tiefpunkt ist bei cos(x) nach der Hälfte der Periode,
also bei x1=
+
≈
. .
Die Funktion schwingt wegen d=3 um y=3. Der y-Wert des Tiefpunkt ist also eine Amplitude (a=2) unter 3, also bei y=1.
Wir erhalten also als Ergebnis einen Tiefpunkt bei ( |1)
Nullstellen mit dem WTR
Beispiel:
Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit innerhalb einer Periode, also im Intervall [0; [.
Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.
Daraus ergibt sich folgende Gleichung:
| = | |: |
| = | |cos-1(⋅) |
Der WTR liefert nun als Wert 1.4706289056333
1. Fall:
| = | |: | ||
| x1 | = |
Am Einheitskreis erkennen wir, dass die Gleichung = noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.1 schneidet den Einheitskreis in einem zweiten Punkt).
Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt)
bei -
bzw. bei -
+2π=
liegen muss.
2. Fall:
| = | |: | ||
| x2 | = |
L={ ; }
Die Nullstellen in der Periode [0;
) sind also
bei x1 =
und x2 =
.
trigon. Anwendungsaufgabe 2
Beispiel:
An einem bestimmten Ort kann man die Durchschnittstemperatur zur Uhrzeit t (in h) durch die Funktion f mit (0 < t ≤ 24) näherungsweise angeben.
- Wie groß ist die tiefste Temperatur?
- Wie lange (in Stunden) ist es wärmer als 19,3°C?
- Zu welcher Uhrzeit nimmt die Temperatur am stärksten ab?
- Zu welcher Uhrzeit ist es am wärmsten?
Aus dem Funktionsterm können wir den Faktor b = herauslesen und in die Periodenformel einsetzen:
Somit gilt für die Periodenlänge: p = = = 24
- y-Wert des Minimums (TP)
Gesucht ist der tiefste Funktionswert. Aus dem Term kann man eine Verschiebung der Sinusfunktion um d = 19 nach oben und eine Amplitude von a = 3 erkennen, d.h. f schwingt um maximal 3 um 19. Somit ist der tiefste Wert bei 19 ° C - 3 ° C = 16 ° C.
- t-Werte mit f(t) ≥ 19.3
Um das gesuchte Intervall zu bestimmen, müssen wir erst die Stellen bestimmen, an denen der Funktionswert unserer Sinus-Funktion gerade den Wert 19.3 hat. Wir setzen also den Funktionsterm mit 19.3 gleich:
= 19.33 ⋅ sin ( 1 12 π ( t - 8 ) ) + 19 3 ⋅ sin ( 0,2618 t - 2,0944 ) + 19 = 19,3 | - 19 3 ⋅ sin ( 0,2618 t - 2,0944 ) = 0,3 |: 3 sin ( 0,2618 t - 2,0944 ) = 0,1 |sin-1(⋅) Der WTR liefert nun als Wert 0.10016742116156
1. Fall:
0,2618 x - 2,0944 = 0,1 | + 2,0944 0,2618 x = 2,1944 |: 0,2618 x1 = 8,382 Am Einheitskreis erkennen wir, dass die Gleichung
=sin ( 0,2618 t - 2,0944 ) noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.1 schneidet den Einheitskreis in einem zweiten Punkt).0,1 Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π -
=0,1 liegen muss.3,041 2. Fall:
0,2618 x - 2,0944 = 3,041 | + 2,0944 0,2618 x = 5,1354 |: 0,2618 x2 = 19,6157 Da die Sinus-Funktion ja um 8 nach rechts verschoben ist, startet sie nach 8 h nach oben und erreicht erstmals nach 8.38 h den Wert 19.3. Danach steigt sie weiter bis zum Hochpunkt und sinkt dann wieder bis sie nach 19.62 h zum zweiten mal den Wert 19.3 erreicht. Während dieser 19.62 - 8.38 = 11.24 h ist der Wert der Funktion also höher als 19.3.
- t-Wert bei der stärksten Abnahme
Gesucht ist die Stelle mit der größten Abnahme, also der minimalen Steigung. Die maximale und minimale Tangentensteigungen befinden sich immer in den Wendepunkten. Hier ist der Wendepunkt mit der negativen Steigung gesucht. Dieser ist bei einer Sinus-Funktion aber immer genau nach einer halben Periode, also nach 12 h.
Die Sinusfunktion ist aber auch noch um 8 nach rechts verschoben, d.h. sie startet auch erst bei t = 8 h mit ihrer Periode. Somit erreicht sie ihren fallenenden Wendepunkt nach 12 + 8 h = 20 h. Die Lösung ist also: 20 Uhr.
- t-Wert des Maximums (HP)
Gesucht ist die Stelle mit dem höchsten Funktionswert, also der x- bzw- t-Wert des Hochpunkts. Dieser ist bei einer Sinusfunktion immer nach einer Viertel Periode (im Einheitskreis ist man nach einer Viertel-Umdrehung ganz oben bei y=1), hier also nach 6 h.
Die Sinusfunktion ist aber auch noch um 8 nach rechts verschoben, d.h. sie startet auch erst bei t = 8 h mit ihrer Periode. Somit erreicht sie ihren Hochpunkt nach 6 + 8 h = 14 h. Die Lösung ist also: 14 Uhr.
Parameter für best. Periode finden
Beispiel:
Für welchen Wert von a hat der Graph fa mit
Der Graph einer normalen Kosiniusfunktion hat ja seinen ersten Wendepunkt immmer nach einer
Demnach muss also die Periode p =
Jetzt können wir die Periodenformel p =
b =
Da bei
damit der Graph von
