- Klasse 5-6
- Klasse 7-8
- Klasse 9-10
- Kursstufe
- COSH
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Ableiten von trigonometrischen Funktionen BF
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ableiten von trigonometrischen Funktionen
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Extrempunkte bei trigon. Fktn. BF (einfach)
Beispiel:
Bestimme die Tiefpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=3 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|3).
Mit Hilfe von b= und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Tiefpunkt ist bei sin(x) nach Dreiviertel der Periode,
also bei x1=
Weil das gesuchte Interval [0;
Die Funktion schwingt wegen d=3 um y=3. Der y-Wert des Tiefpunkt ist also eine Amplitude (a=2) unter 3, also bei y=1.
Wir erhalten also als Ergebnis einen Tiefpunkt bei (
Extrempunkte bei trigon. Fktn. BF
Beispiel:
Bestimme die Wendepunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=3 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|3).
Mit Hilfe von b=
p=
Der gesuchte Wendepunkt ist bei sin(x) zu Beginn und nach der Hälfte der Periode,
also bei x1=
Die Funktion schwingt wegen d=3 um y=3. Der y-Wert des Wendepunkt ist also gerade 3.
Wir erhalten also als Ergebnis einen Wendepunkt bei (
Extrempunkte bei trigon. Fktn (LF)
Beispiel:
Bestimme die Wendepunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=cos(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=cos(x) um d=-1 in
y-Richtung und um c=
Der erste Hochpunkt wäre also im Punkt P(
Mit Hilfe von b=
p=
Der gesuchte Wendepunkt ist bei cos(x) nach einem Viertel und nach Dreiviertel der Periode,
also bei x1=
Weil das gesuchte Interval [0;
Die Funktion schwingt wegen d=-1 um y=-1. Der y-Wert des Wendepunkt ist also gerade -1.
Wir erhalten also als Ergebnis einen Wendepunkt bei (
Nullstellen mit dem WTR
Beispiel:
Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit
Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.
Daraus ergibt sich folgende Gleichung:
|
= | |: |
|
= | |sin-1(⋅) |
Der WTR liefert nun als Wert 0.3046926540154
1. Fall:
|
= |
|
|: |
x1 | = |
|
Am Einheitskreis erkennen wir, dass die Gleichung
Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt,
also π -
2. Fall:
|
= |
|
|: |
x2 | = |
|
L={
Die Nullstellen in der Periode [0;
bei x1 =
trigon. Anwendungsaufgabe 2
Beispiel:
An einem bestimmten Ort kann man die Durchschnittstemperatur zur Uhrzeit t (in h) durch die Funktion f mit
- Zu welcher Uhrzeit ist es am kältesten?
- Wie lange (in Stunden) ist es wärmer als 17°C?
- Zu welcher Uhrzeit nimmt die Temperatur am stärksten ab?
- Zu welcher Uhrzeit ist es am wärmsten?
Aus dem Funktionsterm können wir den Faktor b =
Somit gilt für die Periodenlänge: p =
- t-Wert des Minimums (TP)
Gesucht ist die Stelle mit dem geringsten Funktionswert, also der x- bzw- t-Wert des Tiefpunkts. Dieser ist bei einer Sinusfunktion immer nach einer Dreiviertel Periode (im Einheitskreis ist man nach einer Dreiviertel-Umdrehung ganz unten bei y=-1), hier also nach 18 h.
Die Sinusfunktion ist aber auch noch um 11 nach rechts verschoben, d.h. sie startet auch erst bei t = 11 h mit ihrer Periode. Somit erreicht sie ihren Tiefpunkt nach 18 + 11 h = 29 h. Weil aber 29 nicht im gesuchten Intervall [0;24] liegt, nehmen wir den Punkt eine Periode früher, also bei 29 - 24 = 5 h. Die Lösung ist also: 5 Uhr.
- t-Werte mit f(t) ≥ 17
Um das gesuchte Intervall zu bestimmen, müssen wir erst die Stellen bestimmen, an denen der Funktionswert unserer Sinus-Funktion gerade den Wert 17 hat. Wir setzen also den Funktionsterm mit 17 gleich:
5 ⋅ sin ( 1 12 π ( t - 11 ) ) + 16 5 ⋅ sin ( 0,2618 t - 2,8798 ) + 16 = 17 | - 16 5 ⋅ sin ( 0,2618 t - 2,8798 ) = 1 |: 5 sin ( 0,2618 t - 2,8798 ) = 0,2 |sin-1(⋅) Der WTR liefert nun als Wert 0.20135792079033
1. Fall:
0,2618 x - 2,8798 = 0,201 | + 2,8798 0,2618 x = 3,0808 |: 0,2618 x1 = 11,7678 Am Einheitskreis erkennen wir, dass die Gleichung
sin ( 0,2618 t - 2,8798 ) noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.2 schneidet den Einheitskreis in einem zweiten Punkt).0,2 Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π -
0,201 2,94 2. Fall:
0,2618 x - 2,8798 = 2,94 | + 2,8798 0,2618 x = 5,8198 |: 0,2618 x2 = 22,2299 Da die Sinus-Funktion ja um 11 nach rechts verschoben ist, startet sie nach 11 h nach oben und erreicht erstmals nach 11.77 h den Wert 17. Danach steigt sie weiter bis zum Hochpunkt und sinkt dann wieder bis sie nach 22.23 h zum zweiten mal den Wert 17 erreicht. Während dieser 22.23 - 11.77 = 10.46 h ist der Wert der Funktion also höher als 17.
- t-Wert bei der stärksten Abnahme
Gesucht ist die Stelle mit der größten Abnahme, also der minimalen Steigung. Die maximale und minimale Tangentensteigungen befinden sich immer in den Wendepunkten. Hier ist der Wendepunkt mit der negativen Steigung gesucht. Dieser ist bei einer Sinus-Funktion aber immer genau nach einer halben Periode, also nach 12 h.
Die Sinusfunktion ist aber auch noch um 11 nach rechts verschoben, d.h. sie startet auch erst bei t = 11 h mit ihrer Periode. Somit erreicht sie ihren fallenenden Wendepunkt nach 12 + 11 h = 23 h. Die Lösung ist also: 23 Uhr.
- t-Wert des Maximums (HP)
Gesucht ist die Stelle mit dem höchsten Funktionswert, also der x- bzw- t-Wert des Hochpunkts. Dieser ist bei einer Sinusfunktion immer nach einer Viertel Periode (im Einheitskreis ist man nach einer Viertel-Umdrehung ganz oben bei y=1), hier also nach 6 h.
Die Sinusfunktion ist aber auch noch um 11 nach rechts verschoben, d.h. sie startet auch erst bei t = 11 h mit ihrer Periode. Somit erreicht sie ihren Hochpunkt nach 6 + 11 h = 17 h. Die Lösung ist also: 17 Uhr.
Parameter für best. Periode finden
Beispiel:
Für welchen Wert von a hat der Graph fa mit
Der Graph einer normalen Kosiniusfunktion hat ja seinen ersten Wendepunkt immmer nach einer
Demnach muss also die Periode p =
Jetzt können wir die Periodenformel p =
b =
Da bei
damit der Graph von