nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-1;3].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -1 und x2 = 3 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(3) - f(-1) in den Zähler und die Differenz der x-Werte 3 - ( - 1 ) in den Nenner schreiben:

f(3) - f(-1) 3 - ( - 1 )

= 3 - ( - 3 ) 3 - ( - 1 )

= 6 4

= 3 2

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 + x -3 . Bestimme den Differenzenquotient von f im Intervall I=[-1;2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -1 und x2 = 2 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-1) = ( -1 ) 2 -1 -3 = 1 -1 -3 = -3 und
f(2) = 2 2 +2 -3 = 4 +2 -3 = 3
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(2) - f(-1) in den Zähler und die Differenz der x-Werte 2 - ( - 1 ) in den Nenner schreiben:

f(2) - f(-1) 2 - ( - 1 )

= 3 - ( - 3 ) 2 - ( - 1 )

= 6 3

= 2

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=0 und x2=0,5 hat bei einer Funktion f den Wert 3.Es gilt: f(0) = -2. Bestimme f(0,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(0,5) - f(0) 0,5 - 0 = 3

f(0,5) = -2 eingestezt (und Nenner verrechnet):

f(0,5) - ( - 2 ) 0,5 = 3 |⋅ 0,5

f(0,5) +2 = 1,5 |-2

f(0,5) = -0.5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 2 +5 . Berechne f'(1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen 1 und einem allgemeinen x auf:

f(x) - f(1) x - 1

= - x 2 +5 - ( - 1 2 +5 ) x -1

= - x 2 +5 + 1 2 -5 x -1

= - x 2 + 1 2 x -1

= -( x 2 - 1 2 ) x -1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= - ( x +1 ) · ( x -1 ) x -1

Jetzt lässt sich der Nenner x -1 rauskürzen:

= -1 · ( x +1 )

Jetzt können wir den Grenzwert für x → 1 leicht bestimmen:

f'(1) = lim x → 1 f(x) - f(1) x - 1 = lim x → 1 -( x +1 ) = -( 1 +1 ) = -2

2. Weg

Wir stellen den Differenzenquotient zwischen 1 + h und 1 auf:

f(1+h) - f(1) h

= - ( 1 + h ) 2 +5 - ( - 1 2 +5 ) h

= - ( 1 + h ) 2 +5 + 1 2 -5 h

= - ( h +1 ) 2 +1 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -( h 2 +2h +1 ) +1 h

= - h 2 -2h -1 +1 h

= - h 2 -2h h

= - h ( h +2 ) h

Jetzt können wir mit h kürzen:

= -( h +2 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(1) = lim h → 0 f(1+h) - f(1) h = lim h → 0 -( h +2 ) = -(0 +2 ) = -2

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 3 +3 x 2 . Bestimme f'(2) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 2 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2 = 2 x 3 +3 x 2 - ( 2 2 3 +3 2 2 ) x -2 = 2 x 3 +3 x 2 -16 -12 x -2 = 2 x 3 +3 x 2 -28 x -2

Jetzt setzen wir Werte für x ein, die sich immer mehr der 2 annähern:

x = 2.1: 2 2,1 3 +3 2,1 2 -28 0,1 ≈ 37.52

x = 2.01: 2 2,01 3 +3 2,01 2 -28 0,01 ≈ 36.1502

x = 2.001: 2 2,001 3 +3 2,001 2 -28 0,001 ≈ 36.015

x = 2.0001: 2 2,0001 3 +3 2,0001 2 -28 0,0001 ≈ 36.0015

x = 2.00001: 2 2 3 +3 2 2 -28 0.00001 ≈ 36.00015

Wir können nun also eine Vermutung für den Grenzwert für x → 2 bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 2 x 3 +3 x 2 -28 x -2 36

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -5 x 2 -2 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -5 x 2 -2 - ( -5 u 2 -2 ) x - u

= -5 x 2 -2 +5 u 2 +2 x - u

= -5 x 2 +5 u 2 x - u

= -5( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -5 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -5 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -5( x + u) = -5 · ( u + u ) = -10u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -10u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -10x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -3 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= x 2 -3 - ( u 2 -3 ) x - u

= x 2 -3 - u 2 +3 x - u

= x 2 - u 2 x - u

= x 2 - u 2 x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 1 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u x + u = 1 · ( u + u ) = 2u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 2u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 2x .