nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-1;0].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -1 und x2 = 0 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(0) - f(-1) in den Zähler und die Differenz der x-Werte 0 - ( - 1 ) in den Nenner schreiben:

f(0) - f(-1) 0 - ( - 1 )

= 1 - 0 0 - ( - 1 )

= 1 1

= 1

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 3 -3 x 2 +1 . Bestimme den Differenzenquotient von f im Intervall I=[1;3].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = 1 und x2 = 3 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(1) = 1 3 -3 1 2 +1 = 1 -31 +1 = -1 und
f(3) = 3 3 -3 3 2 +1 = 27 -39 +1 = 1
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(3) - f(1) in den Zähler und die Differenz der x-Werte 3 - 1 in den Nenner schreiben:

f(3) - f(1) 3 - 1

= 1 - ( - 1 ) 3 - 1

= 2 2

= 1

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=-1 und x2=0,5 hat bei einer Funktion f den Wert 5.Es gilt: f(-1) = 5. Bestimme f(0,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(0,5) - f(-1) 0,5 - ( - 1 ) = 5

f(0,5) = 5 eingestezt (und Nenner verrechnet):

f(0,5) - 5 1,5 = 5 |⋅ 1,5

f(0,5) -5 = 7,5 |+5

f(0,5) = 12.5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -3 . Berechne f'(-1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 )

= x 2 -3 - ( ( -1 ) 2 -3 ) x +1

= x 2 -3 - ( -1 ) 2 +3 x +1

= x 2 - ( -1 ) 2 x +1

= x 2 - ( -1 ) 2 x +1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= ( x -1 ) · ( x +1 ) x +1

Jetzt lässt sich der Nenner x +1 rauskürzen:

= 1 · ( x -1 )

Jetzt können wir den Grenzwert für x → -1 leicht bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 x -1 = -1 -1 = -2

2. Weg

Wir stellen den Differenzenquotient zwischen -1 + h und -1 auf:

f(-1+h) - f(-1) h

= ( -1 + h ) 2 -3 - ( ( -1 ) 2 -3 ) h

= ( -1 + h ) 2 -3 - ( -1 ) 2 +3 h

= ( h -1 ) 2 -1 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= h 2 -2h +1 -1 h

= h 2 -2h h

= h ( h -2 ) h

Jetzt können wir mit h kürzen:

= h -2

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-1) = lim h → 0 f(-1+h) - f(-1) h = lim h → 0 h -2 = 0 -2 = -2

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -3 x 4 + x 2 . Bestimme f'(2) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 2 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2 = -3 x 4 + x 2 - ( -3 2 4 + 2 2 ) x -2 = -3 x 4 + x 2 +48 -4 x -2 = -3 x 4 + x 2 +44 x -2

Jetzt setzen wir Werte für x ein, die sich immer mehr der 2 annähern:

x = 2.1: -3 2,1 4 + 2,1 2 +44 0,1 ≈ -99.343

x = 2.01: -3 2,01 4 + 2,01 2 +44 0,01 ≈ -92.7124

x = 2.001: -3 2,001 4 + 2,001 2 +44 0,001 ≈ -92.07102

x = 2.0001: -3 2,0001 4 + 2,0001 2 +44 0,0001 ≈ -92.0071

x = 2.00001: -3 2 4 + 2 2 +44 0.00001 ≈ -92.00071

Wir können nun also eine Vermutung für den Grenzwert für x → 2 bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 -3 x 4 + x 2 +44 x -2 -92

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x 2 +5 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 3 x 2 +5 - ( 3 u 2 +5 ) x - u

= 3 x 2 +5 -3 u 2 -5 x - u

= 3 x 2 -3 u 2 x - u

= 3( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 3 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 3 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 3( x + u) = 3 · ( u + u ) = 6u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 6u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 6x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -4 x +4 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -4 x +4 - ( -4 u +4 ) x - u

= -4 x +4 +4 u -4 x - u

= -4 x +4 u x - u

= -4( x - u ) x - u

Um Zähler und Nenner ähnlicher zu machen, nutzt man jetzt einen Trick und schreibt ( x ) 2 statt x und ( u ) 2 statt u:

= -4( x - u ) ( x ) 2 - ( u ) 2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -4( x - u ) ( x - u ) · ( x + u )

Jetzt lässt sich x - u diagonal rauskürzen:

= -4 x + u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -4 x + u = -4 u + u = - 2 u

Da die Ableitung an jeder Stelle x=u immer f'(u) = - 2 u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = - 2 x .