nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-1;0].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -1 und x2 = 0 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(0) - f(-1) in den Zähler und die Differenz der x-Werte 0 - ( - 1 ) in den Nenner schreiben:

f(0) - f(-1) 0 - ( - 1 )

= -2 - ( - 5 ) 0 - ( - 1 )

= 3 1

= 3

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -5 . Bestimme den Differenzenquotient von f im Intervall I=[0;3].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = 0 und x2 = 3 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(0) = 0 2 -5 = 0 -5 = -5 und
f(3) = 3 2 -5 = 9 -5 = 4
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(3) - f(0) in den Zähler und die Differenz der x-Werte 3 - 0 in den Nenner schreiben:

f(3) - f(0) 3 - 0

= 4 - ( - 5 ) 3 - 0

= 9 3

= 3

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 15 Minuten seiner Fahrt 30 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 15 min eben 15 60 h = 1 4 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 4 ) - f(0) 1 4 - 0 = 30

f( 1 4 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 4 ) - 0 1 4 = 30 |⋅ 1 4

f( 1 4 ) -0 = 15 2 |+0

f( 1 4 ) = 7.5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 2 +1 . Berechne f'(-1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 )

= -2 x 2 +1 - ( -2 ( -1 ) 2 +1 ) x +1

= -2 x 2 +1 +2 ( -1 ) 2 -1 x +1

= -2 x 2 +2 ( -1 ) 2 x +1

= -2( x 2 - ( -1 ) 2 ) x +1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -2 ( x -1 ) · ( x +1 ) x +1

Jetzt lässt sich der Nenner x +1 rauskürzen:

= -2 · ( x -1 )

Jetzt können wir den Grenzwert für x → -1 leicht bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 -2( x -1 ) = -2( -1 -1 ) = 4

2. Weg

Wir stellen den Differenzenquotient zwischen -1 + h und -1 auf:

f(-1+h) - f(-1) h

= -2 ( -1 + h ) 2 +1 - ( -2 ( -1 ) 2 +1 ) h

= -2 ( -1 + h ) 2 +1 +2 ( -1 ) 2 -1 h

= -2 ( h -1 ) 2 +2 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -2( h 2 -2h +1 ) +2 h

= -2 h 2 +4h -2 +2 h

= -2 h 2 +4h h

= 2 h ( -h +2 ) h

Jetzt können wir mit h kürzen:

= 2( -h +2 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-1) = lim h → 0 f(-1+h) - f(-1) h = lim h → 0 2( -h +2 ) = 2( -0 +2 ) = 4

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x 4 +4 x 2 . Bestimme f'(-1) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der -1 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 ) = 3 x 4 +4 x 2 - ( 3 ( -1 ) 4 +4 ( -1 ) 2 ) x +1 = 3 x 4 +4 x 2 -3 -4 x +1 = 3 x 4 +4 x 2 -7 x +1

Jetzt setzen wir Werte für x ein, die sich immer mehr der -1 annähern:

x = -0.9: 3 ( -0,9 ) 4 +4 ( -0,9 ) 2 -7 0,1 ≈ -17.917

x = -0.99: 3 ( -0,99 ) 4 +4 ( -0,99 ) 2 -7 0,01 ≈ -19.7812

x = -0.999: 3 ( -0,999 ) 4 +4 ( -0,999 ) 2 -7 0,001 ≈ -19.97801

x = -0.9999: 3 ( -0,9999 ) 4 +4 ( -0,9999 ) 2 -7 0,0001 ≈ -19.9978

x = -0.99999: 3 ( -1 ) 4 +4 ( -1 ) 2 -7 0.00001 ≈ -19.99978

Wir können nun also eine Vermutung für den Grenzwert für x → -1 bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 3 x 4 +4 x 2 -7 x +1 -20

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -4 x 2 +2 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -4 x 2 +2 - ( -4 u 2 +2 ) x - u

= -4 x 2 +2 +4 u 2 -2 x - u

= -4 x 2 +4 u 2 x - u

= -4( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -4 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -4 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -4( x + u) = -4 · ( u + u ) = -8u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -8u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -8x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 4 x 2 -4 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 4 x 2 -4 - ( 4 u 2 -4 ) x - u

= 4 x 2 -4 -4 u 2 +4 x - u

= 4 x 2 -4 u 2 x - u

= 4( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 4 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 4 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 4( x + u) = 4 · ( u + u ) = 8u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 8u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 8x .