nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[1;3].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 1 und x2 = 3 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(3) - f(1) in den Zähler und die Differenz der x-Werte 3 - 1 in den Nenner schreiben:

f(3) - f(1) 3 - 1

= 1 - ( - 1 ) 3 - 1

= 2 2

= 1

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x +3 . Bestimme den Differenzenquotient von f im Intervall I=[-3;-2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -3 und x2 = -2 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-3) = -3 +3 = 0 = 0 und
f(-2) = -2 +3 = 1 = 1
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(-2) - f(-3) in den Zähler und die Differenz der x-Werte -2 - ( - 3 ) in den Nenner schreiben:

f(-2) - f(-3) -2 - ( - 3 )

= 1 - 0 -2 - ( - 3 )

= 1 1

= 1

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 12 Minuten seiner Fahrt 15 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 12 min eben 12 60 h = 1 5 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 5 ) - f(0) 1 5 - 0 = 15

f( 1 5 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 5 ) - 0 1 5 = 15 |⋅ 1 5

f( 1 5 ) -0 = 3 |+0

f( 1 5 ) = 3

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 2 -1 . Berechne f'(-1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 )

= -2 x 2 -1 - ( -2 ( -1 ) 2 -1 ) x +1

= -2 x 2 -1 +2 ( -1 ) 2 +1 x +1

= -2 x 2 +2 ( -1 ) 2 x +1

= -2( x 2 - ( -1 ) 2 ) x +1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -2 ( x -1 ) · ( x +1 ) x +1

Jetzt lässt sich der Nenner x +1 rauskürzen:

= -2 · ( x -1 )

Jetzt können wir den Grenzwert für x → -1 leicht bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 -2( x -1 ) = -2( -1 -1 ) = 4

2. Weg

Wir stellen den Differenzenquotient zwischen -1 + h und -1 auf:

f(-1+h) - f(-1) h

= -2 ( -1 + h ) 2 -1 - ( -2 ( -1 ) 2 -1 ) h

= -2 ( -1 + h ) 2 -1 +2 ( -1 ) 2 +1 h

= -2 ( h -1 ) 2 +2 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -2( h 2 -2h +1 ) +2 h

= -2 h 2 +4h -2 +2 h

= -2 h 2 +4h h

= 2 h ( -h +2 ) h

Jetzt können wir mit h kürzen:

= 2( -h +2 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-1) = lim h → 0 f(-1+h) - f(-1) h = lim h → 0 2( -h +2 ) = 2( -0 +2 ) = 4

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x 2 . Bestimme f'(1) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 1 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 1 und einem allgemeinen x auf:

f(x) - f(1) x - 1 = 3 x 2 - 3 1 2 x -1 = 3 x 2 -3 x -1 = -3 + 3 x 2 x -1

Jetzt setzen wir Werte für x ein, die sich immer mehr der 1 annähern:

x = 1.1: -3 + 3 1,1 2 0,1 ≈ -5.20661

x = 1.01: -3 + 3 1,01 2 0,01 ≈ -5.91119

x = 1.001: -3 + 3 1,001 2 0,001 ≈ -5.99101

x = 1.0001: -3 + 3 1,0001 2 0,0001 ≈ -5.9991

x = 1.00001: -3 + 3 1 2 0.00001 ≈ -5.99991

Wir können nun also eine Vermutung für den Grenzwert für x → 1 bestimmen:

f'(1) = lim x → 1 f(x) - f(1) x - 1 = lim x → 1 -3 + 3 x 2 x -1 -6

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 5 x 2 +3 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 5 x 2 +3 - ( 5 u 2 +3 ) x - u

= 5 x 2 +3 -5 u 2 -3 x - u

= 5 x 2 -5 u 2 x - u

= 5( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 5 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 5 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 5( x + u) = 5 · ( u + u ) = 10u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 10u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 10x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 4 x 2 + x . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 4 x 2 + x - ( 4 u 2 + u) x - u

= 4 x 2 + x -4 u 2 - u x - u

= 4 x 2 -4 u 2 + x - u x - u

= 4( x 2 - u 2 ) + ( x - u ) x - u

= 4( x 2 - u 2 ) x - u + x - u x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 4 ( x - u ) · ( x + u ) x - u + x - u x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 4 · ( x + u ) +1

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 4 · ( x + u ) +1 = 4 · ( u + u ) +1 = 8u +1

Da die Ableitung an jeder Stelle x=u immer f'(u) = 8u +1 beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 8x +1 .