nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-5;-4].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -5 und x2 = -4 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(-4) - f(-5) in den Zähler und die Differenz der x-Werte -4 - ( - 5 ) in den Nenner schreiben:

f(-4) - f(-5) -4 - ( - 5 )

= -1 - ( - 4 ) -4 - ( - 5 )

= 3 1

= 3

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 3 + x 2 +2 . Bestimme den Differenzenquotient von f im Intervall I=[0;2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = 0 und x2 = 2 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(0) = - 0 3 + 0 2 +2 = -0 + 0 +2 = 2 und
f(2) = - 2 3 + 2 2 +2 = -8 + 4 +2 = -2
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(2) - f(0) in den Zähler und die Differenz der x-Werte 2 - 0 in den Nenner schreiben:

f(2) - f(0) 2 - 0

= -2 - 2 2 - 0

= -4 2

= -2

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=0 und x2=0,5 hat bei einer Funktion f den Wert 3.Es gilt: f(0) = -2. Bestimme f(0,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(0,5) - f(0) 0,5 - 0 = 3

f(0,5) = -2 eingestezt (und Nenner verrechnet):

f(0,5) - ( - 2 ) 0,5 = 3 |⋅ 0,5

f(0,5) +2 = 1,5 |-2

f(0,5) = -0.5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 2 +5 . Berechne f'(-1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 )

= 2 x 2 +5 - ( 2 ( -1 ) 2 +5 ) x +1

= 2 x 2 +5 -2 ( -1 ) 2 -5 x +1

= 2 x 2 -2 ( -1 ) 2 x +1

= 2( x 2 - ( -1 ) 2 ) x +1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 2 ( x -1 ) · ( x +1 ) x +1

Jetzt lässt sich der Nenner x +1 rauskürzen:

= 2 · ( x -1 )

Jetzt können wir den Grenzwert für x → -1 leicht bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 2( x -1 ) = 2( -1 -1 ) = -4

2. Weg

Wir stellen den Differenzenquotient zwischen -1 + h und -1 auf:

f(-1+h) - f(-1) h

= 2 ( -1 + h ) 2 +5 - ( 2 ( -1 ) 2 +5 ) h

= 2 ( -1 + h ) 2 +5 -2 ( -1 ) 2 -5 h

= 2 ( h -1 ) 2 -2 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= 2( h 2 -2h +1 ) -2 h

= 2 h 2 -4h +2 -2 h

= 2 h 2 -4h h

= 2 h ( h -2 ) h

Jetzt können wir mit h kürzen:

= 2( h -2 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-1) = lim h → 0 f(-1+h) - f(-1) h = lim h → 0 2( h -2 ) = 2(0 -2 ) = -4

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -3 x 3 -4 x 2 . Bestimme f'(-2) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der -2 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen -2 und einem allgemeinen x auf:

f(x) - f(-2) x - ( - 2 ) = -3 x 3 -4 x 2 - ( -3 ( -2 ) 3 -4 ( -2 ) 2 ) x +2 = -3 x 3 -4 x 2 -24 +16 x +2 = -3 x 3 -4 x 2 -8 x +2

Jetzt setzen wir Werte für x ein, die sich immer mehr der -2 annähern:

x = -1.9: -3 ( -1,9 ) 3 -4 ( -1,9 ) 2 -8 0,1 ≈ -18.63

x = -1.99: -3 ( -1,99 ) 3 -4 ( -1,99 ) 2 -8 0,01 ≈ -19.8603

x = -1.999: -3 ( -1,999 ) 3 -4 ( -1,999 ) 2 -8 0,001 ≈ -19.986

x = -1.9999: -3 ( -1,9999 ) 3 -4 ( -1,9999 ) 2 -8 0,0001 ≈ -19.9986

x = -1.99999: -3 ( -2 ) 3 -4 ( -2 ) 2 -8 0.00001 ≈ -19.99986

Wir können nun also eine Vermutung für den Grenzwert für x → -2 bestimmen:

f'(-2) = lim x → -2 f(x) - f(-2) x - ( - 2 ) = lim x → -2 -3 x 3 -4 x 2 -8 x +2 -20

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -5 x 2 +4 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -5 x 2 +4 - ( -5 u 2 +4 ) x - u

= -5 x 2 +4 +5 u 2 -4 x - u

= -5 x 2 +5 u 2 x - u

= -5( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -5 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -5 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -5( x + u) = -5 · ( u + u ) = -10u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -10u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -10x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 5 x 2 -2 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 5 x 2 -2 - ( 5 u 2 -2 ) x - u

= 5 x 2 -2 -5 u 2 +2 x - u

= 5 x 2 -5 u 2 x - u

= 5( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 5 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 5 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 5( x + u) = 5 · ( u + u ) = 10u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 10u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 10x .