nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[1;4].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 1 und x2 = 4 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(4) - f(1) in den Zähler und die Differenz der x-Werte 4 - 1 in den Nenner schreiben:

f(4) - f(1) 4 - 1

= 4 - ( - 5 ) 4 - 1

= 9 3

= 3

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 + x -3 . Bestimme den Differenzenquotient von f im Intervall I=[0;2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = 0 und x2 = 2 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(0) = 0 2 +0 -3 = 0 +0 -3 = -3 und
f(2) = 2 2 +2 -3 = 4 +2 -3 = 3
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(2) - f(0) in den Zähler und die Differenz der x-Werte 2 - 0 in den Nenner schreiben:

f(2) - f(0) 2 - 0

= 3 - ( - 3 ) 2 - 0

= 6 2

= 3

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=0 und x2=2,5 hat bei einer Funktion f den Wert 5.Es gilt: f(0) = 2. Bestimme f(2,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(2,5) - f(0) 2,5 - 0 = 5

f(2,5) = 2 eingestezt (und Nenner verrechnet):

f(2,5) - 2 2,5 = 5 |⋅ 2,5

f(2,5) -2 = 12,5 |+2

f(2,5) = 14.5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x 2 +3 . Berechne f'(1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen 1 und einem allgemeinen x auf:

f(x) - f(1) x - 1

= 3 x 2 +3 - ( 3 1 2 +3 ) x -1

= 3 x 2 +3 -3 1 2 -3 x -1

= 3 x 2 -3 1 2 x -1

= 3( x 2 - 1 2 ) x -1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 3 ( x +1 ) · ( x -1 ) x -1

Jetzt lässt sich der Nenner x -1 rauskürzen:

= 3 · ( x +1 )

Jetzt können wir den Grenzwert für x → 1 leicht bestimmen:

f'(1) = lim x → 1 f(x) - f(1) x - 1 = lim x → 1 3( x +1 ) = 3( 1 +1 ) = 6

2. Weg

Wir stellen den Differenzenquotient zwischen 1 + h und 1 auf:

f(1+h) - f(1) h

= 3 ( 1 + h ) 2 +3 - ( 3 1 2 +3 ) h

= 3 ( 1 + h ) 2 +3 -3 1 2 -3 h

= 3 ( h +1 ) 2 -3 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= 3( h 2 +2h +1 ) -3 h

= 3 h 2 +6h +3 -3 h

= 3 h 2 +6h h

= 3 h ( h +2 ) h

Jetzt können wir mit h kürzen:

= 3( h +2 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(1) = lim h → 0 f(1+h) - f(1) h = lim h → 0 3( h +2 ) = 3(0 +2 ) = 6

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x 3 . Bestimme f'(1) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 1 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 1 und einem allgemeinen x auf:

f(x) - f(1) x - 1 = 3 x 3 - 3 1 3 x -1 = 3 x 3 -3 x -1 = -3 + 3 x 3 x -1

Jetzt setzen wir Werte für x ein, die sich immer mehr der 1 annähern:

x = 1.1: -3 + 3 1,1 3 0,1 ≈ -7.46056

x = 1.01: -3 + 3 1,01 3 0,01 ≈ -8.82296

x = 1.001: -3 + 3 1,001 3 0,001 ≈ -8.98203

x = 1.0001: -3 + 3 1,0001 3 0,0001 ≈ -8.9982

x = 1.00001: -3 + 3 1 3 0.00001 ≈ -8.99982

Wir können nun also eine Vermutung für den Grenzwert für x → 1 bestimmen:

f'(1) = lim x → 1 f(x) - f(1) x - 1 = lim x → 1 -3 + 3 x 3 x -1 -9

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -3 x 2 -3 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -3 x 2 -3 - ( -3 u 2 -3 ) x - u

= -3 x 2 -3 +3 u 2 +3 x - u

= -3 x 2 +3 u 2 x - u

= -3( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -3 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -3 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -3( x + u) = -3 · ( u + u ) = -6u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -6u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -6x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x -4 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= - x -4 - ( - u -4 ) x - u

= - x -4 + u +4 x - u

= - x + u x - u

= -( x - u ) x - u

Um Zähler und Nenner ähnlicher zu machen, nutzt man jetzt einen Trick und schreibt ( x ) 2 statt x und ( u ) 2 statt u:

= -( x - u ) ( x ) 2 - ( u ) 2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -( x - u ) ( x - u ) · ( x + u )

Jetzt lässt sich x - u diagonal rauskürzen:

= -1 x + u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -1 x + u = -1 u + u = - 1 2 u

Da die Ableitung an jeder Stelle x=u immer f'(u) = - 1 2 u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = - 1 2 x .