nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[2;4].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 2 und x2 = 4 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(4) - f(2) in den Zähler und die Differenz der x-Werte 4 - 2 in den Nenner schreiben:

f(4) - f(2) 4 - 2

= 3 - ( - 3 ) 4 - 2

= 6 2

= 3

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x +5 -3 . Bestimme den Differenzenquotient von f im Intervall I=[-4;-1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -4 und x2 = -1 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-4) = 2 -4 +5 -3 = 2 1 -3 = -1 und
f(-1) = 2 -1 +5 -3 = 2 4 -3 = 1
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(-1) - f(-4) in den Zähler und die Differenz der x-Werte -1 - ( - 4 ) in den Nenner schreiben:

f(-1) - f(-4) -1 - ( - 4 )

= 1 - ( - 1 ) -1 - ( - 4 )

= 2 3

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 20 Minuten seiner Fahrt 25 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 20 min eben 20 60 h = 1 3 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 3 ) - f(0) 1 3 - 0 = 25

f( 1 3 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 3 ) - 0 1 3 = 25 |⋅ 1 3

f( 1 3 ) -0 = 25 3 |+0

f( 1 3 ) ≈ 8.333

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -4 . Berechne f'(-2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -2 und einem allgemeinen x auf:

f(x) - f(-2) x - ( - 2 )

= x 2 -4 - ( ( -2 ) 2 -4 ) x +2

= x 2 -4 - ( -2 ) 2 +4 x +2

= x 2 - ( -2 ) 2 x +2

= x 2 - ( -2 ) 2 x +2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= ( x -2 ) · ( x +2 ) x +2

Jetzt lässt sich der Nenner x +2 rauskürzen:

= 1 · ( x -2 )

Jetzt können wir den Grenzwert für x → -2 leicht bestimmen:

f'(-2) = lim x → -2 f(x) - f(-2) x - ( - 2 ) = lim x → -2 x -2 = -2 -2 = -4

2. Weg

Wir stellen den Differenzenquotient zwischen -2 + h und -2 auf:

f(-2+h) - f(-2) h

= ( -2 + h ) 2 -4 - ( ( -2 ) 2 -4 ) h

= ( -2 + h ) 2 -4 - ( -2 ) 2 +4 h

= ( h -2 ) 2 -4 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= h 2 -4h +4 -4 h

= h 2 -4h h

= h ( h -4 ) h

Jetzt können wir mit h kürzen:

= h -4

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-2) = lim h → 0 f(-2+h) - f(-2) h = lim h → 0 h -4 = 0 -4 = -4

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 4 x 3 . Bestimme f'(2) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 2 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2 = 4 x 3 - 4 2 3 x -2 = 4 x 3 - 1 2 x -2 = - 1 2 + 4 x 3 x -2

Jetzt setzen wir Werte für x ein, die sich immer mehr der 2 annähern:

x = 2.1: - 1 2 + 4 2,1 3 0,1 ≈ -0.68081

x = 2.01: - 1 2 + 4 2,01 3 0,01 ≈ -0.74256

x = 2.001: - 1 2 + 4 2,001 3 0,001 ≈ -0.74925

x = 2.0001: - 1 2 + 4 2,0001 3 0,0001 ≈ -0.74993

x = 2.00001: - 1 2 + 4 2 3 0.00001 ≈ -0.74999

Wir können nun also eine Vermutung für den Grenzwert für x → 2 bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 - 1 2 + 4 x 3 x -2 -0.75

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -4 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= x 2 -4 - ( u 2 -4 ) x - u

= x 2 -4 - u 2 +4 x - u

= x 2 - u 2 x - u

= x 2 - u 2 x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 1 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u x + u = 1 · ( u + u ) = 2u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 2u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 2x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= - 1 x -1 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= - 1 x -1 - ( - 1 u -1 ) x - u

= - 1 x -1 + 1 u +1 x - u

= - 1 x + 1 u x - u

= -u x · u + x x · u x - u

= -u + x x · u x - u

= x - u u · x x - u 1

Beim Doppelbruch multipliziert man den Zähler mit dem Kehrbruich des Nenners:

= x - u x · u · 1 x - u

Jetzt lässt sich der Nenner x - u diagonal rauskürzen:

= 1 x u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 1 x u = 1 u · u = 1 u 2

Da die Ableitung an jeder Stelle x=u immer f'(u) = 1 u 2 beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 1 x 2 .