nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-5;-1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -5 und x2 = -1 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(-1) - f(-5) in den Zähler und die Differenz der x-Werte -1 - ( - 5 ) in den Nenner schreiben:

f(-1) - f(-5) -1 - ( - 5 )

= 2 - 0 -1 - ( - 5 )

= 2 4

= 1 2

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 3 +2 x 2 +5 . Bestimme den Differenzenquotient von f im Intervall I=[0;3].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = 0 und x2 = 3 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(0) = - 0 3 +2 0 2 +5 = -0 +20 +5 = 5 und
f(3) = - 3 3 +2 3 2 +5 = -27 +29 +5 = -4
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(3) - f(0) in den Zähler und die Differenz der x-Werte 3 - 0 in den Nenner schreiben:

f(3) - f(0) 3 - 0

= -4 - 5 3 - 0

= -9 3

= -3

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 20 Minuten seiner Fahrt 30 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 20 min eben 20 60 h = 1 3 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 3 ) - f(0) 1 3 - 0 = 30

f( 1 3 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 3 ) - 0 1 3 = 30 |⋅ 1 3

f( 1 3 ) -0 = 10 |+0

f( 1 3 ) = 10

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 2 +4 . Berechne f'(2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2

= -2 x 2 +4 - ( -2 2 2 +4 ) x -2

= -2 x 2 +4 +2 2 2 -4 x -2

= -2 x 2 +2 2 2 x -2

= -2( x 2 - 2 2 ) x -2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -2 ( x +2 ) · ( x -2 ) x -2

Jetzt lässt sich der Nenner x -2 rauskürzen:

= -2 · ( x +2 )

Jetzt können wir den Grenzwert für x → 2 leicht bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 -2( x +2 ) = -2( 2 +2 ) = -8

2. Weg

Wir stellen den Differenzenquotient zwischen 2 + h und 2 auf:

f(2+h) - f(2) h

= -2 ( 2 + h ) 2 +4 - ( -2 2 2 +4 ) h

= -2 ( 2 + h ) 2 +4 +2 2 2 -4 h

= -2 ( h +2 ) 2 +8 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -2( h 2 +4h +4 ) +8 h

= -2 h 2 -8h -8 +8 h

= -2 h 2 -8h h

= -2 h ( h +4 ) h

Jetzt können wir mit h kürzen:

= -2( h +4 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(2) = lim h → 0 f(2+h) - f(2) h = lim h → 0 -2( h +4 ) = -2(0 +4 ) = -8

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 3 - x . Bestimme f'(2) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 2 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2 = x 3 - x - ( 2 3 - 2 ) x -2 = x 3 - x -8 +2 x -2 = x 3 - x -6 x -2

Jetzt setzen wir Werte für x ein, die sich immer mehr der 2 annähern:

x = 2.1: 2,1 3 - 2,1 -6 0,1 ≈ 11.61

x = 2.01: 2,01 3 - 2,01 -6 0,01 ≈ 11.0601

x = 2.001: 2,001 3 - 2,001 -6 0,001 ≈ 11.006

x = 2.0001: 2,0001 3 - 2,0001 -6 0,0001 ≈ 11.0006

x = 2.00001: 2,00001 3 - 2,00001 -6 0.00001 ≈ 11.00006

Wir können nun also eine Vermutung für den Grenzwert für x → 2 bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 x 3 - x -6 x -2 11

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -3 x 2 -3 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -3 x 2 -3 - ( -3 u 2 -3 ) x - u

= -3 x 2 -3 +3 u 2 +3 x - u

= -3 x 2 +3 u 2 x - u

= -3( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -3 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -3 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -3( x + u) = -3 · ( u + u ) = -6u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -6u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -6x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= - 5 x +2 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= - 5 x +2 - ( - 5 u +2 ) x - u

= - 5 x +2 + 5 u -2 x - u

= - 5 x + 5 u x - u

= -5u x · u + 5x x · u x - u

= -5u +5x x · u x - u

= 5x -5u u · x x - u 1

Beim Doppelbruch multipliziert man den Zähler (bei dem man noch 5 ausklammern kann) mit dem Kehrbruich des Nenners:

= 5( x - u) x · u · 1 x - u

Jetzt lässt sich der Nenner x - u diagonal rauskürzen:

= 5 x u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 5 x u = 5 u · u = 5 u 2

Da die Ableitung an jeder Stelle x=u immer f'(u) = 5 u 2 beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 5 x 2 .