nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-1;1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -1 und x2 = 1 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(1) - f(-1) in den Zähler und die Differenz der x-Werte 1 - ( - 1 ) in den Nenner schreiben:

f(1) - f(-1) 1 - ( - 1 )

= -1 - 1 1 - ( - 1 )

= -2 2

= -1

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 3 +4 . Bestimme den Differenzenquotient von f im Intervall I=[0;2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = 0 und x2 = 2 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(0) = - 0 3 +4 = -0 +4 = 4 und
f(2) = - 2 3 +4 = -8 +4 = -4
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(2) - f(0) in den Zähler und die Differenz der x-Werte 2 - 0 in den Nenner schreiben:

f(2) - f(0) 2 - 0

= -4 - 4 2 - 0

= -8 2

= -4

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=0 und x2=2,5 hat bei einer Funktion f den Wert 1.Es gilt: f(0) = -5. Bestimme f(2,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(2,5) - f(0) 2,5 - 0 = 1

f(2,5) = -5 eingestezt (und Nenner verrechnet):

f(2,5) - ( - 5 ) 2,5 = 1 |⋅ 2,5

f(2,5) +5 = 2,5 |-5

f(2,5) = -2.5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 2 +4 . Berechne f'(2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2

= - x 2 +4 - ( - 2 2 +4 ) x -2

= - x 2 +4 + 2 2 -4 x -2

= - x 2 + 2 2 x -2

= -( x 2 - 2 2 ) x -2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= - ( x +2 ) · ( x -2 ) x -2

Jetzt lässt sich der Nenner x -2 rauskürzen:

= -1 · ( x +2 )

Jetzt können wir den Grenzwert für x → 2 leicht bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 -( x +2 ) = -( 2 +2 ) = -4

2. Weg

Wir stellen den Differenzenquotient zwischen 2 + h und 2 auf:

f(2+h) - f(2) h

= - ( 2 + h ) 2 +4 - ( - 2 2 +4 ) h

= - ( 2 + h ) 2 +4 + 2 2 -4 h

= - ( h +2 ) 2 +4 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -( h 2 +4h +4 ) +4 h

= - h 2 -4h -4 +4 h

= - h 2 -4h h

= - h ( h +4 ) h

Jetzt können wir mit h kürzen:

= -( h +4 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(2) = lim h → 0 f(2+h) - f(2) h = lim h → 0 -( h +4 ) = -(0 +4 ) = -4

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 3 -4 x 2 . Bestimme f'(-1) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der -1 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 ) = -2 x 3 -4 x 2 - ( -2 ( -1 ) 3 -4 ( -1 ) 2 ) x +1 = -2 x 3 -4 x 2 -2 +4 x +1 = -2 x 3 -4 x 2 +2 x +1

Jetzt setzen wir Werte für x ein, die sich immer mehr der -1 annähern:

x = -0.9: -2 ( -0,9 ) 3 -4 ( -0,9 ) 2 +2 0,1 ≈ 2.18

x = -0.99: -2 ( -0,99 ) 3 -4 ( -0,99 ) 2 +2 0,01 ≈ 2.0198

x = -0.999: -2 ( -0,999 ) 3 -4 ( -0,999 ) 2 +2 0,001 ≈ 2.002

x = -0.9999: -2 ( -0,9999 ) 3 -4 ( -0,9999 ) 2 +2 0,0001 ≈ 2.0002

x = -0.99999: -2 ( -1 ) 3 -4 ( -1 ) 2 +2 0.00001 ≈ 2.00002

Wir können nun also eine Vermutung für den Grenzwert für x → -1 bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 -2 x 3 -4 x 2 +2 x +1 2

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 5 x 2 -5 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 5 x 2 -5 - ( 5 u 2 -5 ) x - u

= 5 x 2 -5 -5 u 2 +5 x - u

= 5 x 2 -5 u 2 x - u

= 5( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 5 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 5 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 5( x + u) = 5 · ( u + u ) = 10u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 10u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 10x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -5 x +2 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -5 x +2 - ( -5 u +2 ) x - u

= -5 x +2 +5 u -2 x - u

= -5 x +5 u x - u

= -5( x - u ) x - u

Um Zähler und Nenner ähnlicher zu machen, nutzt man jetzt einen Trick und schreibt ( x ) 2 statt x und ( u ) 2 statt u:

= -5( x - u ) ( x ) 2 - ( u ) 2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -5( x - u ) ( x - u ) · ( x + u )

Jetzt lässt sich x - u diagonal rauskürzen:

= -5 x + u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -5 x + u = -5 u + u = - 5 2 u

Da die Ableitung an jeder Stelle x=u immer f'(u) = - 5 2 u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = - 5 2 x .