nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[1;3].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 1 und x2 = 3 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(3) - f(1) in den Zähler und die Differenz der x-Werte 3 - 1 in den Nenner schreiben:

f(3) - f(1) 3 - 1

= -4 - 4 3 - 1

= -8 2

= -4

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x +3 . Bestimme den Differenzenquotient von f im Intervall I=[-3;1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -3 und x2 = 1 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-3) = -3 +3 = 0 = 0 und
f(1) = 1 +3 = 4 = 2
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(1) - f(-3) in den Zähler und die Differenz der x-Werte 1 - ( - 3 ) in den Nenner schreiben:

f(1) - f(-3) 1 - ( - 3 )

= 2 - 0 1 - ( - 3 )

= 2 4

= 1 2

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=0 und x2=2,5 hat bei einer Funktion f den Wert 4.Es gilt: f(0) = 3. Bestimme f(2,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(2,5) - f(0) 2,5 - 0 = 4

f(2,5) = 3 eingestezt (und Nenner verrechnet):

f(2,5) - 3 2,5 = 4 |⋅ 2,5

f(2,5) -3 = 10 |+3

f(2,5) = 13

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -2 . Berechne f'(1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen 1 und einem allgemeinen x auf:

f(x) - f(1) x - 1

= x 2 -2 - ( 1 2 -2 ) x -1

= x 2 -2 - 1 2 +2 x -1

= x 2 - 1 2 x -1

= x 2 - 1 2 x -1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= ( x +1 ) · ( x -1 ) x -1

Jetzt lässt sich der Nenner x -1 rauskürzen:

= 1 · ( x +1 )

Jetzt können wir den Grenzwert für x → 1 leicht bestimmen:

f'(1) = lim x → 1 f(x) - f(1) x - 1 = lim x → 1 x +1 = 1 +1 = 2

2. Weg

Wir stellen den Differenzenquotient zwischen 1 + h und 1 auf:

f(1+h) - f(1) h

= ( 1 + h ) 2 -2 - ( 1 2 -2 ) h

= ( 1 + h ) 2 -2 - 1 2 +2 h

= ( h +1 ) 2 -1 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= h 2 +2h +1 -1 h

= h 2 +2h h

= h ( h +2 ) h

Jetzt können wir mit h kürzen:

= h +2

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(1) = lim h → 0 f(1+h) - f(1) h = lim h → 0 h +2 = 0 +2 = 2

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 4 -2x . Bestimme f'(-2) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der -2 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen -2 und einem allgemeinen x auf:

f(x) - f(-2) x - ( - 2 ) = x 4 -2x - ( ( -2 ) 4 -2( -2 ) ) x +2 = x 4 -2x -16 -4 x +2 = x 4 -2x -20 x +2

Jetzt setzen wir Werte für x ein, die sich immer mehr der -2 annähern:

x = -1.9: ( -1,9 ) 4 -2( -1,9 ) -20 0,1 ≈ -31.679

x = -1.99: ( -1,99 ) 4 -2( -1,99 ) -20 0,01 ≈ -33.7608

x = -1.999: ( -1,999 ) 4 -2( -1,999 ) -20 0,001 ≈ -33.97601

x = -1.9999: ( -1,9999 ) 4 -2( -1,9999 ) -20 0,0001 ≈ -33.9976

x = -1.99999: ( -2 ) 4 -2( -2 ) -20 0.00001 ≈ -33.99976

Wir können nun also eine Vermutung für den Grenzwert für x → -2 bestimmen:

f'(-2) = lim x → -2 f(x) - f(-2) x - ( - 2 ) = lim x → -2 x 4 -2x -20 x +2 -34

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 5 x 2 +4 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 5 x 2 +4 - ( 5 u 2 +4 ) x - u

= 5 x 2 +4 -5 u 2 -4 x - u

= 5 x 2 -5 u 2 x - u

= 5( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 5 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 5 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 5( x + u) = 5 · ( u + u ) = 10u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 10u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 10x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -4 x +2 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -4 x +2 - ( -4 u +2 ) x - u

= -4 x +2 +4 u -2 x - u

= -4 x +4 u x - u

= -4( x - u ) x - u

Um Zähler und Nenner ähnlicher zu machen, nutzt man jetzt einen Trick und schreibt ( x ) 2 statt x und ( u ) 2 statt u:

= -4( x - u ) ( x ) 2 - ( u ) 2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -4( x - u ) ( x - u ) · ( x + u )

Jetzt lässt sich x - u diagonal rauskürzen:

= -4 x + u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -4 x + u = -4 u + u = - 2 u

Da die Ableitung an jeder Stelle x=u immer f'(u) = - 2 u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = - 2 x .