nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-2;0].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -2 und x2 = 0 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(0) - f(-2) in den Zähler und die Differenz der x-Werte 0 - ( - 2 ) in den Nenner schreiben:

f(0) - f(-2) 0 - ( - 2 )

= -1 - 1 0 - ( - 2 )

= -2 2

= -1

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 3 +2 x 2 -2 . Bestimme den Differenzenquotient von f im Intervall I=[-2;1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -2 und x2 = 1 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-2) = ( -2 ) 3 +2 ( -2 ) 2 -2 = ( -8 ) +24 -2 = -2 und
f(1) = 1 3 +2 1 2 -2 = 1 +21 -2 = 1
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(1) - f(-2) in den Zähler und die Differenz der x-Werte 1 - ( - 2 ) in den Nenner schreiben:

f(1) - f(-2) 1 - ( - 2 )

= 1 - ( - 2 ) 1 - ( - 2 )

= 3 3

= 1

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 12 Minuten seiner Fahrt 25 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 12 min eben 12 60 h = 1 5 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 5 ) - f(0) 1 5 - 0 = 25

f( 1 5 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 5 ) - 0 1 5 = 25 |⋅ 1 5

f( 1 5 ) -0 = 5 |+0

f( 1 5 ) = 5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x 2 +1 . Berechne f'(-2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -2 und einem allgemeinen x auf:

f(x) - f(-2) x - ( - 2 )

= 3 x 2 +1 - ( 3 ( -2 ) 2 +1 ) x +2

= 3 x 2 +1 -3 ( -2 ) 2 -1 x +2

= 3 x 2 -3 ( -2 ) 2 x +2

= 3( x 2 - ( -2 ) 2 ) x +2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 3 ( x -2 ) · ( x +2 ) x +2

Jetzt lässt sich der Nenner x +2 rauskürzen:

= 3 · ( x -2 )

Jetzt können wir den Grenzwert für x → -2 leicht bestimmen:

f'(-2) = lim x → -2 f(x) - f(-2) x - ( - 2 ) = lim x → -2 3( x -2 ) = 3( -2 -2 ) = -12

2. Weg

Wir stellen den Differenzenquotient zwischen -2 + h und -2 auf:

f(-2+h) - f(-2) h

= 3 ( -2 + h ) 2 +1 - ( 3 ( -2 ) 2 +1 ) h

= 3 ( -2 + h ) 2 +1 -3 ( -2 ) 2 -1 h

= 3 ( h -2 ) 2 -12 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= 3( h 2 -4h +4 ) -12 h

= 3 h 2 -12h +12 -12 h

= 3 h 2 -12h h

= 3 h ( h -4 ) h

Jetzt können wir mit h kürzen:

= 3( h -4 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-2) = lim h → 0 f(-2+h) - f(-2) h = lim h → 0 3( h -4 ) = 3(0 -4 ) = -12

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 3 +2x . Bestimme f'(-2) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der -2 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen -2 und einem allgemeinen x auf:

f(x) - f(-2) x - ( - 2 ) = -2 x 3 +2x - ( -2 ( -2 ) 3 +2( -2 ) ) x +2 = -2 x 3 +2x -16 +4 x +2 = -2 x 3 +2x -12 x +2

Jetzt setzen wir Werte für x ein, die sich immer mehr der -2 annähern:

x = -1.9: -2 ( -1,9 ) 3 +2( -1,9 ) -12 0,1 ≈ -20.82

x = -1.99: -2 ( -1,99 ) 3 +2( -1,99 ) -12 0,01 ≈ -21.8802

x = -1.999: -2 ( -1,999 ) 3 +2( -1,999 ) -12 0,001 ≈ -21.988

x = -1.9999: -2 ( -1,9999 ) 3 +2( -1,9999 ) -12 0,0001 ≈ -21.9988

x = -1.99999: -2 ( -2 ) 3 +2( -2 ) -12 0.00001 ≈ -21.99988

Wir können nun also eine Vermutung für den Grenzwert für x → -2 bestimmen:

f'(-2) = lim x → -2 f(x) - f(-2) x - ( - 2 ) = lim x → -2 -2 x 3 +2x -12 x +2 -22

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 5 x 2 +5 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 5 x 2 +5 - ( 5 u 2 +5 ) x - u

= 5 x 2 +5 -5 u 2 -5 x - u

= 5 x 2 -5 u 2 x - u

= 5( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 5 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 5 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 5( x + u) = 5 · ( u + u ) = 10u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 10u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 10x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -5 x 2 -2x . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -5 x 2 -2x - ( -5 u 2 -2u) x - u

= -5 x 2 -2x +5 u 2 +2u x - u

= -5 x 2 +5 u 2 -2x +2u x - u

= -5( x 2 - u 2 )-2( x - u ) x - u

= -5( x 2 - u 2 ) x - u + -2( x - u ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -5 ( x - u ) · ( x + u ) x - u + -2( x - u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -5 · ( x + u ) -2

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -5 · ( x + u ) -2 = -5 · ( u + u ) -2 = -10u -2

Da die Ableitung an jeder Stelle x=u immer f'(u) = -10u -2 beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -10x -2 .