nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-3;-1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -3 und x2 = -1 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(-1) - f(-3) in den Zähler und die Differenz der x-Werte -1 - ( - 3 ) in den Nenner schreiben:

f(-1) - f(-3) -1 - ( - 3 )

= 1 - ( - 1 ) -1 - ( - 3 )

= 2 2

= 1

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 3 -4 . Bestimme den Differenzenquotient von f im Intervall I=[0;2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = 0 und x2 = 2 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(0) = 0 3 -4 = 0 -4 = -4 und
f(2) = 2 3 -4 = 8 -4 = 4
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(2) - f(0) in den Zähler und die Differenz der x-Werte 2 - 0 in den Nenner schreiben:

f(2) - f(0) 2 - 0

= 4 - ( - 4 ) 2 - 0

= 8 2

= 4

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=1 und x2=3,5 hat bei einer Funktion f den Wert 2.Es gilt: f(1) = -4. Bestimme f(3,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(3,5) - f(1) 3,5 - 1 = 2

f(3,5) = -4 eingestezt (und Nenner verrechnet):

f(3,5) - ( - 4 ) 2,5 = 2 |⋅ 2,5

f(3,5) +4 = 5 |-4

f(3,5) = 1

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 2 +5 . Berechne f'(-2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -2 und einem allgemeinen x auf:

f(x) - f(-2) x - ( - 2 )

= 2 x 2 +5 - ( 2 ( -2 ) 2 +5 ) x +2

= 2 x 2 +5 -2 ( -2 ) 2 -5 x +2

= 2 x 2 -2 ( -2 ) 2 x +2

= 2( x 2 - ( -2 ) 2 ) x +2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 2 ( x -2 ) · ( x +2 ) x +2

Jetzt lässt sich der Nenner x +2 rauskürzen:

= 2 · ( x -2 )

Jetzt können wir den Grenzwert für x → -2 leicht bestimmen:

f'(-2) = lim x → -2 f(x) - f(-2) x - ( - 2 ) = lim x → -2 2( x -2 ) = 2( -2 -2 ) = -8

2. Weg

Wir stellen den Differenzenquotient zwischen -2 + h und -2 auf:

f(-2+h) - f(-2) h

= 2 ( -2 + h ) 2 +5 - ( 2 ( -2 ) 2 +5 ) h

= 2 ( -2 + h ) 2 +5 -2 ( -2 ) 2 -5 h

= 2 ( h -2 ) 2 -8 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= 2( h 2 -4h +4 ) -8 h

= 2 h 2 -8h +8 -8 h

= 2 h 2 -8h h

= 2 h ( h -4 ) h

Jetzt können wir mit h kürzen:

= 2( h -4 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-2) = lim h → 0 f(-2+h) - f(-2) h = lim h → 0 2( h -4 ) = 2(0 -4 ) = -8

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x . Bestimme f'(25) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 25 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 25 und einem allgemeinen x auf:

f(x) - f(25) x - 25 = -2 x +2 25 x -25 = -2 x +10 x -25

Jetzt setzen wir Werte für x ein, die sich immer mehr der 25 annähern:

x = 25.1: -2 25,1 +10 0,1 ≈ -0.1998

x = 25.01: -2 25,01 +10 0,01 ≈ -0.19998

x = 25.001: -2 25,001 +10 0,001 ≈ -0.2

x = 25.0001: -2 25,0001 +10 0,0001 ≈ -0.2

x = 25.00001: -2 25 +10 0.00001 ≈ -0.2

Wir können nun also eine Vermutung für den Grenzwert für x → 25 bestimmen:

f'(25) = lim x → 25 f(x) - f(25) x - 25 = lim x → 25 -2 x +10 x -25 -0.2

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 2 -3 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= - x 2 -3 - ( - u 2 -3 ) x - u

= - x 2 -3 + u 2 +3 x - u

= - x 2 + u 2 x - u

= -( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= - ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -1 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -( x + u) = -1 · ( u + u ) = -2u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -2u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -2x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x +3 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 3 x +3 - ( 3 u +3 ) x - u

= 3 x +3 - 3 u -3 x - u

= 3 x - 3 u x - u

= 3u x · u + -3x x · u x - u

= 3u -3x x · u x - u

= -3x +3u u · x x - u 1

Beim Doppelbruch multipliziert man den Zähler (bei dem man noch -3 ausklammern kann) mit dem Kehrbruich des Nenners:

= -3( x - u) x · u · 1 x - u

Jetzt lässt sich der Nenner x - u diagonal rauskürzen:

= - 3 x u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u - 3 x u = -3 u · u = - 3 u 2

Da die Ableitung an jeder Stelle x=u immer f'(u) = - 3 u 2 beträgt, hat die Ableitungsfunktion f' den Term f'(x) = - 3 x 2 .