nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[0;4].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 0 und x2 = 4 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(4) - f(0) in den Zähler und die Differenz der x-Werte 4 - 0 in den Nenner schreiben:

f(4) - f(0) 4 - 0

= 2 - 0 4 - 0

= 2 4

= 1 2

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -2x -4 . Bestimme den Differenzenquotient von f im Intervall I=[1;4].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = 1 und x2 = 4 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(1) = 1 2 -21 -4 = 1 -2 -4 = -5 und
f(4) = 4 2 -24 -4 = 16 -8 -4 = 4
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(4) - f(1) in den Zähler und die Differenz der x-Werte 4 - 1 in den Nenner schreiben:

f(4) - f(1) 4 - 1

= 4 - ( - 5 ) 4 - 1

= 9 3

= 3

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 30 Minuten seiner Fahrt 35 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 30 min eben 30 60 h = 1 2 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 2 ) - f(0) 1 2 - 0 = 35

f( 1 2 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 2 ) - 0 1 2 = 35 |⋅ 1 2

f( 1 2 ) -0 = 35 2 |+0

f( 1 2 ) = 17.5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x 2 +3 . Berechne f'(-1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 )

= 3 x 2 +3 - ( 3 ( -1 ) 2 +3 ) x +1

= 3 x 2 +3 -3 ( -1 ) 2 -3 x +1

= 3 x 2 -3 ( -1 ) 2 x +1

= 3( x 2 - ( -1 ) 2 ) x +1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 3 ( x -1 ) · ( x +1 ) x +1

Jetzt lässt sich der Nenner x +1 rauskürzen:

= 3 · ( x -1 )

Jetzt können wir den Grenzwert für x → -1 leicht bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 3( x -1 ) = 3( -1 -1 ) = -6

2. Weg

Wir stellen den Differenzenquotient zwischen -1 + h und -1 auf:

f(-1+h) - f(-1) h

= 3 ( -1 + h ) 2 +3 - ( 3 ( -1 ) 2 +3 ) h

= 3 ( -1 + h ) 2 +3 -3 ( -1 ) 2 -3 h

= 3 ( h -1 ) 2 -3 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= 3( h 2 -2h +1 ) -3 h

= 3 h 2 -6h +3 -3 h

= 3 h 2 -6h h

= 3 h ( h -2 ) h

Jetzt können wir mit h kürzen:

= 3( h -2 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-1) = lim h → 0 f(-1+h) - f(-1) h = lim h → 0 3( h -2 ) = 3(0 -2 ) = -6

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x 4 - x . Bestimme f'(1) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 1 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 1 und einem allgemeinen x auf:

f(x) - f(1) x - 1 = 3 x 4 - x - ( 3 1 4 - 1 ) x -1 = 3 x 4 - x -3 +1 x -1 = 3 x 4 - x -2 x -1

Jetzt setzen wir Werte für x ein, die sich immer mehr der 1 annähern:

x = 1.1: 3 1,1 4 - 1,1 -2 0,1 ≈ 12.923

x = 1.01: 3 1,01 4 - 1,01 -2 0,01 ≈ 11.1812

x = 1.001: 3 1,001 4 - 1,001 -2 0,001 ≈ 11.01801

x = 1.0001: 3 1,0001 4 - 1,0001 -2 0,0001 ≈ 11.0018

x = 1.00001: 3 1 4 - 1 -2 0.00001 ≈ 11.00018

Wir können nun also eine Vermutung für den Grenzwert für x → 1 bestimmen:

f'(1) = lim x → 1 f(x) - f(1) x - 1 = lim x → 1 3 x 4 - x -2 x -1 11

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 5 x 2 -5 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 5 x 2 -5 - ( 5 u 2 -5 ) x - u

= 5 x 2 -5 -5 u 2 +5 x - u

= 5 x 2 -5 u 2 x - u

= 5( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 5 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 5 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 5( x + u) = 5 · ( u + u ) = 10u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 10u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 10x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x -5 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= x -5 - ( u -5 ) x - u

= x -5 - u +5 x - u

= x - u x - u

= x - u x - u

Um Zähler und Nenner ähnlicher zu machen, nutzt man jetzt einen Trick und schreibt ( x ) 2 statt x und ( u ) 2 statt u:

= x - u ( x ) 2 - ( u ) 2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= x - u ( x - u ) · ( x + u )

Jetzt lässt sich x - u diagonal rauskürzen:

= 1 x + u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 1 x + u = 1 u + u = 1 2 u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 1 2 u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 1 2 x .