nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[1;3].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 1 und x2 = 3 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(3) - f(1) in den Zähler und die Differenz der x-Werte 3 - 1 in den Nenner schreiben:

f(3) - f(1) 3 - 1

= -4 - 4 3 - 1

= -8 2

= -4

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 3 + x 2 +2 . Bestimme den Differenzenquotient von f im Intervall I=[0;2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = 0 und x2 = 2 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(0) = - 0 3 + 0 2 +2 = -0 + 0 +2 = 2 und
f(2) = - 2 3 + 2 2 +2 = -8 + 4 +2 = -2
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(2) - f(0) in den Zähler und die Differenz der x-Werte 2 - 0 in den Nenner schreiben:

f(2) - f(0) 2 - 0

= -2 - 2 2 - 0

= -4 2

= -2

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 15 Minuten seiner Fahrt 15 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 15 min eben 15 60 h = 1 4 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 4 ) - f(0) 1 4 - 0 = 15

f( 1 4 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 4 ) - 0 1 4 = 15 |⋅ 1 4

f( 1 4 ) -0 = 15 4 |+0

f( 1 4 ) = 3.75

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 2 -5 . Berechne f'(2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2

= 2 x 2 -5 - ( 2 2 2 -5 ) x -2

= 2 x 2 -5 -2 2 2 +5 x -2

= 2 x 2 -2 2 2 x -2

= 2( x 2 - 2 2 ) x -2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 2 ( x +2 ) · ( x -2 ) x -2

Jetzt lässt sich der Nenner x -2 rauskürzen:

= 2 · ( x +2 )

Jetzt können wir den Grenzwert für x → 2 leicht bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 2( x +2 ) = 2( 2 +2 ) = 8

2. Weg

Wir stellen den Differenzenquotient zwischen 2 + h und 2 auf:

f(2+h) - f(2) h

= 2 ( 2 + h ) 2 -5 - ( 2 2 2 -5 ) h

= 2 ( 2 + h ) 2 -5 -2 2 2 +5 h

= 2 ( h +2 ) 2 -8 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= 2( h 2 +4h +4 ) -8 h

= 2 h 2 +8h +8 -8 h

= 2 h 2 +8h h

= 2 h ( h +4 ) h

Jetzt können wir mit h kürzen:

= 2( h +4 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(2) = lim h → 0 f(2+h) - f(2) h = lim h → 0 2( h +4 ) = 2(0 +4 ) = 8

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -3 x 4 -5 x 2 . Bestimme f'(2) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 2 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2 = -3 x 4 -5 x 2 - ( -3 2 4 -5 2 2 ) x -2 = -3 x 4 -5 x 2 +48 +20 x -2 = -3 x 4 -5 x 2 +68 x -2

Jetzt setzen wir Werte für x ein, die sich immer mehr der 2 annähern:

x = 2.1: -3 2,1 4 -5 2,1 2 +68 0,1 ≈ -123.943

x = 2.01: -3 2,01 4 -5 2,01 2 +68 0,01 ≈ -116.7724

x = 2.001: -3 2,001 4 -5 2,001 2 +68 0,001 ≈ -116.07702

x = 2.0001: -3 2,0001 4 -5 2,0001 2 +68 0,0001 ≈ -116.0077

x = 2.00001: -3 2 4 -5 2 2 +68 0.00001 ≈ -116.00077

Wir können nun also eine Vermutung für den Grenzwert für x → 2 bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 -3 x 4 -5 x 2 +68 x -2 -116

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 2 -2 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -2 x 2 -2 - ( -2 u 2 -2 ) x - u

= -2 x 2 -2 +2 u 2 +2 x - u

= -2 x 2 +2 u 2 x - u

= -2( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -2 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -2 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -2( x + u) = -2 · ( u + u ) = -4u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -4u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -4x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 2 +5x . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= - x 2 +5x - ( - u 2 +5u) x - u

= - x 2 +5x + u 2 -5u x - u

= - x 2 + u 2 +5x -5u x - u

= -( x 2 - u 2 )+5( x - u ) x - u

= -( x 2 - u 2 ) x - u + 5( x - u ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= - ( x - u ) · ( x + u ) x - u + 5( x - u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -1 · ( x + u ) +5

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -1 · ( x + u ) +5 = -1 · ( u + u ) +5 = -2u +5

Da die Ableitung an jeder Stelle x=u immer f'(u) = -2u +5 beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -2x +5 .