nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-2;2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -2 und x2 = 2 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(2) - f(-2) in den Zähler und die Differenz der x-Werte 2 - ( - 2 ) in den Nenner schreiben:

f(2) - f(-2) 2 - ( - 2 )

= 2 - 0 2 - ( - 2 )

= 2 4

= 1 2

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 3 -3 x 2 +2 . Bestimme den Differenzenquotient von f im Intervall I=[2;3].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = 2 und x2 = 3 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(2) = 2 3 -3 2 2 +2 = 8 -34 +2 = -2 und
f(3) = 3 3 -3 3 2 +2 = 27 -39 +2 = 2
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(3) - f(2) in den Zähler und die Differenz der x-Werte 3 - 2 in den Nenner schreiben:

f(3) - f(2) 3 - 2

= 2 - ( - 2 ) 3 - 2

= 4 1

= 4

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 30 Minuten seiner Fahrt 35 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 30 min eben 30 60 h = 1 2 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 2 ) - f(0) 1 2 - 0 = 35

f( 1 2 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 2 ) - 0 1 2 = 35 |⋅ 1 2

f( 1 2 ) -0 = 35 2 |+0

f( 1 2 ) = 17.5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 2 -5 . Berechne f'(2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2

= -2 x 2 -5 - ( -2 2 2 -5 ) x -2

= -2 x 2 -5 +2 2 2 +5 x -2

= -2 x 2 +2 2 2 x -2

= -2( x 2 - 2 2 ) x -2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -2 ( x +2 ) · ( x -2 ) x -2

Jetzt lässt sich der Nenner x -2 rauskürzen:

= -2 · ( x +2 )

Jetzt können wir den Grenzwert für x → 2 leicht bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 -2( x +2 ) = -2( 2 +2 ) = -8

2. Weg

Wir stellen den Differenzenquotient zwischen 2 + h und 2 auf:

f(2+h) - f(2) h

= -2 ( 2 + h ) 2 -5 - ( -2 2 2 -5 ) h

= -2 ( 2 + h ) 2 -5 +2 2 2 +5 h

= -2 ( h +2 ) 2 +8 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -2( h 2 +4h +4 ) +8 h

= -2 h 2 -8h -8 +8 h

= -2 h 2 -8h h

= -2 h ( h +4 ) h

Jetzt können wir mit h kürzen:

= -2( h +4 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(2) = lim h → 0 f(2+h) - f(2) h = lim h → 0 -2( h +4 ) = -2(0 +4 ) = -8

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -3 x 3 - x . Bestimme f'(-2) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der -2 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen -2 und einem allgemeinen x auf:

f(x) - f(-2) x - ( - 2 ) = -3 x 3 - x - ( -3 ( -2 ) 3 - ( -2 ) ) x +2 = -3 x 3 - x -24 -2 x +2 = -3 x 3 - x -26 x +2

Jetzt setzen wir Werte für x ein, die sich immer mehr der -2 annähern:

x = -1.9: -3 ( -1,9 ) 3 - ( -1,9 ) -26 0,1 ≈ -35.23

x = -1.99: -3 ( -1,99 ) 3 - ( -1,99 ) -26 0,01 ≈ -36.8203

x = -1.999: -3 ( -1,999 ) 3 - ( -1,999 ) -26 0,001 ≈ -36.982

x = -1.9999: -3 ( -1,9999 ) 3 - ( -1,9999 ) -26 0,0001 ≈ -36.9982

x = -1.99999: -3 ( -2 ) 3 - ( -2 ) -26 0.00001 ≈ -36.99982

Wir können nun also eine Vermutung für den Grenzwert für x → -2 bestimmen:

f'(-2) = lim x → -2 f(x) - f(-2) x - ( - 2 ) = lim x → -2 -3 x 3 - x -26 x +2 -37

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -4 x 2 +3 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -4 x 2 +3 - ( -4 u 2 +3 ) x - u

= -4 x 2 +3 +4 u 2 -3 x - u

= -4 x 2 +4 u 2 x - u

= -4( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -4 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -4 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -4( x + u) = -4 · ( u + u ) = -8u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -8u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -8x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -3 x +4 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -3 x +4 - ( -3 u +4 ) x - u

= -3 x +4 +3 u -4 x - u

= -3 x +3 u x - u

= -3( x - u ) x - u

Um Zähler und Nenner ähnlicher zu machen, nutzt man jetzt einen Trick und schreibt ( x ) 2 statt x und ( u ) 2 statt u:

= -3( x - u ) ( x ) 2 - ( u ) 2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -3( x - u ) ( x - u ) · ( x + u )

Jetzt lässt sich x - u diagonal rauskürzen:

= -3 x + u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -3 x + u = -3 u + u = - 3 2 u

Da die Ableitung an jeder Stelle x=u immer f'(u) = - 3 2 u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = - 3 2 x .