nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[0;1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 0 und x2 = 1 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(1) - f(0) in den Zähler und die Differenz der x-Werte 1 - 0 in den Nenner schreiben:

f(1) - f(0) 1 - 0

= 1 - ( - 1 ) 1 - 0

= 2 1

= 2

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 3 - x 2 +1 . Bestimme den Differenzenquotient von f im Intervall I=[-1;1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -1 und x2 = 1 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-1) = - ( -1 ) 3 - ( -1 ) 2 +1 = -( -1 ) - 1 +1 = 1 und
f(1) = - 1 3 - 1 2 +1 = -1 - 1 +1 = -1
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(1) - f(-1) in den Zähler und die Differenz der x-Werte 1 - ( - 1 ) in den Nenner schreiben:

f(1) - f(-1) 1 - ( - 1 )

= -1 - 1 1 - ( - 1 )

= -2 2

= -1

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=1 und x2=1,5 hat bei einer Funktion f den Wert 5.Es gilt: f(1) = 3. Bestimme f(1,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(1,5) - f(1) 1,5 - 1 = 5

f(1,5) = 3 eingestezt (und Nenner verrechnet):

f(1,5) - 3 0,5 = 5 |⋅ 0,5

f(1,5) -3 = 2,5 |+3

f(1,5) = 5.5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 2 -1 . Berechne f'(2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2

= - x 2 -1 - ( - 2 2 -1 ) x -2

= - x 2 -1 + 2 2 +1 x -2

= - x 2 + 2 2 x -2

= -( x 2 - 2 2 ) x -2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= - ( x +2 ) · ( x -2 ) x -2

Jetzt lässt sich der Nenner x -2 rauskürzen:

= -1 · ( x +2 )

Jetzt können wir den Grenzwert für x → 2 leicht bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 -( x +2 ) = -( 2 +2 ) = -4

2. Weg

Wir stellen den Differenzenquotient zwischen 2 + h und 2 auf:

f(2+h) - f(2) h

= - ( 2 + h ) 2 -1 - ( - 2 2 -1 ) h

= - ( 2 + h ) 2 -1 + 2 2 +1 h

= - ( h +2 ) 2 +4 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -( h 2 +4h +4 ) +4 h

= - h 2 -4h -4 +4 h

= - h 2 -4h h

= - h ( h +4 ) h

Jetzt können wir mit h kürzen:

= -( h +4 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(2) = lim h → 0 f(2+h) - f(2) h = lim h → 0 -( h +4 ) = -(0 +4 ) = -4

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 3 + x . Bestimme f'(2) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 2 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2 = x 3 + x - ( 2 3 +2 ) x -2 = x 3 + x -8 -2 x -2 = x 3 + x -10 x -2

Jetzt setzen wir Werte für x ein, die sich immer mehr der 2 annähern:

x = 2.1: 2,1 3 +2,1 -10 0,1 ≈ 13.61

x = 2.01: 2,01 3 +2,01 -10 0,01 ≈ 13.0601

x = 2.001: 2,001 3 +2,001 -10 0,001 ≈ 13.006

x = 2.0001: 2,0001 3 +2,0001 -10 0,0001 ≈ 13.0006

x = 2.00001: 2 3 +2,00001 -10 0.00001 ≈ 13.00006

Wir können nun also eine Vermutung für den Grenzwert für x → 2 bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 x 3 + x -10 x -2 13

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -5 x 2 +1 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -5 x 2 +1 - ( -5 u 2 +1 ) x - u

= -5 x 2 +1 +5 u 2 -1 x - u

= -5 x 2 +5 u 2 x - u

= -5( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -5 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -5 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -5( x + u) = -5 · ( u + u ) = -10u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -10u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -10x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 5 x 2 +3x . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 5 x 2 +3x - ( 5 u 2 +3u) x - u

= 5 x 2 +3x -5 u 2 -3u x - u

= 5 x 2 -5 u 2 +3x -3u x - u

= 5( x 2 - u 2 )+3( x - u ) x - u

= 5( x 2 - u 2 ) x - u + 3( x - u ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 5 ( x - u ) · ( x + u ) x - u + 3( x - u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 5 · ( x + u ) +3

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 5 · ( x + u ) +3 = 5 · ( u + u ) +3 = 10u +3

Da die Ableitung an jeder Stelle x=u immer f'(u) = 10u +3 beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 10x +3 .