nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-3;0].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -3 und x2 = 0 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(0) - f(-3) in den Zähler und die Differenz der x-Werte 0 - ( - 3 ) in den Nenner schreiben:

f(0) - f(-3) 0 - ( - 3 )

= 2 - ( - 1 ) 0 - ( - 3 )

= 3 3

= 1

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x +4 -4 . Bestimme den Differenzenquotient von f im Intervall I=[-3;0].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -3 und x2 = 0 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-3) = 3 -3 +4 -4 = 3 1 -4 = -1 und
f(0) = 3 0 +4 -4 = 3 4 -4 = 2
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(0) - f(-3) in den Zähler und die Differenz der x-Werte 0 - ( - 3 ) in den Nenner schreiben:

f(0) - f(-3) 0 - ( - 3 )

= 2 - ( - 1 ) 0 - ( - 3 )

= 3 3

= 1

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=-1 und x2=-0,5 hat bei einer Funktion f den Wert 3.Es gilt: f(-1) = -2. Bestimme f(-0,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(-0,5) - f(-1) -0,5 - ( - 1 ) = 3

f(-0,5) = -2 eingestezt (und Nenner verrechnet):

f(-0,5) - ( - 2 ) 0,5 = 3 |⋅ 0,5

f(-0,5) +2 = 1,5 |-2

f(-0,5) = -0.5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 2 -5 . Berechne f'(2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2

= -2 x 2 -5 - ( -2 2 2 -5 ) x -2

= -2 x 2 -5 +2 2 2 +5 x -2

= -2 x 2 +2 2 2 x -2

= -2( x 2 - 2 2 ) x -2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -2 ( x +2 ) · ( x -2 ) x -2

Jetzt lässt sich der Nenner x -2 rauskürzen:

= -2 · ( x +2 )

Jetzt können wir den Grenzwert für x → 2 leicht bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 -2( x +2 ) = -2( 2 +2 ) = -8

2. Weg

Wir stellen den Differenzenquotient zwischen 2 + h und 2 auf:

f(2+h) - f(2) h

= -2 ( 2 + h ) 2 -5 - ( -2 2 2 -5 ) h

= -2 ( 2 + h ) 2 -5 +2 2 2 +5 h

= -2 ( h +2 ) 2 +8 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -2( h 2 +4h +4 ) +8 h

= -2 h 2 -8h -8 +8 h

= -2 h 2 -8h h

= -2 h ( h +4 ) h

Jetzt können wir mit h kürzen:

= -2( h +4 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(2) = lim h → 0 f(2+h) - f(2) h = lim h → 0 -2( h +4 ) = -2(0 +4 ) = -8

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 3 - x 2 . Bestimme f'(-1) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der -1 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 ) = -2 x 3 - x 2 - ( -2 ( -1 ) 3 - ( -1 ) 2 ) x +1 = -2 x 3 - x 2 -2 +1 x +1 = -2 x 3 - x 2 -1 x +1

Jetzt setzen wir Werte für x ein, die sich immer mehr der -1 annähern:

x = -0.9: -2 ( -0,9 ) 3 - ( -0,9 ) 2 -1 0,1 ≈ -3.52

x = -0.99: -2 ( -0,99 ) 3 - ( -0,99 ) 2 -1 0,01 ≈ -3.9502

x = -0.999: -2 ( -0,999 ) 3 - ( -0,999 ) 2 -1 0,001 ≈ -3.995

x = -0.9999: -2 ( -0,9999 ) 3 - ( -0,9999 ) 2 -1 0,0001 ≈ -3.9995

x = -0.99999: -2 ( -1 ) 3 - ( -1 ) 2 -1 0.00001 ≈ -3.99995

Wir können nun also eine Vermutung für den Grenzwert für x → -1 bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 -2 x 3 - x 2 -1 x +1 -4

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 2 -4 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -2 x 2 -4 - ( -2 u 2 -4 ) x - u

= -2 x 2 -4 +2 u 2 +4 x - u

= -2 x 2 +2 u 2 x - u

= -2( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -2 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -2 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -2( x + u) = -2 · ( u + u ) = -4u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -4u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -4x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 4 x -2 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 4 x -2 - ( 4 u -2 ) x - u

= 4 x -2 -4 u +2 x - u

= 4 x -4 u x - u

= 4( x - u ) x - u

Um Zähler und Nenner ähnlicher zu machen, nutzt man jetzt einen Trick und schreibt ( x ) 2 statt x und ( u ) 2 statt u:

= 4( x - u ) ( x ) 2 - ( u ) 2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 4( x - u ) ( x - u ) · ( x + u )

Jetzt lässt sich x - u diagonal rauskürzen:

= 4 x + u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 4 x + u = 4 u + u = 2 u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 2 u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 2 x .