nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[1;2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 1 und x2 = 2 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(2) - f(1) in den Zähler und die Differenz der x-Werte 2 - 1 in den Nenner schreiben:

f(2) - f(1) 2 - 1

= -1 - 0 2 - 1

= -1 1

= -1

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x +1 -4 . Bestimme den Differenzenquotient von f im Intervall I=[0;3].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = 0 und x2 = 3 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(0) = 3 0 +1 -4 = 3 1 -4 = -1 und
f(3) = 3 3 +1 -4 = 3 4 -4 = 2
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(3) - f(0) in den Zähler und die Differenz der x-Werte 3 - 0 in den Nenner schreiben:

f(3) - f(0) 3 - 0

= 2 - ( - 1 ) 3 - 0

= 3 3

= 1

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=-1 und x2=1,5 hat bei einer Funktion f den Wert 3.Es gilt: f(-1) = 0. Bestimme f(1,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(1,5) - f(-1) 1,5 - ( - 1 ) = 3

f(1,5) = 0 eingestezt (und Nenner verrechnet):

f(1,5) - 0 2,5 = 3 |⋅ 2,5

f(1,5) -0 = 7,5 |+0

f(1,5) = 7.5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 2 +2 . Berechne f'(-2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -2 und einem allgemeinen x auf:

f(x) - f(-2) x - ( - 2 )

= 2 x 2 +2 - ( 2 ( -2 ) 2 +2 ) x +2

= 2 x 2 +2 -2 ( -2 ) 2 -2 x +2

= 2 x 2 -2 ( -2 ) 2 x +2

= 2( x 2 - ( -2 ) 2 ) x +2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 2 ( x -2 ) · ( x +2 ) x +2

Jetzt lässt sich der Nenner x +2 rauskürzen:

= 2 · ( x -2 )

Jetzt können wir den Grenzwert für x → -2 leicht bestimmen:

f'(-2) = lim x → -2 f(x) - f(-2) x - ( - 2 ) = lim x → -2 2( x -2 ) = 2( -2 -2 ) = -8

2. Weg

Wir stellen den Differenzenquotient zwischen -2 + h und -2 auf:

f(-2+h) - f(-2) h

= 2 ( -2 + h ) 2 +2 - ( 2 ( -2 ) 2 +2 ) h

= 2 ( -2 + h ) 2 +2 -2 ( -2 ) 2 -2 h

= 2 ( h -2 ) 2 -8 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= 2( h 2 -4h +4 ) -8 h

= 2 h 2 -8h +8 -8 h

= 2 h 2 -8h h

= 2 h ( h -4 ) h

Jetzt können wir mit h kürzen:

= 2( h -4 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-2) = lim h → 0 f(-2+h) - f(-2) h = lim h → 0 2( h -4 ) = 2(0 -4 ) = -8

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 4 + x 2 . Bestimme f'(2) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 2 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2 = - x 4 + x 2 - ( - 2 4 + 2 2 ) x -2 = - x 4 + x 2 +16 -4 x -2 = - x 4 + x 2 +12 x -2

Jetzt setzen wir Werte für x ein, die sich immer mehr der 2 annähern:

x = 2.1: - 2,1 4 + 2,1 2 +12 0,1 ≈ -30.381

x = 2.01: - 2,01 4 + 2,01 2 +12 0,01 ≈ -28.2308

x = 2.001: - 2,001 4 + 2,001 2 +12 0,001 ≈ -28.02301

x = 2.0001: - 2,0001 4 + 2,0001 2 +12 0,0001 ≈ -28.0023

x = 2.00001: - 2 4 + 2 2 +12 0.00001 ≈ -28.00023

Wir können nun also eine Vermutung für den Grenzwert für x → 2 bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 - x 4 + x 2 +12 x -2 -28

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 4 x 2 -4 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 4 x 2 -4 - ( 4 u 2 -4 ) x - u

= 4 x 2 -4 -4 u 2 +4 x - u

= 4 x 2 -4 u 2 x - u

= 4( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 4 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 4 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 4( x + u) = 4 · ( u + u ) = 8u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 8u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 8x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -3x . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= x 2 -3x - ( u 2 -3u) x - u

= x 2 -3x - u 2 +3u x - u

= x 2 - u 2 -3x +3u x - u

= x 2 - u 2 -3( x - u ) x - u

= x 2 - u 2 x - u + -3( x - u ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= ( x - u ) · ( x + u ) x - u + -3( x - u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 1 · ( x + u ) -3

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 1 · ( x + u ) -3 = 1 · ( u + u ) -3 = 2u -3

Da die Ableitung an jeder Stelle x=u immer f'(u) = 2u -3 beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 2x -3 .