nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[0;3].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 0 und x2 = 3 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(3) - f(0) in den Zähler und die Differenz der x-Werte 3 - 0 in den Nenner schreiben:

f(3) - f(0) 3 - 0

= -3 - 3 3 - 0

= -6 3

= -2

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 2 - x +1 . Bestimme den Differenzenquotient von f im Intervall I=[-2;0].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -2 und x2 = 0 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-2) = - ( -2 ) 2 - ( -2 ) +1 = -4 +2 +1 = -1 und
f(0) = - 0 2 - 0 +1 = -0 +0 +1 = 1
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(0) - f(-2) in den Zähler und die Differenz der x-Werte 0 - ( - 2 ) in den Nenner schreiben:

f(0) - f(-2) 0 - ( - 2 )

= 1 - ( - 1 ) 0 - ( - 2 )

= 2 2

= 1

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 12 Minuten seiner Fahrt 35 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 12 min eben 12 60 h = 1 5 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 5 ) - f(0) 1 5 - 0 = 35

f( 1 5 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 5 ) - 0 1 5 = 35 |⋅ 1 5

f( 1 5 ) -0 = 7 |+0

f( 1 5 ) = 7

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x 2 +1 . Berechne f'(2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2

= 3 x 2 +1 - ( 3 2 2 +1 ) x -2

= 3 x 2 +1 -3 2 2 -1 x -2

= 3 x 2 -3 2 2 x -2

= 3( x 2 - 2 2 ) x -2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 3 ( x +2 ) · ( x -2 ) x -2

Jetzt lässt sich der Nenner x -2 rauskürzen:

= 3 · ( x +2 )

Jetzt können wir den Grenzwert für x → 2 leicht bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 3( x +2 ) = 3( 2 +2 ) = 12

2. Weg

Wir stellen den Differenzenquotient zwischen 2 + h und 2 auf:

f(2+h) - f(2) h

= 3 ( 2 + h ) 2 +1 - ( 3 2 2 +1 ) h

= 3 ( 2 + h ) 2 +1 -3 2 2 -1 h

= 3 ( h +2 ) 2 -12 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= 3( h 2 +4h +4 ) -12 h

= 3 h 2 +12h +12 -12 h

= 3 h 2 +12h h

= 3 h ( h +4 ) h

Jetzt können wir mit h kürzen:

= 3( h +4 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(2) = lim h → 0 f(2+h) - f(2) h = lim h → 0 3( h +4 ) = 3(0 +4 ) = 12

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x . Bestimme f'(4) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 4 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 4 und einem allgemeinen x auf:

f(x) - f(4) x - 4 = x - 4 x -4 = x -2 x -4

Jetzt setzen wir Werte für x ein, die sich immer mehr der 4 annähern:

x = 4.1: 4,1 -2 0,1 ≈ 0.24846

x = 4.01: 4,01 -2 0,01 ≈ 0.24984

x = 4.001: 4,001 -2 0,001 ≈ 0.24998

x = 4.0001: 4,0001 -2 0,0001 ≈ 0.25

x = 4.00001: 4 -2 0.00001 ≈ 0.25

Wir können nun also eine Vermutung für den Grenzwert für x → 4 bestimmen:

f'(4) = lim x → 4 f(x) - f(4) x - 4 = lim x → 4 x -2 x -4 0.25

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 2 -3 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 2 x 2 -3 - ( 2 u 2 -3 ) x - u

= 2 x 2 -3 -2 u 2 +3 x - u

= 2 x 2 -2 u 2 x - u

= 2( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 2 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 2 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 2( x + u) = 2 · ( u + u ) = 4u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 4u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 4x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 4 x 2 +2x . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 4 x 2 +2x - ( 4 u 2 +2u) x - u

= 4 x 2 +2x -4 u 2 -2u x - u

= 4 x 2 -4 u 2 +2x -2u x - u

= 4( x 2 - u 2 )+2( x - u ) x - u

= 4( x 2 - u 2 ) x - u + 2( x - u ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 4 ( x - u ) · ( x + u ) x - u + 2( x - u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 4 · ( x + u ) +2

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 4 · ( x + u ) +2 = 4 · ( u + u ) +2 = 8u +2

Da die Ableitung an jeder Stelle x=u immer f'(u) = 8u +2 beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 8x +2 .