nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-1;1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -1 und x2 = 1 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(1) - f(-1) in den Zähler und die Differenz der x-Werte 1 - ( - 1 ) in den Nenner schreiben:

f(1) - f(-1) 1 - ( - 1 )

= -1 - 1 1 - ( - 1 )

= -2 2

= -1

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x +2 -4 . Bestimme den Differenzenquotient von f im Intervall I=[-2;2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -2 und x2 = 2 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-2) = 3 -2 +2 -4 = 3 0 -4 = -4 und
f(2) = 3 2 +2 -4 = 3 4 -4 = 2
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(2) - f(-2) in den Zähler und die Differenz der x-Werte 2 - ( - 2 ) in den Nenner schreiben:

f(2) - f(-2) 2 - ( - 2 )

= 2 - ( - 4 ) 2 - ( - 2 )

= 6 4

= 3 2

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 12 Minuten seiner Fahrt 30 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 12 min eben 12 60 h = 1 5 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 5 ) - f(0) 1 5 - 0 = 30

f( 1 5 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 5 ) - 0 1 5 = 30 |⋅ 1 5

f( 1 5 ) -0 = 6 |+0

f( 1 5 ) = 6

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 2 -5 . Berechne f'(2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2

= 2 x 2 -5 - ( 2 2 2 -5 ) x -2

= 2 x 2 -5 -2 2 2 +5 x -2

= 2 x 2 -2 2 2 x -2

= 2( x 2 - 2 2 ) x -2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 2 ( x +2 ) · ( x -2 ) x -2

Jetzt lässt sich der Nenner x -2 rauskürzen:

= 2 · ( x +2 )

Jetzt können wir den Grenzwert für x → 2 leicht bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 2( x +2 ) = 2( 2 +2 ) = 8

2. Weg

Wir stellen den Differenzenquotient zwischen 2 + h und 2 auf:

f(2+h) - f(2) h

= 2 ( 2 + h ) 2 -5 - ( 2 2 2 -5 ) h

= 2 ( 2 + h ) 2 -5 -2 2 2 +5 h

= 2 ( h +2 ) 2 -8 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= 2( h 2 +4h +4 ) -8 h

= 2 h 2 +8h +8 -8 h

= 2 h 2 +8h h

= 2 h ( h +4 ) h

Jetzt können wir mit h kürzen:

= 2( h +4 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(2) = lim h → 0 f(2+h) - f(2) h = lim h → 0 2( h +4 ) = 2(0 +4 ) = 8

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x . Bestimme f'(16) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 16 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 16 und einem allgemeinen x auf:

f(x) - f(16) x - 16 = 2 x -2 16 x -16 = 2 x -8 x -16

Jetzt setzen wir Werte für x ein, die sich immer mehr der 16 annähern:

x = 16.1: 2 16,1 -8 0,1 ≈ 0.24961

x = 16.01: 2 16,01 -8 0,01 ≈ 0.24996

x = 16.001: 2 16,001 -8 0,001 ≈ 0.25

x = 16.0001: 2 16,0001 -8 0,0001 ≈ 0.25

x = 16.00001: 2 16 -8 0.00001 ≈ 0.25

Wir können nun also eine Vermutung für den Grenzwert für x → 16 bestimmen:

f'(16) = lim x → 16 f(x) - f(16) x - 16 = lim x → 16 2 x -8 x -16 0.25

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 2 +1 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 2 x 2 +1 - ( 2 u 2 +1 ) x - u

= 2 x 2 +1 -2 u 2 -1 x - u

= 2 x 2 -2 u 2 x - u

= 2( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 2 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 2 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 2( x + u) = 2 · ( u + u ) = 4u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 4u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 4x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -5 x 2 +3 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -5 x 2 +3 - ( -5 u 2 +3 ) x - u

= -5 x 2 +3 +5 u 2 -3 x - u

= -5 x 2 +5 u 2 x - u

= -5( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -5 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -5 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -5( x + u) = -5 · ( u + u ) = -10u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -10u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -10x .