nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[0;3].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 0 und x2 = 3 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(3) - f(0) in den Zähler und die Differenz der x-Werte 3 - 0 in den Nenner schreiben:

f(3) - f(0) 3 - 0

= 3 - ( - 3 ) 3 - 0

= 6 3

= 2

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -2x -4 . Bestimme den Differenzenquotient von f im Intervall I=[1;4].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = 1 und x2 = 4 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(1) = 1 2 -21 -4 = 1 -2 -4 = -5 und
f(4) = 4 2 -24 -4 = 16 -8 -4 = 4
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(4) - f(1) in den Zähler und die Differenz der x-Werte 4 - 1 in den Nenner schreiben:

f(4) - f(1) 4 - 1

= 4 - ( - 5 ) 4 - 1

= 9 3

= 3

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 30 Minuten seiner Fahrt 30 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 30 min eben 30 60 h = 1 2 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 2 ) - f(0) 1 2 - 0 = 30

f( 1 2 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 2 ) - 0 1 2 = 30 |⋅ 1 2

f( 1 2 ) -0 = 15 |+0

f( 1 2 ) = 15

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 2 +4 . Berechne f'(1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen 1 und einem allgemeinen x auf:

f(x) - f(1) x - 1

= -2 x 2 +4 - ( -2 1 2 +4 ) x -1

= -2 x 2 +4 +2 1 2 -4 x -1

= -2 x 2 +2 1 2 x -1

= -2( x 2 - 1 2 ) x -1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -2 ( x +1 ) · ( x -1 ) x -1

Jetzt lässt sich der Nenner x -1 rauskürzen:

= -2 · ( x +1 )

Jetzt können wir den Grenzwert für x → 1 leicht bestimmen:

f'(1) = lim x → 1 f(x) - f(1) x - 1 = lim x → 1 -2( x +1 ) = -2( 1 +1 ) = -4

2. Weg

Wir stellen den Differenzenquotient zwischen 1 + h und 1 auf:

f(1+h) - f(1) h

= -2 ( 1 + h ) 2 +4 - ( -2 1 2 +4 ) h

= -2 ( 1 + h ) 2 +4 +2 1 2 -4 h

= -2 ( h +1 ) 2 +2 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -2( h 2 +2h +1 ) +2 h

= -2 h 2 -4h -2 +2 h

= -2 h 2 -4h h

= -2 h ( h +2 ) h

Jetzt können wir mit h kürzen:

= -2( h +2 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(1) = lim h → 0 f(1+h) - f(1) h = lim h → 0 -2( h +2 ) = -2(0 +2 ) = -4

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 4 -3x . Bestimme f'(2) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 2 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2 = 2 x 4 -3x - ( 2 2 4 -32 ) x -2 = 2 x 4 -3x -32 +6 x -2 = 2 x 4 -3x -26 x -2

Jetzt setzen wir Werte für x ein, die sich immer mehr der 2 annähern:

x = 2.1: 2 2,1 4 -32,1 -26 0,1 ≈ 65.962

x = 2.01: 2 2,01 4 -32,01 -26 0,01 ≈ 61.4816

x = 2.001: 2 2,001 4 -32,001 -26 0,001 ≈ 61.04802

x = 2.0001: 2 2,0001 4 -32,0001 -26 0,0001 ≈ 61.0048

x = 2.00001: 2 2 4 -32 -26 0.00001 ≈ 61.00048

Wir können nun also eine Vermutung für den Grenzwert für x → 2 bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 2 x 4 -3x -26 x -2 61

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 4 x 2 +5 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 4 x 2 +5 - ( 4 u 2 +5 ) x - u

= 4 x 2 +5 -4 u 2 -5 x - u

= 4 x 2 -4 u 2 x - u

= 4( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 4 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 4 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 4( x + u) = 4 · ( u + u ) = 8u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 8u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 8x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 1 x +4 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 1 x +4 - ( 1 u +4 ) x - u

= 1 x +4 - 1 u -4 x - u

= 1 x - 1 u x - u

= u x · u + -x x · u x - u

= u - x x · u x - u

= -x + u u · x x - u 1

Beim Doppelbruch multipliziert man den Zähler (bei dem man noch -1 ausklammern kann) mit dem Kehrbruich des Nenners:

= -( x - u) x · u · 1 x - u

Jetzt lässt sich der Nenner x - u diagonal rauskürzen:

= - 1 x u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u - 1 x u = -1 u · u = - 1 u 2

Da die Ableitung an jeder Stelle x=u immer f'(u) = - 1 u 2 beträgt, hat die Ableitungsfunktion f' den Term f'(x) = - 1 x 2 .