nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Binomialvert. mit variablem n (höchst.)

Beispiel:

Ein Mathelehrer möchte neue Taschenrechner für seine Klasse bestellen. Die Wahrscheinlichkeit, dass einer der Taschenrechner ein Decepticon (bekannt aus dem Transformers-Filmen) ist, liegt bei p=0,09. Wie viele Rechner können bestellt werden, dass zu einer Wahrscheinlichkeit von 80% kein Descepticon unter ihnen ist?

Lösung einblenden
nP(X≤k)
......
10.91
20.8281
30.7536
......

Die Zufallsgröße X gibt Anzahl der Descepticons unter den Taschenrechnern an und ist im Idealfall binomialverteilt mit p = 0.09 und variablem n.

Es muss gelten: P0.09n (X0) ≥ 0.8

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 9% der Versuche mit einem Treffer. Also müssten dann doch bei 0 0.09 ≈ 0 Versuchen auch ungefähr 0 (≈0.09⋅0) Treffer auftreten.

Wir berechnen also mit unserem ersten n=0:
P0.09n (X0) ≈ 1 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.8 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.8 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=2 die gesuchte Wahrscheinlichkeit über 80% ist.

Binomialvert. mit variablem n (mind)

Beispiel:

Bei einem Glücksrad, ist die Wahrscheinlichkeit in den grünen Bereich zu kommen p=0,85. Wie oft muss man dieses Glückrad mindestens drehen, um mit einer Wahrscheinlichkeit von mindestens 70% 24 mal oder öfters in den grünen Bereich zu kommen?

Lösung einblenden
nP(X≤k)
......
280.4131
290.2621
......

Die Zufallsgröße X gibt Anzahl der Drehungen, die im grünen Bereich landen an und ist im Idealfall binomialverteilt mit p = 0.85 und variablem n.

Es muss gelten: P0.85n (X24) ≥ 0.7

Weil man ja aber P0.85n (X24) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.85n (X24) = 1 - P0.85n (X23) ≥ 0.7 |+ P0.85n (X23) - 0.7

0.3 ≥ P0.85n (X23) oder P0.85n (X23) ≤ 0.3

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 85% der Versuche mit einem Treffer. Also müssten dann doch bei 24 0.85 ≈ 28 Versuchen auch ungefähr 24 (≈0.85⋅28) Treffer auftreten.

Wir berechnen also mit unserem ersten n=28:
P0.85n (X23) ≈ 0.4131 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.3 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.3 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=29 die gesuchte Wahrscheinlichkeit unter 0.3 ist.

n muss also mindestens 29 sein, damit P0.85n (X23) ≤ 0.3 oder eben P0.85n (X24) ≥ 0.7 gilt.

Binomialvert. mit variablem n (höchst.)

Beispiel:

Eine Fluggesellschaft geht davon aus, dass 13% der gekauften Tickets gar nicht eingelöst werden. Wieviel Tickets kann sie für ihre 39-Platzmaschine höchstens verkaufen, so dass es zu mindestens 80% Wahrscheinlichkeit zu keiner Überbelegung kommt.

Lösung einblenden
nP(X≤k)
......
430.8275
440.6933
450.5397
......

Die Zufallsgröße X gibt die Anzahl der Ticketbesitzer, die tatsächlich fliegen an und ist im Idealfall binomialverteilt mit p = 0.87 und variablem n.

Es muss gelten: P0.87n (X39) ≥ 0.8

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 87% der Versuche mit einem Treffer. Also müssten dann doch bei 39 0.87 ≈ 45 Versuchen auch ungefähr 39 (≈0.87⋅45) Treffer auftreten.

Wir berechnen also mit unserem ersten n=45:
P0.87n (X39) ≈ 0.5397 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.8 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.8 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=43 die gesuchte Wahrscheinlichkeit über 80% ist.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Eine Firma, die Überraschungseier vertreibt, möchte als Werbegag manche Eier mit Superfiguren bestücken. Aus Angst vor Kundenbeschwerden sollen in einer 8er-Packung mit der mindestens 75% Wahrscheinlichkeit 1 oder mehr Superfiguren enthalten sein. Wenn in jedes n-te Ei eine Superfigur rein soll, wie groß darf dann n höchstens sein?

Lösung einblenden
pP(X≥1)=1-P(X≤0)
......
1 2 0.9961
1 3 0.961
1 4 0.8999
1 5 0.8322
1 6 0.7674
1 7 0.7086
......

Die Zufallsgröße X gibt die Anzahl der Eier mit einer Superfigur an. X ist binomialverteilt mit n=8 und unbekanntem Parameter p.

Es muss gelten: Pp8 (X1) = 1- Pp8 (X0) = 0.75 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp8 (X1) ('mindestens 1 Treffer bei 8 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Als Startwert wählen wir als p= 1 2 .

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 1 6 die gesuchte Wahrscheinlichkeit über 75% bleibt.
Der Nenner, also die das wievielte Ei eine Superfigur enthält, darf also höchstens 6 sein.

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einem Multiple-Choice-Test werden 45 Fragen gestellt. Bei jeder Frage gibt es 7 Antworten, von denen genau eine richtig ist. Die Wahrscheinlichkeit, dass man mit reinem Raten der richtigen Antworten durch Zufall trotzdem den Test besteht, soll unter 2% liegen. Wie viele Fragen müssen dann zum Bestehen des Tests mindestens richtig beantwortet werden?

Lösung einblenden
kP(X≤k)
......
70.6901
80.8148
90.9002
100.9515
110.9786
120.9915
130.9969
140.999
150.9997
160.9999
......

Die Zufallsgröße X gibt die Anzahl der richtig geratenen Fragen an und ist im Idealfall binomialverteilt mit p = 1 7 und n = 45.

Es muss gelten: P 1 7 45 (Xk) < 0.02 (oranger Bereich)

oder andersrum ausgedrückt: P 1 7 45 (Xk-1) ≥ 0.98 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 11 immer noch weniger als 0.98 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P 1 7 45 (X12) nimmt mit 99.15% einen Wert über 0.98 an.

Das kleinstmögliche k mit P 1 7 45 (Xk) = 1 - P 1 7 45 (Xk-1) < 0.02 ist somit k = 13.

Die Mindestanzahl richtiger Fragen zum Bestehen des Tests muss somit k = 13 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 7%. Für einen bestimmten Betrag darf man 14 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 8% ausgegeben werden muss?

Lösung einblenden
kP(X≤k)
00.362
10.7436
20.9302
30.9864
40.998
50.9998
61
......

Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.07 und n = 14.

Es muss gelten: P0.0714 (Xk) < 0.08 (oranger Bereich)

oder andersrum ausgedrückt: P0.0714 (Xk-1) ≥ 0.92 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 1 immer noch weniger als 0.92 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.0714 (X2) nimmt mit 93.02% einen Wert über 0.92 an.

Das kleinstmögliche k mit P0.0714 (Xk) = 1 - P0.0714 (Xk-1) < 0.08 ist somit k = 3.

Die Mindestanzahl der getroffenenen Bälle muss somit k = 3 sein.

0
1
2
3
4
5
6
7
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (höchst.)

Beispiel:

Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 15% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 75 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 15% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?

Lösung einblenden
kP(X≤k)
......
20.0005
30.0024
40.0084
50.0234
60.0544
70.1082
80.1889
90.2949
100.4184
110.5472
......

Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.15 und n = 75.

Es muss gelten: P0.1575 (Xk) < 0.15

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 7 immer noch weniger als 0.15 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1575 (X8) nimmt mit 18.89% einen Wert über 0.15 an.

Das größtmögliche k mit P0.1575 (Xk) < 0.15 ist somit k = 7.

Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 7 sein.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)