Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Binomialvert. mit variablem n (höchst.)
Beispiel:
In einer Urne ist der Anteil der grünen Kugeln 15%. Wie oft darf höchstens gezogen werden ( - natürlich mit Zurücklegen - ), so dass mit mind. 70% Wahrscheinlichkeit nicht mehr als 20 grüne Kugeln gezogen werden?
n | P(X≤k) |
---|---|
... | ... |
123 | 0.7051 |
124 | 0.6916 |
125 | 0.6779 |
126 | 0.664 |
127 | 0.65 |
128 | 0.6359 |
129 | 0.6217 |
130 | 0.6074 |
131 | 0.593 |
132 | 0.5786 |
133 | 0.5641 |
... | ... |
Die Zufallsgröße X gibt Anzahl der gezogenen grünen Kugeln an und ist im Idealfall binomialverteilt mit p = 0.15 und variablem n.
Es muss gelten: ≥ 0.7
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 15% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 133 Versuchen auch ungefähr 20 (≈0.15⋅133) Treffer auftreten.
Wir berechnen also mit unserem ersten n=133:
≈ 0.5641
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=123 die gesuchte Wahrscheinlichkeit über 70% ist.
Binomialvert. mit variablem n (mind)
Beispiel:
Wie oft muss man mit einem normalen Würfel mindestens würfeln, um mit einer Wahrscheinlichkeit von mindestens 60% 33 oder mehr 6er zu erzielen?
n | P(X≤k) |
---|---|
... | ... |
199 | 0.4579 |
200 | 0.4454 |
201 | 0.433 |
202 | 0.4207 |
203 | 0.4086 |
204 | 0.3966 |
... | ... |
Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p = und variablem n.
Es muss gelten: ≥ 0.6
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.6 |+ - 0.6
0.4 ≥ oder ≤ 0.4
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden der Versuche mit einem Treffer.
Also müssten dann doch bei ≈ 198 Versuchen auch ungefähr 33
(≈
Wir berechnen also mit unserem ersten n=198:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.4 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.4 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=204 die gesuchte Wahrscheinlichkeit unter 0.4 ist.
n muss also mindestens 204 sein, damit
Binomialvert. mit variablem n (höchst.)
Beispiel:
Beim MI6 (Arbeitsplatz von James Bond 007) soll eine Projektgruppe zur Aushebung einer multinationalen Superschurkenvereinigung eingerichtet werden. Bisherige Studien haben ergeben, dass diese kriminelle Vereinigung bereits alle wichtigen Regierungsbehörden infiltriert hat. Man geht davon aus, dass bereits jeder 50. MI6-Angestellte ein Spitzel dieser Organisiation ist. Wie groß darf diese Gruppe nun sein, so dass mit einer Wahrscheinlichkeit von mindestens 60% kein Spitzel in dieser Projektgruppe ist?
n | P(X≤k) |
---|---|
... | ... |
20 | 0.6676 |
21 | 0.6543 |
22 | 0.6412 |
23 | 0.6283 |
24 | 0.6158 |
25 | 0.6035 |
26 | 0.5914 |
... | ... |
Die Zufallsgröße X gibt Anzahl der Spitzel unter den MI6-Angestellten an und ist im Idealfall binomialverteilt mit p = 0.02 und variablem n.
Es muss gelten:
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 2% der Versuche mit einem Treffer.
Also müssten dann doch bei
Wir berechnen also mit unserem ersten n=0:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=25 die gesuchte Wahrscheinlichkeit über 60% ist.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
Eine Schulklasse möchte fürs Schulfest ein Glücksrad entwickeln. Aus optischen Gründen sollen dabei alle Sektoren gleich groß sein. Einer davon soll für den Hauptpreis stehen. Hierfür haben sie insgesamt 9 Preise gesammelt. Sie erwarten, dass das Glücksrad beim Schulfest 90 mal gespielt wird. Mit wie vielen Sektoren müssen sie ihr Glückrad mindestens bestücken damit die 9 Hauptpreise mit einer Wahrscheinlichkeit von mindestens 95% für die 90 Durchgänge reichen?
p | P(X≤9) |
---|---|
... | ... |
0.5875 | |
0.699 | |
0.7841 | |
0.8466 | |
0.8914 | |
0.9232 | |
0.9455 | |
0.9612 | |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Hauptpreise an. X ist binomialverteilt mit n=90 und unbekanntem Parameter p.
Es muss gelten:
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit
Um einen günstigen Startwert zu finden wählen wir mal als p=
In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p=
Der Nenner, also die Anzahl der Sektoren des Glücksrad, muss also mindestens
17 sein.
Binomialvert. mit variablem k (mind.)
Beispiel:
Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 10%. Für einen bestimmten Betrag darf man 16 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 14% ausgegeben werden muss?
k | P(X≤k) |
---|---|
0 | 0.1853 |
1 | 0.5147 |
2 | 0.7892 |
3 | 0.9316 |
4 | 0.983 |
5 | 0.9967 |
6 | 0.9995 |
7 | 0.9999 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.1 und n = 16.
Es muss gelten:
oder andersrum ausgedrückt:
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und
2 immer noch weniger als 0.86 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst
Das kleinstmögliche k mit
Die Mindestanzahl der getroffenenen Bälle muss somit k = 4 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (mind.)
Beispiel:
Bei einem Multiple-Choice-Test werden 35 Fragen gestellt. Bei jeder Frage gibt es 5 Antworten, von denen genau eine richtig ist. Die Wahrscheinlichkeit, dass man mit reinem Raten der richtigen Antworten durch Zufall trotzdem den Test besteht, soll unter 10% liegen. Wie viele Fragen müssen dann zum Bestehen des Tests mindestens richtig beantwortet werden?
k | P(X≤k) |
---|---|
... | ... |
5 | 0.2721 |
6 | 0.4328 |
7 | 0.5993 |
8 | 0.745 |
9 | 0.8543 |
10 | 0.9253 |
11 | 0.9656 |
12 | 0.9858 |
13 | 0.9947 |
14 | 0.9982 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der richtig geratenen Fragen an und ist im Idealfall binomialverteilt mit p =
Es muss gelten:
oder andersrum ausgedrückt:
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und
9 immer noch weniger als 0.9 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst
Das kleinstmögliche k mit
Die Mindestanzahl richtiger Fragen zum Bestehen des Tests muss somit k = 11 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (höchst.)
Beispiel:
Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 11% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 95 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 10% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?
k | P(X≤k) |
---|---|
... | ... |
1 | 0.0002 |
2 | 0.0013 |
3 | 0.0053 |
4 | 0.0169 |
5 | 0.0429 |
6 | 0.0911 |
7 | 0.1669 |
8 | 0.2699 |
9 | 0.3929 |
10 | 0.5237 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.11 und n = 95.
Es muss gelten:
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und
6 immer noch weniger als 0.1 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst
Das größtmögliche k mit
Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 6 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)