Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Binomialvert. mit variablem n (höchst.)
Beispiel:
Eine Fluggesellschaft geht davon aus, dass 16% der gekauften Tickets gar nicht eingelöst werden. Wieviel Tickets kann sie für ihre 24-Platzmaschine höchstens verkaufen, so dass es zu mindestens 70% Wahrscheinlichkeit zu keiner Überbelegung kommt.
n | P(X≤k) |
---|---|
... | ... |
27 | 0.8296 |
28 | 0.6763 |
29 | 0.5047 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Ticketbesitzer, die tatsächlich fliegen an und ist im Idealfall binomialverteilt mit p = 0.84 und variablem n.
Es muss gelten: ≥ 0.7
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 84% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 29 Versuchen auch ungefähr 24 (≈0.84⋅29) Treffer auftreten.
Wir berechnen also mit unserem ersten n=29:
≈ 0.5047
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=27 die gesuchte Wahrscheinlichkeit über 70% ist.
Binomialvert. mit variablem n (mind)
Beispiel:
Beim Biberacher Schützenfest läuft ein 12-köpfiger historischer Spielmannszug mit, der an die Schweden während des 30-Jährigen Kriegs erinnert. Dabei feiern dessen Mitglieder manchmal so ausgelassen, dass die Wahrscheinlichkeit eines Ausfall beim Umzug wegen unverhältnismäßigem Alkoholgenuss bei 12% liegt. Wie viele Schwedenmusiker muss die Schützendirektion mindestens ausbilden, damit beim Umzug mit mindestens 90%-iger Wahrscheinlichkeit mindestens 12 Schweden einsatzfähig sind?
n | P(X≤k) |
---|---|
... | ... |
14 | 0.2315 |
15 | 0.0959 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der einsatzfähigen Schwedenmusiker an und ist im Idealfall binomialverteilt mit p = 0.88 und variablem n.
Es muss gelten: ≥ 0.9
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.9 |+ - 0.9
0.1 ≥ oder ≤ 0.1
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 88% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 14 Versuchen auch ungefähr 12 (≈0.88⋅14) Treffer auftreten.
Wir berechnen also mit unserem ersten n=14:
≈ 0.2315
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.1 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.1 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=15 die gesuchte Wahrscheinlichkeit unter 0.1 ist.
n muss also mindestens 15 sein, damit ≤ 0.1 oder eben ≥ 0.9 gilt.
Binomialvert. mit variablem n (höchst.)
Beispiel:
Der Starspieler der gegnerischen Basketballmannschaft hat bei Freiwürfen eine Trefferquote von p=0,9. Wie viele Freiwürfe darf man bei ihm durch Fouls höchstens zulassen, wenn man ihn mit einer Wahrscheinlichkeit von mindestens 60% nicht über 37 Freiwurfpunkte kommen lassen will?
n | P(X≤k) |
---|---|
... | ... |
40 | 0.7772 |
41 | 0.5969 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der getroffenen Freiwürfe an und ist im Idealfall binomialverteilt mit p = 0.9 und variablem n.
Es muss gelten: ≥ 0.6
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 90% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 41 Versuchen auch ungefähr 37 (≈0.9⋅41) Treffer auftreten.
Wir berechnen also mit unserem ersten n=41:
≈ 0.5969
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=40 die gesuchte Wahrscheinlichkeit über 60% ist.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
Die Homepage-AG einer Schule möchte auf der Startseite der Internetseite der Schule ein Zufallsbild integrieren. Dabei soll bei jedem Aufruf der Startseite ein zufälliges Bild aus einer Bilderdatenbank gezeigt werden. Alle Bilder der Datenbank sind immer gleich wahrscheinlich. Auf 2 Bildern der Datenbank sind Mitglieder der Homepage-AG zu sehen. Es wird geschätzt, dass die Seite täglich 90 mal aufgerufen wird. Die Mitglieder der Homepage-AG wollen dass mit mindestens 90%-iger Wahrscheinlichkiet mindestens 14 mal am Tag eines ihrer eigenen 2 Bilder erscheint. Wie viele andere Bilder dürfen dann höchstens noch in der Datenbank sein?
p | P(X≥14)=1-P(X≤13) |
---|---|
... | ... |
0.9987 | |
0.989 | |
0.9552 | |
0.8848 | |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Bilder mit Homepage-AG-lern an. X ist binomialverteilt mit n=90 und unbekanntem Parameter p.
Es muss gelten: = 1- = 0.9 (oder mehr)
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 2 sein muss, da es ja genau 2 günstige Fälle gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit ('mindestens 14 Treffer bei 90 Versuchen') bei diesen Nennern wird (siehe Tabelle links)
Als Startwert wählen wir als p=. (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 90% bleibt.
Der Nenner, also die Anzahl aller Bilder in der Datenbank, darf also höchstens
9 sein.
Also wären noch 7 zusätzliche Optionen (also weitere Bilder) zulässig.
Binomialvert. mit variablem k (mind.)
Beispiel:
Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 7%. Für einen bestimmten Betrag darf man 18 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 8% ausgegeben werden muss?
k | P(X≤k) |
---|---|
0 | 0.2708 |
1 | 0.6378 |
2 | 0.8725 |
3 | 0.9667 |
4 | 0.9933 |
5 | 0.999 |
6 | 0.9999 |
7 | 1 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.07 und n = 18.
Es muss gelten: < 0.08 (oranger Bereich)
oder andersrum ausgedrückt: ≥ 0.92 (blauer Bereich)
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 2 immer noch weniger als 0.92 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst nimmt mit 96.67% einen Wert über 0.92 an.
Das kleinstmögliche k mit = 1 - < 0.08 ist somit k = 4.
Die Mindestanzahl der getroffenenen Bälle muss somit k = 4 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (mind.)
Beispiel:
Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 11%. Für einen bestimmten Betrag darf man 16 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 14% ausgegeben werden muss?
k | P(X≤k) |
---|---|
0 | 0.155 |
1 | 0.4614 |
2 | 0.7455 |
3 | 0.9093 |
4 | 0.9752 |
5 | 0.9947 |
6 | 0.9991 |
7 | 0.9999 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.11 und n = 16.
Es muss gelten: < 0.14 (oranger Bereich)
oder andersrum ausgedrückt: ≥ 0.86 (blauer Bereich)
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 2 immer noch weniger als 0.86 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst nimmt mit 90.93% einen Wert über 0.86 an.
Das kleinstmögliche k mit = 1 - < 0.14 ist somit k = 4.
Die Mindestanzahl der getroffenenen Bälle muss somit k = 4 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (höchst.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,15. Das Zufallsexperiment soll 55 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 55 Versuchen höchstens k Treffer sind, weniger als 50% betragen. Bestimme den größtmöglichen Wert für k.
k | P(X≤k) |
---|---|
... | ... |
2 | 0.0075 |
3 | 0.0264 |
4 | 0.0698 |
5 | 0.1479 |
6 | 0.2628 |
7 | 0.4048 |
8 | 0.5551 |
9 | 0.6935 |
10 | 0.806 |
11 | 0.8871 |
... | ... |
Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.15 und n = 55.
Es muss gelten: < 0.5
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 7 immer noch weniger als 0.5 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst nimmt mit 55.51% einen Wert über 0.5 an.
Das größtmögliche k mit < 0.5 ist somit k = 7.
größtmöglicher Wert für k muss somit k = 7 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)