nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Binomialvert. mit variablem n (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,15.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 60% Wahrscheinlichkeit, höchstens 35 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
2280.6031
2290.5923
2300.5814
2310.5705
2320.5595
2330.5486
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.15 und variablem n.

Es muss gelten: P0.15n (X35) ≥ 0.6

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 15% der Versuche mit einem Treffer. Also müssten dann doch bei 35 0.15 ≈ 233 Versuchen auch ungefähr 35 (≈0.15⋅233) Treffer auftreten.

Wir berechnen also mit unserem ersten n=233:
P0.15n (X35) ≈ 0.5486 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=228 die gesuchte Wahrscheinlichkeit über 60% ist.

Binomialvert. mit variablem n (mind)

Beispiel:

In einer Urne ist der Anteil der grünen Kugeln 35%. Wie oft muss mindestens gezogen werden ( - natürlich mit Zurücklegen - ), so dass mit mind. 90% Wahrscheinlichkeit 38 oder mehr grüne Kugeln gezogen werden?

Lösung einblenden
nP(X≤k)
......
1220.1619
1230.1468
1240.1328
1250.1198
1260.1078
1270.0968
......

Die Zufallsgröße X gibt Anzahl der gezogenen grünen Kugeln an und ist im Idealfall binomialverteilt mit p = 0.35 und variablem n.

Es muss gelten: P0.35n (X38) ≥ 0.9

Weil man ja aber P0.35n (X38) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.35n (X38) = 1 - P0.35n (X37) ≥ 0.9 |+ P0.35n (X37) - 0.9

0.1 ≥ P0.35n (X37) oder P0.35n (X37) ≤ 0.1

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 35% der Versuche mit einem Treffer. Also müssten dann doch bei 38 0.35 ≈ 109 Versuchen auch ungefähr 38 (≈0.35⋅109) Treffer auftreten.

Wir berechnen also mit unserem ersten n=109:
P0.35n (X37) ≈ 0.452 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.1 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.1 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=127 die gesuchte Wahrscheinlichkeit unter 0.1 ist.

n muss also mindestens 127 sein, damit P0.35n (X37) ≤ 0.1 oder eben P0.35n (X38) ≥ 0.9 gilt.

Binomialvert. mit variablem n (höchst.)

Beispiel:

Wie oft darf man mit einem normalen Würfel höchstens würfeln, um mit einer Wahrscheinlichkeit von mindestens 70% nicht mehr als 24 6er zu würfeln?

Lösung einblenden
nP(X≤k)
......
1330.7126
1340.6989
1350.685
1360.671
1370.6568
1380.6424
1390.6279
1400.6133
1410.5986
1420.5838
1430.569
1440.5542
......

Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p = 1 6 und variablem n.

Es muss gelten: P 1 6 n (X24) ≥ 0.7

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 1 6 der Versuche mit einem Treffer. Also müssten dann doch bei 24 1 6 ≈ 144 Versuchen auch ungefähr 24 (≈ 1 6 ⋅144) Treffer auftreten.

Wir berechnen also mit unserem ersten n=144:
P 1 6 n (X24) ≈ 0.5542 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=133 die gesuchte Wahrscheinlichkeit über 70% ist.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 5 rote und einige schwarze Kugeln. Es soll 28 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den 28 gezogenen Kugeln nicht mehr als 24 schwarze sind?

Lösung einblenden
pP(X≤24)
......
7 12 0.9996
8 13 0.9988
9 14 0.9971
10 15 0.9939
11 16 0.9889
12 17 0.9817
13 18 0.972
14 19 0.9597
15 20 0.9449
16 21 0.9276
17 22 0.9082
18 23 0.8869
19 24 0.864
20 25 0.8398
21 26 0.8146
22 27 0.7887
23 28 0.7624
24 29 0.7358
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=28 und unbekanntem Parameter p.

Es muss gelten: Pp28 (X24) = 0.75 (oder mehr)

Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 5 größer sein muss als der Zähler.

Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit Pp28 (X24) ('höchstens 24 Treffer bei 28 Versuchen') auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p= 7 12 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 23 28 die gesuchte Wahrscheinlichkeit über 75% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 23 sein.

Binomialvert. mit variablem k (höchst.)

Beispiel:

Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 15% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 55 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 15% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?

Lösung einblenden
kP(X≤k)
00.0001
10.0014
20.0075
30.0264
40.0698
50.1479
60.2628
70.4048
80.5551
90.6935
......

Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.15 und n = 55.

Es muss gelten: P0.1555 (Xk) < 0.15

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 5 immer noch weniger als 0.15 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1555 (X6) nimmt mit 26.28% einen Wert über 0.15 an.

Das größtmögliche k mit P0.1555 (Xk) < 0.15 ist somit k = 5.

Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 5 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einem Multiple-Choice-Test werden 30 Fragen gestellt. Bei jeder Frage gibt es 5 Antworten, von denen genau eine richtig ist. Die Wahrscheinlichkeit, dass man mit reinem Raten der richtigen Antworten durch Zufall trotzdem den Test besteht, soll unter 8% liegen. Wie viele Fragen müssen dann zum Bestehen des Tests mindestens richtig beantwortet werden?

Lösung einblenden
kP(X≤k)
......
40.2552
50.4275
60.607
70.7608
80.8713
90.9389
100.9744
110.9905
120.9969
130.9991
......

Die Zufallsgröße X gibt die Anzahl der richtig geratenen Fragen an und ist im Idealfall binomialverteilt mit p = 1 5 und n = 30.

Es muss gelten: P 1 5 30 (Xk) < 0.08 (oranger Bereich)

oder andersrum ausgedrückt: P 1 5 30 (Xk-1) ≥ 0.92 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 8 immer noch weniger als 0.92 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P 1 5 30 (X9) nimmt mit 93.89% einen Wert über 0.92 an.

Das kleinstmögliche k mit P 1 5 30 (Xk) = 1 - P 1 5 30 (Xk-1) < 0.08 ist somit k = 10.

Die Mindestanzahl richtiger Fragen zum Bestehen des Tests muss somit k = 10 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,65. Das Zufallsexperiment soll 65 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 65 Versuchen höchstens k Treffer sind, weniger als 50% betragen. Bestimme den größtmöglichen Wert für k.

Lösung einblenden
kP(X≤k)
......
360.0691
370.1094
380.1645
390.2354
400.321
410.4179
420.5207
430.6228
440.7177
450.7999
......

Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.65 und n = 65.

Es muss gelten: P0.6565 (Xk) < 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 41 immer noch weniger als 0.5 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.6565 (X42) nimmt mit 52.07% einen Wert über 0.5 an.

Das größtmögliche k mit P0.6565 (Xk) < 0.5 ist somit k = 41.

größtmöglicher Wert für k muss somit k = 41 sein.

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)