Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Binomialvert. mit variablem n (mind)
Beispiel:
Bei einem Glücksrad, ist die Wahrscheinlichkeit in den grünen Bereich zu kommen p=0,6. Wie oft muss man dieses Glückrad mindestens drehen, um mit einer Wahrscheinlichkeit von mindestens 90% 21 mal oder öfters in den grünen Bereich zu kommen?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 36 | 0.3507 |
| 37 | 0.2819 |
| 38 | 0.2219 |
| 39 | 0.1713 |
| 40 | 0.1298 |
| 41 | 0.0965 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der Drehungen, die im grünen Bereich landen an und ist im Idealfall binomialverteilt mit p = 0.6 und variablem n.
Es muss gelten: ≥ 0.9
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.9 |+ - 0.9
0.1 ≥ oder ≤ 0.1
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 60% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 35 Versuchen auch ungefähr 21 (≈0.6⋅35) Treffer auftreten.
Wir berechnen also mit unserem ersten n=35:
≈ 0.4272
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.1 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.1 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=41 die gesuchte Wahrscheinlichkeit unter 0.1 ist.
n muss also mindestens 41 sein, damit ≤ 0.1 oder eben ≥ 0.9 gilt.
Binomialvert. mit variablem n (mind)
Beispiel:
Ein Lebensmittelhersteller wirbt damit, dass sich in jeder 7. Verpackung eine Überraschung befindet. Wie viele Packungen muss man mindestens kaufen, um mit einer Wahrscheinlichkeit von mindestens 50% mindestens 3 Überraschung(en) zu erhalten.
| n | P(X≤k) |
|---|---|
| ... | ... |
| 18 | 0.5145 |
| 19 | 0.4767 |
| 20 | 0.4404 |
| 21 | 0.4058 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Überraschungen an und ist im Idealfall binomialverteilt mit p = und variablem n.
Es muss gelten: ≥ 0.5
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.5 |+ - 0.5
0.5 ≥ oder ≤ 0.5
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden der Versuche mit einem Treffer.
Also müssten dann doch bei ≈ 21 Versuchen auch ungefähr 3
(≈
Wir berechnen also mit unserem ersten n=21:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=19 die gesuchte Wahrscheinlichkeit unter 0.5 ist.
n muss also mindestens 19 sein, damit
Binomialvert. mit variablem n (höchst.)
Beispiel:
Eine Fluggesellschaft geht davon aus, dass 13% der gekauften Tickets gar nicht eingelöst werden. Wieviel Tickets kann sie für ihre 38-Platzmaschine höchstens verkaufen, so dass es zu mindestens 60% Wahrscheinlichkeit zu keiner Überbelegung kommt.
| n | P(X≤k) |
|---|---|
| ... | ... |
| 43 | 0.6732 |
| 44 | 0.5168 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Ticketbesitzer, die tatsächlich fliegen an und ist im Idealfall binomialverteilt mit p = 0.87 und variablem n.
Es muss gelten:
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 87% der Versuche mit einem Treffer.
Also müssten dann doch bei
Wir berechnen also mit unserem ersten n=44:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=43 die gesuchte Wahrscheinlichkeit über 60% ist.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
Eine Schulklasse möchte fürs Schulfest ein Glücksrad entwickeln. Aus optischen Gründen sollen dabei alle Sektoren gleich groß sein. Einer davon soll für den Hauptpreis stehen. Hierfür haben sie insgesamt 7 Preise gesammelt. Sie erwarten, dass das Glücksrad beim Schulfest 65 mal gespielt wird. Mit wie vielen Sektoren müssen sie ihr Glückrad mindestens bestücken damit die 7 Hauptpreise mit einer Wahrscheinlichkeit von mindestens 80% für die 65 Durchgänge reichen?
| p | P(X≤7) |
|---|---|
| ... | ... |
| 0.5638 | |
| 0.6769 | |
| 0.7637 | |
| 0.8282 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Hauptpreise an. X ist binomialverteilt mit n=65 und unbekanntem Parameter p.
Es muss gelten:
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit
Um einen günstigen Startwert zu finden wählen wir mal als p=
In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p=
Der Nenner, also die Anzahl der Sektoren des Glücksrad, muss also mindestens
12 sein.
Binomialvert. mit variablem k (mind.)
Beispiel:
Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 13%. Für einen bestimmten Betrag darf man 18 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 6% ausgegeben werden muss?
| k | P(X≤k) |
|---|---|
| 0 | 0.0815 |
| 1 | 0.3008 |
| 2 | 0.5794 |
| 3 | 0.8014 |
| 4 | 0.9257 |
| 5 | 0.9778 |
| 6 | 0.9946 |
| 7 | 0.9989 |
| 8 | 0.9998 |
| 9 | 1 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.13 und n = 18.
Es muss gelten:
oder andersrum ausgedrückt:
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und
4 immer noch weniger als 0.94 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst
Das kleinstmögliche k mit
Die Mindestanzahl der getroffenenen Bälle muss somit k = 6 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (mind.)
Beispiel:
Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 11%. Für einen bestimmten Betrag darf man 14 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 13% ausgegeben werden muss?
| k | P(X≤k) |
|---|---|
| 0 | 0.1956 |
| 1 | 0.5342 |
| 2 | 0.8061 |
| 3 | 0.9406 |
| 4 | 0.9863 |
| 5 | 0.9976 |
| 6 | 0.9997 |
| 7 | 1 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.11 und n = 14.
Es muss gelten:
oder andersrum ausgedrückt:
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und
2 immer noch weniger als 0.87 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst
Das kleinstmögliche k mit
Die Mindestanzahl der getroffenenen Bälle muss somit k = 4 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (höchst.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,3. Das Zufallsexperiment soll 50 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 50 Versuchen höchstens k Treffer sind, weniger als 65% betragen. Bestimme den größtmöglichen Wert für k.
| k | P(X≤k) |
|---|---|
| ... | ... |
| 10 | 0.0789 |
| 11 | 0.139 |
| 12 | 0.2229 |
| 13 | 0.3279 |
| 14 | 0.4468 |
| 15 | 0.5692 |
| 16 | 0.6839 |
| 17 | 0.7822 |
| 18 | 0.8594 |
| 19 | 0.9152 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.3 und n = 50.
Es muss gelten:
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und
15 immer noch weniger als 0.65 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst
Das größtmögliche k mit
größtmöglicher Wert für k muss somit k = 15 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
