nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Binomialvert. mit variablem n (höchst.)

Beispiel:

Beim MI6 (Arbeitsplatz von James Bond 007) soll eine Projektgruppe zur Aushebung einer multinationalen Superschurkenvereinigung eingerichtet werden. Bisherige Studien haben ergeben, dass diese kriminelle Vereinigung bereits alle wichtigen Regierungsbehörden infiltriert hat. Man geht davon aus, dass bereits jeder 50. MI6-Angestellte ein Spitzel dieser Organisiation ist. Wie groß darf diese Gruppe nun sein, so dass mit einer Wahrscheinlichkeit von mindestens 70% kein Spitzel in dieser Projektgruppe ist?

Lösung einblenden
nP(X≤k)
......
120.7847
130.769
140.7536
150.7386
160.7238
170.7093
180.6951
......

Die Zufallsgröße X gibt Anzahl der Spitzel unter den MI6-Angestellten an und ist im Idealfall binomialverteilt mit p = 0.02 und variablem n.

Es muss gelten: P0.02n (X0) ≥ 0.7

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 2% der Versuche mit einem Treffer. Also müssten dann doch bei 0 0.02 ≈ 0 Versuchen auch ungefähr 0 (≈0.02⋅0) Treffer auftreten.

Wir berechnen also mit unserem ersten n=0:
P0.02n (X0) ≈ 1 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=17 die gesuchte Wahrscheinlichkeit über 70% ist.

Binomialvert. mit variablem n (mind)

Beispiel:

Beim Biberacher Schützenfest läuft ein 12-köpfiger historischer Spielmannszug mit, der an die Schweden während des 30-Jährigen Kriegs erinnert. Dabei feiern dessen Mitglieder manchmal so ausgelassen, dass die Wahrscheinlichkeit eines Ausfall beim Umzug wegen unverhältnismäßigem Alkoholgenuss bei 13% liegt. Wie viele Schwedenmusiker muss die Schützendirektion mindestens ausbilden, damit beim Umzug mit mindestens 60%-iger Wahrscheinlichkeit mindestens 12 Schweden einsatzfähig sind?

Lösung einblenden
nP(X≤k)
......
130.5186
140.2708
......

Die Zufallsgröße X gibt die Anzahl der einsatzfähigen Schwedenmusiker an und ist im Idealfall binomialverteilt mit p = 0.87 und variablem n.

Es muss gelten: P0.87n (X12) ≥ 0.6

Weil man ja aber P0.87n (X12) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.87n (X12) = 1 - P0.87n (X11) ≥ 0.6 |+ P0.87n (X11) - 0.6

0.4 ≥ P0.87n (X11) oder P0.87n (X11) ≤ 0.4

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 87% der Versuche mit einem Treffer. Also müssten dann doch bei 12 0.87 ≈ 14 Versuchen auch ungefähr 12 (≈0.87⋅14) Treffer auftreten.

Wir berechnen also mit unserem ersten n=14:
P0.87n (X11) ≈ 0.2708 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.4 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.4 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=14 die gesuchte Wahrscheinlichkeit unter 0.4 ist.

n muss also mindestens 14 sein, damit P0.87n (X11) ≤ 0.4 oder eben P0.87n (X12) ≥ 0.6 gilt.

Binomialvert. mit variablem n (höchst.)

Beispiel:

Beim MI6 (Arbeitsplatz von James Bond 007) soll eine Projektgruppe zur Aushebung einer multinationalen Superschurkenvereinigung eingerichtet werden. Bisherige Studien haben ergeben, dass diese kriminelle Vereinigung bereits alle wichtigen Regierungsbehörden infiltriert hat. Man geht davon aus, dass bereits jeder 50. MI6-Angestellte ein Spitzel dieser Organisiation ist. Wie groß darf diese Gruppe nun sein, so dass mit einer Wahrscheinlichkeit von mindestens 60% kein Spitzel in dieser Projektgruppe ist?

Lösung einblenden
nP(X≤k)
......
200.6676
210.6543
220.6412
230.6283
240.6158
250.6035
260.5914
......

Die Zufallsgröße X gibt Anzahl der Spitzel unter den MI6-Angestellten an und ist im Idealfall binomialverteilt mit p = 0.02 und variablem n.

Es muss gelten: P0.02n (X0) ≥ 0.6

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 2% der Versuche mit einem Treffer. Also müssten dann doch bei 0 0.02 ≈ 0 Versuchen auch ungefähr 0 (≈0.02⋅0) Treffer auftreten.

Wir berechnen also mit unserem ersten n=0:
P0.02n (X0) ≈ 1 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=25 die gesuchte Wahrscheinlichkeit über 60% ist.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Eine Schulklasse möchte fürs Schulfest ein Glücksrad entwickeln. Aus optischen Gründen sollen dabei alle Sektoren gleich groß sein. Einer davon soll für den Hauptpreis stehen. Hierfür haben sie insgesamt 8 Preise gesammelt. Sie erwarten, dass das Glücksrad beim Schulfest 90 mal gespielt wird. Mit wie vielen Sektoren müssen sie ihr Glückrad mindestens bestücken damit die 8 Hauptpreise mit einer Wahrscheinlichkeit von mindestens 70% für die 90 Durchgänge reichen?

Lösung einblenden
pP(X≤8)
......
1 11 0.5661
1 12 0.6651
1 13 0.7448
......

Die Zufallsgröße X gibt die Anzahl der Hauptpreise an. X ist binomialverteilt mit n=90 und unbekanntem Parameter p.

Es muss gelten: Pp90 (X8) =0.7 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp90 (X8) ('höchstens 8 Treffer bei 90 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 8 90 . Mit diesem p wäre ja 8= 8 90 ⋅90 der Erwartungswert und somit Pp90 (X8) irgendwo in der nähe von 50%. Wenn wir nun p= 8 90 mit 1 8 erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= 1 11 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 1 13 die gesuchte Wahrscheinlichkeit über 70% steigt.
Der Nenner, also die Anzahl der Sektoren des Glücksrad, muss also mindestens 13 sein.

Binomialvert. mit variablem k (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,35. Das Zufallsexperiment soll 50 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 50 Versuchen höchstens k Treffer sind, weniger als 70% betragen. Bestimme den größtmöglichen Wert für k.

Lösung einblenden
kP(X≤k)
......
130.1163
140.1878
150.2801
160.3889
170.506
180.6216
190.7264
200.8139
210.8813
220.929
......

Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.35 und n = 50.

Es muss gelten: P0.3550 (Xk) < 0.7

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 18 immer noch weniger als 0.7 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.3550 (X19) nimmt mit 72.64% einen Wert über 0.7 an.

Das größtmögliche k mit P0.3550 (Xk) < 0.7 ist somit k = 18.

größtmöglicher Wert für k muss somit k = 18 sein.

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 11%. Für einen bestimmten Betrag darf man 10 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 12% ausgegeben werden muss?

Lösung einblenden
kP(X≤k)
00.3118
10.6972
20.9116
30.9822
40.9975
50.9997
61
......

Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.11 und n = 10.

Es muss gelten: P0.1110 (Xk) < 0.12 (oranger Bereich)

oder andersrum ausgedrückt: P0.1110 (Xk-1) ≥ 0.88 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 1 immer noch weniger als 0.88 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1110 (X2) nimmt mit 91.16% einen Wert über 0.88 an.

Das kleinstmögliche k mit P0.1110 (Xk) = 1 - P0.1110 (Xk-1) < 0.12 ist somit k = 3.

Die Mindestanzahl der getroffenenen Bälle muss somit k = 3 sein.

0
1
2
3
4
5
6
7
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,45. Das Zufallsexperiment soll 79 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 79 Versuchen höchstens k Treffer sind, weniger als 80% betragen. Bestimme den größtmöglichen Wert für k.

Lösung einblenden
kP(X≤k)
......
330.3227
340.4076
350.497
360.5864
370.6714
380.7482
390.8143
400.8684
410.9105
420.9416
......

Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.45 und n = 79.

Es muss gelten: P0.4579 (Xk) < 0.8

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 38 immer noch weniger als 0.8 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.4579 (X39) nimmt mit 81.43% einen Wert über 0.8 an.

Das größtmögliche k mit P0.4579 (Xk) < 0.8 ist somit k = 38.

größtmöglicher Wert für k muss somit k = 38 sein.

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)