nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Binomialvert. mit variablem n (höchst.)

Beispiel:

Ein Mathelehrer möchte neue Taschenrechner für seine Klasse bestellen. Die Wahrscheinlichkeit, dass einer der Taschenrechner ein Decepticon (bekannt aus dem Transformers-Filmen) ist, liegt bei p=0,08. Wie viele Rechner können bestellt werden, dass zu einer Wahrscheinlichkeit von 80% kein Descepticon unter ihnen ist?

Lösung einblenden
nP(X≤k)
......
10.92
20.8464
30.7787
......

Die Zufallsgröße X gibt Anzahl der Descepticons unter den Taschenrechnern an und ist im Idealfall binomialverteilt mit p = 0.08 und variablem n.

Es muss gelten: P0.08n (X0) ≥ 0.8

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 8% der Versuche mit einem Treffer. Also müssten dann doch bei 0 0.08 ≈ 0 Versuchen auch ungefähr 0 (≈0.08⋅0) Treffer auftreten.

Wir berechnen also mit unserem ersten n=0:
P0.08n (X0) ≈ 1 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.8 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.8 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=2 die gesuchte Wahrscheinlichkeit über 80% ist.

Binomialvert. mit variablem n (mind)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,6.Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 50% Wahrscheinlichkeit, mindestens 36 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
590.507
600.4442
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.6 und variablem n.

Es muss gelten: P0.6n (X36) ≥ 0.5

Weil man ja aber P0.6n (X36) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.6n (X36) = 1 - P0.6n (X35) ≥ 0.5 |+ P0.6n (X35) - 0.5

0.5 ≥ P0.6n (X35) oder P0.6n (X35) ≤ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 60% der Versuche mit einem Treffer. Also müssten dann doch bei 36 0.6 ≈ 60 Versuchen auch ungefähr 36 (≈0.6⋅60) Treffer auftreten.

Wir berechnen also mit unserem ersten n=60:
P0.6n (X35) ≈ 0.4442 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=60 die gesuchte Wahrscheinlichkeit unter 0.5 ist.

n muss also mindestens 60 sein, damit P0.6n (X35) ≤ 0.5 oder eben P0.6n (X36) ≥ 0.5 gilt.

Binomialvert. mit variablem n (höchst.)

Beispiel:

Wie oft darf man mit einem normalen Würfel höchstens würfeln, um mit einer Wahrscheinlichkeit von mindestens 60% nicht mehr als 38 6er zu würfeln?

Lösung einblenden
nP(X≤k)
......
2230.6019
2240.5902
2250.5785
2260.5667
2270.555
2280.5432
......

Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p = 1 6 und variablem n.

Es muss gelten: P 1 6 n (X38) ≥ 0.6

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 1 6 der Versuche mit einem Treffer. Also müssten dann doch bei 38 1 6 ≈ 228 Versuchen auch ungefähr 38 (≈ 1 6 ⋅228) Treffer auftreten.

Wir berechnen also mit unserem ersten n=228:
P 1 6 n (X38) ≈ 0.5432 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=223 die gesuchte Wahrscheinlichkeit über 60% ist.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Die Homepage-AG einer Schule möchte auf der Startseite der Internetseite der Schule ein Zufallsbild integrieren. Dabei soll bei jedem Aufruf der Startseite ein zufälliges Bild aus einer Bilderdatenbank gezeigt werden. Alle Bilder der Datenbank sind immer gleich wahrscheinlich. Auf 4 Bildern der Datenbank sind Mitglieder der Homepage-AG zu sehen. Es wird geschätzt, dass die Seite täglich 90 mal aufgerufen wird. Die Mitglieder der Homepage-AG wollen dass mit mindestens 70%-iger Wahrscheinlichkiet mindestens 14 mal am Tag eines ihrer eigenen 4 Bilder erscheint. Wie viele andere Bilder dürfen dann höchstens noch in der Datenbank sein?

Lösung einblenden
pP(X≥14)=1-P(X≤13)
......
4 13 0.9997
4 14 0.9987
4 15 0.9958
4 16 0.989
4 17 0.9762
4 18 0.9552
4 19 0.9249
4 20 0.8848
4 21 0.8359
4 22 0.7797
4 23 0.7185
4 24 0.6545
......

Die Zufallsgröße X gibt die Anzahl der Bilder mit Homepage-AG-lern an. X ist binomialverteilt mit n=90 und unbekanntem Parameter p.

Es muss gelten: Pp90 (X14) = 1- Pp90 (X13) = 0.7 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 4 sein muss, da es ja genau 4 günstige Fälle gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp90 (X14) ('mindestens 14 Treffer bei 90 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Als Startwert wählen wir als p= 4 13 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 4 23 die gesuchte Wahrscheinlichkeit über 70% bleibt.
Der Nenner, also die Anzahl aller Bilder in der Datenbank, darf also höchstens 23 sein.

Also wären noch 19 zusätzliche Optionen (also weitere Bilder) zulässig.

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einem Multiple-Choice-Test werden 35 Fragen gestellt. Bei jeder Frage gibt es 6 Antworten, von denen genau eine richtig ist. Die Wahrscheinlichkeit, dass man mit reinem Raten der richtigen Antworten durch Zufall trotzdem den Test besteht, soll unter 6% liegen. Wie viele Fragen müssen dann zum Bestehen des Tests mindestens richtig beantwortet werden?

Lösung einblenden
kP(X≤k)
......
40.2843
50.4602
60.6361
70.7818
80.8838
90.945
100.9768
110.9913
120.9971
130.9991
......

Die Zufallsgröße X gibt die Anzahl der richtig geratenen Fragen an und ist im Idealfall binomialverteilt mit p = 1 6 und n = 35.

Es muss gelten: P 1 6 35 (Xk) < 0.06 (oranger Bereich)

oder andersrum ausgedrückt: P 1 6 35 (Xk-1) ≥ 0.94 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 8 immer noch weniger als 0.94 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P 1 6 35 (X9) nimmt mit 94.5% einen Wert über 0.94 an.

Das kleinstmögliche k mit P 1 6 35 (Xk) = 1 - P 1 6 35 (Xk-1) < 0.06 ist somit k = 10.

Die Mindestanzahl richtiger Fragen zum Bestehen des Tests muss somit k = 10 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 6%. Für einen bestimmten Betrag darf man 18 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 9% ausgegeben werden muss?

Lösung einblenden
kP(X≤k)
00.3283
10.7055
20.9102
30.9799
40.9966
50.9995
61
......

Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.06 und n = 18.

Es muss gelten: P0.0618 (Xk) < 0.09 (oranger Bereich)

oder andersrum ausgedrückt: P0.0618 (Xk-1) ≥ 0.91 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 1 immer noch weniger als 0.91 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.0618 (X2) nimmt mit 91.02% einen Wert über 0.91 an.

Das kleinstmögliche k mit P0.0618 (Xk) = 1 - P0.0618 (Xk-1) < 0.09 ist somit k = 3.

Die Mindestanzahl der getroffenenen Bälle muss somit k = 3 sein.

0
1
2
3
4
5
6
7
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (höchst.)

Beispiel:

Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 10% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 70 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 25% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?

Lösung einblenden
kP(X≤k)
00.0006
10.0055
20.0242
30.0712
40.1588
50.2872
60.4418
70.5989
80.7363
......

Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.1 und n = 70.

Es muss gelten: P0.170 (Xk) < 0.25

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 4 immer noch weniger als 0.25 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.170 (X5) nimmt mit 28.72% einen Wert über 0.25 an.

Das größtmögliche k mit P0.170 (Xk) < 0.25 ist somit k = 4.

Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 4 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)