Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Binomialvert. mit variablem n (höchst.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,75.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 70% Wahrscheinlichkeit, höchstens 33 Treffer zu erzielen ?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 42 | 0.7571 |
| 43 | 0.661 |
| 44 | 0.5577 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.75 und variablem n.
Es muss gelten: ≥ 0.7
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 75% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 44 Versuchen auch ungefähr 33 (≈0.75⋅44) Treffer auftreten.
Wir berechnen also mit unserem ersten n=44:
≈ 0.5577
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=42 die gesuchte Wahrscheinlichkeit über 70% ist.
Binomialvert. mit variablem n (mind)
Beispiel:
Bei einem Glücksrad, ist die Wahrscheinlichkeit in den grünen Bereich zu kommen p=0,8. Wie oft muss man dieses Glückrad mindestens drehen, um mit einer Wahrscheinlichkeit von mindestens 50% 28 mal oder öfters in den grünen Bereich zu kommen?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 34 | 0.5339 |
| 35 | 0.4007 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der Drehungen, die im grünen Bereich landen an und ist im Idealfall binomialverteilt mit p = 0.8 und variablem n.
Es muss gelten: ≥ 0.5
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.5 |+ - 0.5
0.5 ≥ oder ≤ 0.5
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 80% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 35 Versuchen auch ungefähr 28 (≈0.8⋅35) Treffer auftreten.
Wir berechnen also mit unserem ersten n=35:
≈ 0.4007
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=35 die gesuchte Wahrscheinlichkeit unter 0.5 ist.
n muss also mindestens 35 sein, damit ≤ 0.5 oder eben ≥ 0.5 gilt.
Binomialvert. mit variablem n (höchst.)
Beispiel:
Wie oft darf man mit einem normalen Würfel höchstens würfeln, um mit einer Wahrscheinlichkeit von mindestens 80% nicht mehr als 25 6er zu würfeln?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 131 | 0.807 |
| 132 | 0.7957 |
| 133 | 0.7841 |
| 134 | 0.7722 |
| 135 | 0.76 |
| 136 | 0.7475 |
| 137 | 0.7347 |
| 138 | 0.7217 |
| 139 | 0.7085 |
| 140 | 0.6951 |
| 141 | 0.6814 |
| 142 | 0.6676 |
| 143 | 0.6537 |
| 144 | 0.6396 |
| 145 | 0.6253 |
| 146 | 0.611 |
| 147 | 0.5966 |
| 148 | 0.5822 |
| 149 | 0.5677 |
| 150 | 0.5531 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p = und variablem n.
Es muss gelten: ≥ 0.8
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden der Versuche mit einem Treffer.
Also müssten dann doch bei ≈ 150 Versuchen auch ungefähr 25
(≈
Wir berechnen also mit unserem ersten n=150:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.8 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.8 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=131 die gesuchte Wahrscheinlichkeit über 80% ist.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
Die Homepage-AG einer Schule möchte auf der Startseite der Internetseite der Schule ein Zufallsbild integrieren. Dabei soll bei jedem Aufruf der Startseite ein zufälliges Bild aus einer Bilderdatenbank gezeigt werden. Alle Bilder der Datenbank sind immer gleich wahrscheinlich. Auf 5 Bildern der Datenbank sind Mitglieder der Homepage-AG zu sehen. Es wird geschätzt, dass die Seite täglich 60 mal aufgerufen wird. Die Mitglieder der Homepage-AG wollen dass mit mindestens 85%-iger Wahrscheinlichkiet mindestens 10 mal am Tag eines ihrer eigenen 5 Bilder erscheint. Wie viele andere Bilder dürfen dann höchstens noch in der Datenbank sein?
| p | P(X≥10)=1-P(X≤9) |
|---|---|
| ... | ... |
| 0.9997 | |
| 0.9988 | |
| 0.9967 | |
| 0.9924 | |
| 0.9846 | |
| 0.9724 | |
| 0.9548 | |
| 0.9316 | |
| 0.9026 | |
| 0.8683 | |
| 0.8294 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Bilder mit Homepage-AG-lern an. X ist binomialverteilt mit n=60 und unbekanntem Parameter p.
Es muss gelten:
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 5 sein muss, da es ja genau 5 günstige Fälle gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit
Als Startwert wählen wir als p=
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p=
Der Nenner, also die Anzahl aller Bilder in der Datenbank, darf also höchstens
23 sein.
Also wären noch 18 zusätzliche Optionen (also weitere Bilder) zulässig.
Binomialvert. mit variablem k (höchst.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,3. Das Zufallsexperiment soll 53 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 53 Versuchen höchstens k Treffer sind, weniger als 60% betragen. Bestimme den größtmöglichen Wert für k.
| k | P(X≤k) |
|---|---|
| ... | ... |
| 11 | 0.0906 |
| 12 | 0.1537 |
| 13 | 0.2392 |
| 14 | 0.3437 |
| 15 | 0.4603 |
| 16 | 0.5789 |
| 17 | 0.6895 |
| 18 | 0.7844 |
| 19 | 0.8592 |
| 20 | 0.9138 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.3 und n = 53.
Es muss gelten:
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und
16 immer noch weniger als 0.6 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst
Das größtmögliche k mit
größtmöglicher Wert für k muss somit k = 16 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (mind.)
Beispiel:
Bei einem Multiple-Choice-Test werden 45 Fragen gestellt. Bei jeder Frage gibt es 6 Antworten, von denen genau eine richtig ist. Die Wahrscheinlichkeit, dass man mit reinem Raten der richtigen Antworten durch Zufall trotzdem den Test besteht, soll unter 2% liegen. Wie viele Fragen müssen dann zum Bestehen des Tests mindestens richtig beantwortet werden?
| k | P(X≤k) |
|---|---|
| ... | ... |
| 8 | 0.6689 |
| 9 | 0.793 |
| 10 | 0.8823 |
| 11 | 0.9391 |
| 12 | 0.9714 |
| 13 | 0.9877 |
| 14 | 0.9952 |
| 15 | 0.9983 |
| 16 | 0.9994 |
| 17 | 0.9998 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der richtig geratenen Fragen an und ist im Idealfall binomialverteilt mit p =
Es muss gelten:
oder andersrum ausgedrückt:
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und
12 immer noch weniger als 0.98 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst
Das kleinstmögliche k mit
Die Mindestanzahl richtiger Fragen zum Bestehen des Tests muss somit k = 14 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (höchst.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,55. Das Zufallsexperiment soll 65 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 65 Versuchen höchstens k Treffer sind, weniger als 60% betragen. Bestimme den größtmöglichen Wert für k.
| k | P(X≤k) |
|---|---|
| ... | ... |
| 31 | 0.1447 |
| 32 | 0.2086 |
| 33 | 0.2866 |
| 34 | 0.3764 |
| 35 | 0.4735 |
| 36 | 0.5725 |
| 37 | 0.6673 |
| 38 | 0.7527 |
| 39 | 0.8249 |
| 40 | 0.8823 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.55 und n = 65.
Es muss gelten:
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und
36 immer noch weniger als 0.6 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst
Das größtmögliche k mit
größtmöglicher Wert für k muss somit k = 36 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
