nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Binomialvert. mit variablem n (höchst.)

Beispiel:

Beim MI6 (Arbeitsplatz von James Bond 007) soll eine Projektgruppe zur Aushebung einer multinationalen Superschurkenvereinigung eingerichtet werden. Bisherige Studien haben ergeben, dass diese kriminelle Vereinigung bereits alle wichtigen Regierungsbehörden infiltriert hat. Man geht davon aus, dass bereits jeder 50. MI6-Angestellte ein Spitzel dieser Organisiation ist. Wie groß darf diese Gruppe nun sein, so dass mit einer Wahrscheinlichkeit von mindestens 90% kein Spitzel in dieser Projektgruppe ist?

Lösung einblenden
nP(X≤k)
......
10.98
20.9604
30.9412
40.9224
50.9039
60.8858
......

Die Zufallsgröße X gibt Anzahl der Spitzel unter den MI6-Angestellten an und ist im Idealfall binomialverteilt mit p = 0.02 und variablem n.

Es muss gelten: P0.02n (X0) ≥ 0.9

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 2% der Versuche mit einem Treffer. Also müssten dann doch bei 0 0.02 ≈ 0 Versuchen auch ungefähr 0 (≈0.02⋅0) Treffer auftreten.

Wir berechnen also mit unserem ersten n=0:
P0.02n (X0) ≈ 1 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.9 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.9 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=5 die gesuchte Wahrscheinlichkeit über 90% ist.

Binomialvert. mit variablem n (mind)

Beispiel:

Bei einem Glücksrad, ist die Wahrscheinlichkeit in den grünen Bereich zu kommen p=0,9. Wie oft muss man dieses Glückrad mindestens drehen, um mit einer Wahrscheinlichkeit von mindestens 60% 40 mal oder öfters in den grünen Bereich zu kommen?

Lösung einblenden
nP(X≤k)
......
440.4528
450.2923
......

Die Zufallsgröße X gibt Anzahl der Drehungen, die im grünen Bereich landen an und ist im Idealfall binomialverteilt mit p = 0.9 und variablem n.

Es muss gelten: P0.9n (X40) ≥ 0.6

Weil man ja aber P0.9n (X40) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.9n (X40) = 1 - P0.9n (X39) ≥ 0.6 |+ P0.9n (X39) - 0.6

0.4 ≥ P0.9n (X39) oder P0.9n (X39) ≤ 0.4

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 90% der Versuche mit einem Treffer. Also müssten dann doch bei 40 0.9 ≈ 44 Versuchen auch ungefähr 40 (≈0.9⋅44) Treffer auftreten.

Wir berechnen also mit unserem ersten n=44:
P0.9n (X39) ≈ 0.4528 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.4 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.4 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=45 die gesuchte Wahrscheinlichkeit unter 0.4 ist.

n muss also mindestens 45 sein, damit P0.9n (X39) ≤ 0.4 oder eben P0.9n (X40) ≥ 0.6 gilt.

Binomialvert. mit variablem n (höchst.)

Beispiel:

Ein Mathelehrer möchte neue Taschenrechner für seine Klasse bestellen. Die Wahrscheinlichkeit, dass einer der Taschenrechner ein Decepticon (bekannt aus dem Transformers-Filmen) ist, liegt bei p=0,06. Wie viele Rechner können bestellt werden, dass zu einer Wahrscheinlichkeit von 80% kein Descepticon unter ihnen ist?

Lösung einblenden
nP(X≤k)
......
10.94
20.8836
30.8306
40.7807
......

Die Zufallsgröße X gibt Anzahl der Descepticons unter den Taschenrechnern an und ist im Idealfall binomialverteilt mit p = 0.06 und variablem n.

Es muss gelten: P0.06n (X0) ≥ 0.8

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 6% der Versuche mit einem Treffer. Also müssten dann doch bei 0 0.06 ≈ 0 Versuchen auch ungefähr 0 (≈0.06⋅0) Treffer auftreten.

Wir berechnen also mit unserem ersten n=0:
P0.06n (X0) ≈ 1 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.8 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.8 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=3 die gesuchte Wahrscheinlichkeit über 80% ist.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Die Homepage-AG einer Schule möchte auf der Startseite der Internetseite der Schule ein Zufallsbild integrieren. Dabei soll bei jedem Aufruf der Startseite ein zufälliges Bild aus einer Bilderdatenbank gezeigt werden. Alle Bilder der Datenbank sind immer gleich wahrscheinlich. Auf 5 Bildern der Datenbank sind Mitglieder der Homepage-AG zu sehen. Es wird geschätzt, dass die Seite täglich 150 mal aufgerufen wird. Die Mitglieder der Homepage-AG wollen dass mit mindestens 80%-iger Wahrscheinlichkiet mindestens 14 mal am Tag eines ihrer eigenen 5 Bilder erscheint. Wie viele andere Bilder dürfen dann höchstens noch in der Datenbank sein?

Lösung einblenden
pP(X≥14)=1-P(X≤13)
......
5 26 0.9997
5 27 0.9994
5 28 0.9988
5 29 0.9979
5 30 0.9964
5 31 0.9942
5 32 0.991
5 33 0.9867
5 34 0.9809
5 35 0.9734
5 36 0.9642
5 37 0.953
5 38 0.9398
5 39 0.9244
5 40 0.9069
5 41 0.8874
5 42 0.866
5 43 0.8428
5 44 0.8179
5 45 0.7916
......

Die Zufallsgröße X gibt die Anzahl der Bilder mit Homepage-AG-lern an. X ist binomialverteilt mit n=150 und unbekanntem Parameter p.

Es muss gelten: Pp150 (X14) = 1- Pp150 (X13) = 0.8 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 5 sein muss, da es ja genau 5 günstige Fälle gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp150 (X14) ('mindestens 14 Treffer bei 150 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Als Startwert wählen wir als p= 5 26 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 5 44 die gesuchte Wahrscheinlichkeit über 80% bleibt.
Der Nenner, also die Anzahl aller Bilder in der Datenbank, darf also höchstens 44 sein.

Also wären noch 39 zusätzliche Optionen (also weitere Bilder) zulässig.

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einem Multiple-Choice-Test werden 45 Fragen gestellt. Bei jeder Frage gibt es 5 Antworten, von denen genau eine richtig ist. Die Wahrscheinlichkeit, dass man mit reinem Raten der richtigen Antworten durch Zufall trotzdem den Test besteht, soll unter 4% liegen. Wie viele Fragen müssen dann zum Bestehen des Tests mindestens richtig beantwortet werden?

Lösung einblenden
kP(X≤k)
......
90.588
100.7205
110.8259
120.9005
130.9479
140.975
150.989
160.9956
170.9983
180.9994
......

Die Zufallsgröße X gibt die Anzahl der richtig geratenen Fragen an und ist im Idealfall binomialverteilt mit p = 1 5 und n = 45.

Es muss gelten: P 1 5 45 (Xk) < 0.04 (oranger Bereich)

oder andersrum ausgedrückt: P 1 5 45 (Xk-1) ≥ 0.96 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 13 immer noch weniger als 0.96 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P 1 5 45 (X14) nimmt mit 97.5% einen Wert über 0.96 an.

Das kleinstmögliche k mit P 1 5 45 (Xk) = 1 - P 1 5 45 (Xk-1) < 0.04 ist somit k = 15.

Die Mindestanzahl richtiger Fragen zum Bestehen des Tests muss somit k = 15 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einem Multiple-Choice-Test werden 45 Fragen gestellt. Bei jeder Frage gibt es 6 Antworten, von denen genau eine richtig ist. Die Wahrscheinlichkeit, dass man mit reinem Raten der richtigen Antworten durch Zufall trotzdem den Test besteht, soll unter 6% liegen. Wie viele Fragen müssen dann zum Bestehen des Tests mindestens richtig beantwortet werden?

Lösung einblenden
kP(X≤k)
......
70.518
80.6689
90.793
100.8823
110.9391
120.9714
130.9877
140.9952
150.9983
160.9994
......

Die Zufallsgröße X gibt die Anzahl der richtig geratenen Fragen an und ist im Idealfall binomialverteilt mit p = 1 6 und n = 45.

Es muss gelten: P 1 6 45 (Xk) < 0.06 (oranger Bereich)

oder andersrum ausgedrückt: P 1 6 45 (Xk-1) ≥ 0.94 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 11 immer noch weniger als 0.94 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P 1 6 45 (X12) nimmt mit 97.14% einen Wert über 0.94 an.

Das kleinstmögliche k mit P 1 6 45 (Xk) = 1 - P 1 6 45 (Xk-1) < 0.06 ist somit k = 13.

Die Mindestanzahl richtiger Fragen zum Bestehen des Tests muss somit k = 13 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (höchst.)

Beispiel:

Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 14% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 55 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 25% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?

Lösung einblenden
kP(X≤k)
00.0002
10.0025
20.0123
30.0406
40.1004
50.1997
60.3344
70.4879
80.6379
90.7654
......

Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.14 und n = 55.

Es muss gelten: P0.1455 (Xk) < 0.25

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 5 immer noch weniger als 0.25 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1455 (X6) nimmt mit 33.44% einen Wert über 0.25 an.

Das größtmögliche k mit P0.1455 (Xk) < 0.25 ist somit k = 5.

Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 5 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)