nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Binomialvert. mit variablem n (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,45.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 90% Wahrscheinlichkeit, höchstens 29 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
550.9007
560.8758
570.8473
580.8154
590.7803
600.7424
610.702
620.6597
630.6159
640.5713
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.45 und variablem n.

Es muss gelten: P0.45n (X29) ≥ 0.9

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 45% der Versuche mit einem Treffer. Also müssten dann doch bei 29 0.45 ≈ 64 Versuchen auch ungefähr 29 (≈0.45⋅64) Treffer auftreten.

Wir berechnen also mit unserem ersten n=64:
P0.45n (X29) ≈ 0.5713 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.9 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.9 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=55 die gesuchte Wahrscheinlichkeit über 90% ist.

Binomialvert. mit variablem n (mind)

Beispiel:

Bei einem Glücksrad, ist die Wahrscheinlichkeit in den grünen Bereich zu kommen p=0,5. Wie oft muss man dieses Glückrad mindestens drehen, um mit einer Wahrscheinlichkeit von mindestens 80% 33 mal oder öfters in den grünen Bereich zu kommen?

Lösung einblenden
nP(X≤k)
......
680.3582
690.3152
700.2752
710.2383
720.2048
730.1746
......

Die Zufallsgröße X gibt Anzahl der Drehungen, die im grünen Bereich landen an und ist im Idealfall binomialverteilt mit p = 0.5 und variablem n.

Es muss gelten: P0.5n (X33) ≥ 0.8

Weil man ja aber P0.5n (X33) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.5n (X33) = 1 - P0.5n (X32) ≥ 0.8 |+ P0.5n (X32) - 0.8

0.2 ≥ P0.5n (X32) oder P0.5n (X32) ≤ 0.2

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 50% der Versuche mit einem Treffer. Also müssten dann doch bei 33 0.5 ≈ 66 Versuchen auch ungefähr 33 (≈0.5⋅66) Treffer auftreten.

Wir berechnen also mit unserem ersten n=66:
P0.5n (X32) ≈ 0.4511 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.2 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.2 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=73 die gesuchte Wahrscheinlichkeit unter 0.2 ist.

n muss also mindestens 73 sein, damit P0.5n (X32) ≤ 0.2 oder eben P0.5n (X33) ≥ 0.8 gilt.

Binomialvert. mit variablem n (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,3.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 70% Wahrscheinlichkeit, höchstens 31 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
970.7061
980.6823
990.6579
1000.6331
1010.6079
1020.5825
1030.5569
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.3 und variablem n.

Es muss gelten: P0.3n (X31) ≥ 0.7

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 30% der Versuche mit einem Treffer. Also müssten dann doch bei 31 0.3 ≈ 103 Versuchen auch ungefähr 31 (≈0.3⋅103) Treffer auftreten.

Wir berechnen also mit unserem ersten n=103:
P0.3n (X31) ≈ 0.5569 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=97 die gesuchte Wahrscheinlichkeit über 70% ist.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Die Homepage-AG einer Schule möchte auf der Startseite der Internetseite der Schule ein Zufallsbild integrieren. Dabei soll bei jedem Aufruf der Startseite ein zufälliges Bild aus einer Bilderdatenbank gezeigt werden. Alle Bilder der Datenbank sind immer gleich wahrscheinlich. Auf 2 Bildern der Datenbank sind Mitglieder der Homepage-AG zu sehen. Es wird geschätzt, dass die Seite täglich 120 mal aufgerufen wird. Die Mitglieder der Homepage-AG wollen dass mit mindestens 70%-iger Wahrscheinlichkiet mindestens 14 mal am Tag eines ihrer eigenen 2 Bilder erscheint. Wie viele andere Bilder dürfen dann höchstens noch in der Datenbank sein?

Lösung einblenden
pP(X≥14)=1-P(X≤13)
......
2 9 0.999
2 10 0.9944
2 11 0.9803
2 12 0.9499
2 13 0.8991
2 14 0.8285
2 15 0.7431
2 16 0.6497
......

Die Zufallsgröße X gibt die Anzahl der Bilder mit Homepage-AG-lern an. X ist binomialverteilt mit n=120 und unbekanntem Parameter p.

Es muss gelten: Pp120 (X14) = 1- Pp120 (X13) = 0.7 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 2 sein muss, da es ja genau 2 günstige Fälle gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp120 (X14) ('mindestens 14 Treffer bei 120 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Als Startwert wählen wir als p= 2 9 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 2 15 die gesuchte Wahrscheinlichkeit über 70% bleibt.
Der Nenner, also die Anzahl aller Bilder in der Datenbank, darf also höchstens 15 sein.

Also wären noch 13 zusätzliche Optionen (also weitere Bilder) zulässig.

Binomialvert. mit variablem k (höchst.)

Beispiel:

Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 14% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 80 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 15% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?

Lösung einblenden
kP(X≤k)
......
20.0006
30.0026
40.009
50.0248
60.057
70.1123
80.1946
90.3017
100.4255
110.5538
......

Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.14 und n = 80.

Es muss gelten: P0.1480 (Xk) < 0.15

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 7 immer noch weniger als 0.15 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1480 (X8) nimmt mit 19.46% einen Wert über 0.15 an.

Das größtmögliche k mit P0.1480 (Xk) < 0.15 ist somit k = 7.

Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 7 sein.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 11%. Für einen bestimmten Betrag darf man 16 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 5% ausgegeben werden muss?

Lösung einblenden
kP(X≤k)
00.155
10.4614
20.7455
30.9093
40.9752
50.9947
60.9991
70.9999
81
......

Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.11 und n = 16.

Es muss gelten: P0.1116 (Xk) < 0.05 (oranger Bereich)

oder andersrum ausgedrückt: P0.1116 (Xk-1) ≥ 0.95 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 3 immer noch weniger als 0.95 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1116 (X4) nimmt mit 97.52% einen Wert über 0.95 an.

Das kleinstmögliche k mit P0.1116 (Xk) = 1 - P0.1116 (Xk-1) < 0.05 ist somit k = 5.

Die Mindestanzahl der getroffenenen Bälle muss somit k = 5 sein.

0
1
2
3
4
5
6
7
8
9
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,75. Das Zufallsexperiment soll 62 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 62 Versuchen höchstens k Treffer sind, weniger als 75% betragen. Bestimme den größtmöglichen Wert für k.

Lösung einblenden
kP(X≤k)
......
430.1879
440.2735
450.3762
460.4902
470.6065
480.7156
490.809
500.882
510.9334
520.9661
......

Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.75 und n = 62.

Es muss gelten: P0.7562 (Xk) < 0.75

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 48 immer noch weniger als 0.75 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.7562 (X49) nimmt mit 80.9% einen Wert über 0.75 an.

Das größtmögliche k mit P0.7562 (Xk) < 0.75 ist somit k = 48.

größtmöglicher Wert für k muss somit k = 48 sein.

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)