nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Binomialvert. mit variablem n (mind)

Beispiel:

Bei einem Glücksrad, ist die Wahrscheinlichkeit in den grünen Bereich zu kommen p=0,75. Wie oft muss man dieses Glückrad mindestens drehen, um mit einer Wahrscheinlichkeit von mindestens 50% 31 mal oder öfters in den grünen Bereich zu kommen?

Lösung einblenden
nP(X≤k)
......
400.5605
410.4522
......

Die Zufallsgröße X gibt Anzahl der Drehungen, die im grünen Bereich landen an und ist im Idealfall binomialverteilt mit p = 0.75 und variablem n.

Es muss gelten: P0.75n (X31) ≥ 0.5

Weil man ja aber P0.75n (X31) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.75n (X31) = 1 - P0.75n (X30) ≥ 0.5 |+ P0.75n (X30) - 0.5

0.5 ≥ P0.75n (X30) oder P0.75n (X30) ≤ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 75% der Versuche mit einem Treffer. Also müssten dann doch bei 31 0.75 ≈ 41 Versuchen auch ungefähr 31 (≈0.75⋅41) Treffer auftreten.

Wir berechnen also mit unserem ersten n=41:
P0.75n (X30) ≈ 0.4522 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=41 die gesuchte Wahrscheinlichkeit unter 0.5 ist.

n muss also mindestens 41 sein, damit P0.75n (X30) ≤ 0.5 oder eben P0.75n (X31) ≥ 0.5 gilt.

Binomialvert. mit variablem n (mind)

Beispiel:

Wie oft muss man mit einem normalen Würfel mindestens würfeln, um mit einer Wahrscheinlichkeit von mindestens 70% 27 oder mehr 6er zu erzielen?

Lösung einblenden
nP(X≤k)
......
1700.3604
1710.3479
1720.3356
1730.3235
1740.3116
1750.2999
......

Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p = 1 6 und variablem n.

Es muss gelten: P 1 6 n (X27) ≥ 0.7

Weil man ja aber P 1 6 n (X27) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P 1 6 n (X27) = 1 - P 1 6 n (X26) ≥ 0.7 |+ P 1 6 n (X26) - 0.7

0.3 ≥ P 1 6 n (X26) oder P 1 6 n (X26) ≤ 0.3

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 1 6 der Versuche mit einem Treffer. Also müssten dann doch bei 27 1 6 ≈ 162 Versuchen auch ungefähr 27 (≈ 1 6 ⋅162) Treffer auftreten.

Wir berechnen also mit unserem ersten n=162:
P 1 6 n (X26) ≈ 0.4673 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.3 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.3 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=175 die gesuchte Wahrscheinlichkeit unter 0.3 ist.

n muss also mindestens 175 sein, damit P 1 6 n (X26) ≤ 0.3 oder eben P 1 6 n (X27) ≥ 0.7 gilt.

Binomialvert. mit variablem n (höchst.)

Beispiel:

Ein Mathelehrer möchte neue Taschenrechner für seine Klasse bestellen. Die Wahrscheinlichkeit, dass einer der Taschenrechner ein Decepticon (bekannt aus dem Transformers-Filmen) ist, liegt bei p=0,09. Wie viele Rechner können bestellt werden, dass zu einer Wahrscheinlichkeit von 50% kein Descepticon unter ihnen ist?

Lösung einblenden
nP(X≤k)
......
20.8281
30.7536
40.6857
50.624
60.5679
70.5168
80.4703
......

Die Zufallsgröße X gibt Anzahl der Descepticons unter den Taschenrechnern an und ist im Idealfall binomialverteilt mit p = 0.09 und variablem n.

Es muss gelten: P0.09n (X0) ≥ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 9% der Versuche mit einem Treffer. Also müssten dann doch bei 0 0.09 ≈ 0 Versuchen auch ungefähr 0 (≈0.09⋅0) Treffer auftreten.

Wir berechnen also mit unserem ersten n=0:
P0.09n (X0) ≈ 1 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=7 die gesuchte Wahrscheinlichkeit über 50% ist.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Die Homepage-AG einer Schule möchte auf der Startseite der Internetseite der Schule ein Zufallsbild integrieren. Dabei soll bei jedem Aufruf der Startseite ein zufälliges Bild aus einer Bilderdatenbank gezeigt werden. Alle Bilder der Datenbank sind immer gleich wahrscheinlich. Auf 5 Bildern der Datenbank sind Mitglieder der Homepage-AG zu sehen. Es wird geschätzt, dass die Seite täglich 60 mal aufgerufen wird. Die Mitglieder der Homepage-AG wollen dass mit mindestens 90%-iger Wahrscheinlichkiet mindestens 14 mal am Tag eines ihrer eigenen 5 Bilder erscheint. Wie viele andere Bilder dürfen dann höchstens noch in der Datenbank sein?

Lösung einblenden
pP(X≥14)=1-P(X≤13)
......
5 12 0.9991
5 13 0.9957
5 14 0.9861
5 15 0.9658
5 16 0.9315
5 17 0.8818
......

Die Zufallsgröße X gibt die Anzahl der Bilder mit Homepage-AG-lern an. X ist binomialverteilt mit n=60 und unbekanntem Parameter p.

Es muss gelten: Pp60 (X14) = 1- Pp60 (X13) = 0.9 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 5 sein muss, da es ja genau 5 günstige Fälle gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp60 (X14) ('mindestens 14 Treffer bei 60 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Als Startwert wählen wir als p= 5 12 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 5 16 die gesuchte Wahrscheinlichkeit über 90% bleibt.
Der Nenner, also die Anzahl aller Bilder in der Datenbank, darf also höchstens 16 sein.

Also wären noch 11 zusätzliche Optionen (also weitere Bilder) zulässig.

Binomialvert. mit variablem k (höchst.)

Beispiel:

Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 17% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 65 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 25% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?

Lösung einblenden
kP(X≤k)
......
30.0026
40.0092
50.0255
60.0591
70.1169
80.2028
90.3143
100.4421
110.5731
120.6937
......

Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.17 und n = 65.

Es muss gelten: P0.1765 (Xk) < 0.25

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 8 immer noch weniger als 0.25 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1765 (X9) nimmt mit 31.43% einen Wert über 0.25 an.

Das größtmögliche k mit P0.1765 (Xk) < 0.25 ist somit k = 8.

Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 8 sein.

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 7%. Für einen bestimmten Betrag darf man 10 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 12% ausgegeben werden muss?

Lösung einblenden
kP(X≤k)
00.484
10.8483
20.9717
30.9964
40.9997
51
61
......

Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.07 und n = 10.

Es muss gelten: P0.0710 (Xk) < 0.12 (oranger Bereich)

oder andersrum ausgedrückt: P0.0710 (Xk-1) ≥ 0.88 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 1 immer noch weniger als 0.88 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.0710 (X2) nimmt mit 97.17% einen Wert über 0.88 an.

Das kleinstmögliche k mit P0.0710 (Xk) = 1 - P0.0710 (Xk-1) < 0.12 ist somit k = 3.

Die Mindestanzahl der getroffenenen Bälle muss somit k = 3 sein.

0
1
2
3
4
5
6
7
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,5. Das Zufallsexperiment soll 90 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 90 Versuchen höchstens k Treffer sind, weniger als 60% betragen. Bestimme den größtmöglichen Wert für k.

Lösung einblenden
kP(X≤k)
......
400.1714
410.2304
420.2992
430.376
440.4581
450.5419
460.624
470.7008
480.7696
490.8286
......

Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.5 und n = 90.

Es muss gelten: P0.590 (Xk) < 0.6

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 45 immer noch weniger als 0.6 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.590 (X46) nimmt mit 62.4% einen Wert über 0.6 an.

Das größtmögliche k mit P0.590 (Xk) < 0.6 ist somit k = 45.

größtmöglicher Wert für k muss somit k = 45 sein.

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)