Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Binomialvert. mit variablem n (höchst.)
Beispiel:
In einer Urne ist der Anteil der grünen Kugeln 40%. Wie oft darf höchstens gezogen werden ( - natürlich mit Zurücklegen - ), so dass mit mind. 60% Wahrscheinlichkeit nicht mehr als 31 grüne Kugeln gezogen werden?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 76 | 0.6043 |
| 77 | 0.5676 |
| 78 | 0.5307 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der gezogenen grünen Kugeln an und ist im Idealfall binomialverteilt mit p = 0.4 und variablem n.
Es muss gelten: ≥ 0.6
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 40% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 78 Versuchen auch ungefähr 31 (≈0.4⋅78) Treffer auftreten.
Wir berechnen also mit unserem ersten n=78:
≈ 0.5307
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=76 die gesuchte Wahrscheinlichkeit über 60% ist.
Binomialvert. mit variablem n (mind)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,75.Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 80% Wahrscheinlichkeit, mindestens 28 Treffer zu erzielen ?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 37 | 0.4497 |
| 38 | 0.3442 |
| 39 | 0.2531 |
| 40 | 0.1791 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.75 und variablem n.
Es muss gelten: ≥ 0.8
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.8 |+ - 0.8
0.2 ≥ oder ≤ 0.2
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 75% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 37 Versuchen auch ungefähr 28 (≈0.75⋅37) Treffer auftreten.
Wir berechnen also mit unserem ersten n=37:
≈ 0.4497
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.2 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.2 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=40 die gesuchte Wahrscheinlichkeit unter 0.2 ist.
n muss also mindestens 40 sein, damit ≤ 0.2 oder eben ≥ 0.8 gilt.
Binomialvert. mit variablem n (höchst.)
Beispiel:
Eine Fluggesellschaft geht davon aus, dass 18% der gekauften Tickets gar nicht eingelöst werden. Wieviel Tickets kann sie für ihre 36-Platzmaschine höchstens verkaufen, so dass es zu mindestens 60% Wahrscheinlichkeit zu keiner Überbelegung kommt.
| n | P(X≤k) |
|---|---|
| ... | ... |
| 43 | 0.6765 |
| 44 | 0.5488 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Ticketbesitzer, die tatsächlich fliegen an und ist im Idealfall binomialverteilt mit p = 0.82 und variablem n.
Es muss gelten: ≥ 0.6
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 82% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 44 Versuchen auch ungefähr 36 (≈0.82⋅44) Treffer auftreten.
Wir berechnen also mit unserem ersten n=44:
≈ 0.5488
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=43 die gesuchte Wahrscheinlichkeit über 60% ist.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
In einer Urne sind 2 rote und einige schwarze Kugeln. Es soll 18 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 90% unter den 18 gezogenen Kugeln nicht mehr als 3 rote sind?
| p | P(X≤3) |
|---|---|
| ... | ... |
| 0.6479 | |
| 0.7038 | |
| 0.7501 | |
| 0.7885 | |
| 0.8201 | |
| 0.8464 | |
| 0.8683 | |
| 0.8865 | |
| 0.9018 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe rot an. X ist binomialverteilt mit n=18 und unbekanntem Parameter p.
Es muss gelten: =0.9 (oder mehr)
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 2 sein muss, da es ja genau 2 günstige Fälle gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit ('höchstens 3 Treffer bei 18 Versuchen') bei diesen Nennern wird (siehe Tabelle links)
Um einen günstigen Startwert zu finden wählen wir mal als p=. Mit diesem p wäre ja 3=⋅18 der Erwartungswert und somit irgendwo in der nähe von 50%. Wenn wir nun p= mit erweitern (so dass wir auf den Zähler 2 kommen) und den Nenner abrunden, müssten wir mit p= einen brauchbaren Einstiegswert für dieses Probieren erhalten.
In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 90% steigt.
Der Nenner, also die Anzahl aller Kugeln, muss also mindestens
20 sein.
Also werden noch 18 zusätzliche Optionen (also schwarze Kugeln) benötigt.
Binomialvert. mit variablem k (höchst.)
Beispiel:
Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 15% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 95 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 10% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?
| k | P(X≤k) |
|---|---|
| ... | ... |
| 4 | 0.0008 |
| 5 | 0.0027 |
| 6 | 0.0079 |
| 7 | 0.0195 |
| 8 | 0.0421 |
| 9 | 0.0805 |
| 10 | 0.1389 |
| 11 | 0.2184 |
| 12 | 0.3167 |
| 13 | 0.4275 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.15 und n = 95.
Es muss gelten: < 0.1
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 9 immer noch weniger als 0.1 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst nimmt mit 13.89% einen Wert über 0.1 an.
Das größtmögliche k mit < 0.1 ist somit k = 9.
Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 9 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (mind.)
Beispiel:
Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 8%. Für einen bestimmten Betrag darf man 16 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 7% ausgegeben werden muss?
| k | P(X≤k) |
|---|---|
| 0 | 0.2634 |
| 1 | 0.6299 |
| 2 | 0.8689 |
| 3 | 0.9658 |
| 4 | 0.9932 |
| 5 | 0.999 |
| 6 | 0.9999 |
| 7 | 1 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.08 und n = 16.
Es muss gelten: < 0.07 (oranger Bereich)
oder andersrum ausgedrückt: ≥ 0.93 (blauer Bereich)
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 2 immer noch weniger als 0.93 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst nimmt mit 96.58% einen Wert über 0.93 an.
Das kleinstmögliche k mit = 1 - < 0.07 ist somit k = 4.
Die Mindestanzahl der getroffenenen Bälle muss somit k = 4 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (höchst.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,85. Das Zufallsexperiment soll 98 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 98 Versuchen höchstens k Treffer sind, weniger als 55% betragen. Bestimme den größtmöglichen Wert für k.
| k | P(X≤k) |
|---|---|
| ... | ... |
| 78 | 0.0909 |
| 79 | 0.1418 |
| 80 | 0.2105 |
| 81 | 0.2969 |
| 82 | 0.3984 |
| 83 | 0.5093 |
| 84 | 0.6215 |
| 85 | 0.7262 |
| 86 | 0.8159 |
| 87 | 0.8861 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.85 und n = 98.
Es muss gelten: < 0.55
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 83 immer noch weniger als 0.55 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst nimmt mit 62.15% einen Wert über 0.55 an.
Das größtmögliche k mit < 0.55 ist somit k = 83.
größtmöglicher Wert für k muss somit k = 83 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
