nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Binomialvert. mit variablem n (mind)

Beispiel:

Bei einem Glücksrad, ist die Wahrscheinlichkeit in den grünen Bereich zu kommen p=0,9. Wie oft muss man dieses Glückrad mindestens drehen, um mit einer Wahrscheinlichkeit von mindestens 50% 26 mal oder öfters in den grünen Bereich zu kommen?

Lösung einblenden
nP(X≤k)
......
280.5406
290.329
......

Die Zufallsgröße X gibt Anzahl der Drehungen, die im grünen Bereich landen an und ist im Idealfall binomialverteilt mit p = 0.9 und variablem n.

Es muss gelten: P0.9n (X26) ≥ 0.5

Weil man ja aber P0.9n (X26) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.9n (X26) = 1 - P0.9n (X25) ≥ 0.5 |+ P0.9n (X25) - 0.5

0.5 ≥ P0.9n (X25) oder P0.9n (X25) ≤ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 90% der Versuche mit einem Treffer. Also müssten dann doch bei 26 0.9 ≈ 29 Versuchen auch ungefähr 26 (≈0.9⋅29) Treffer auftreten.

Wir berechnen also mit unserem ersten n=29:
P0.9n (X25) ≈ 0.329 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=29 die gesuchte Wahrscheinlichkeit unter 0.5 ist.

n muss also mindestens 29 sein, damit P0.9n (X25) ≤ 0.5 oder eben P0.9n (X26) ≥ 0.5 gilt.

Binomialvert. mit variablem n (mind)

Beispiel:

Ein Lebensmittelhersteller wirbt damit, dass sich in jeder 7. Verpackung eine Überraschung befindet. Wie viele Packungen muss man mindestens kaufen, um mit einer Wahrscheinlichkeit von mindestens 70% mindestens 2 Überraschung(en) zu erhalten.

Lösung einblenden
nP(X≤k)
......
140.3851
150.3466
160.3113
170.2789
......

Die Zufallsgröße X gibt die Anzahl der Überraschungen an und ist im Idealfall binomialverteilt mit p = 1 7 und variablem n.

Es muss gelten: P 1 7 n (X2) ≥ 0.7

Weil man ja aber P 1 7 n (X2) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P 1 7 n (X2) = 1 - P 1 7 n (X1) ≥ 0.7 |+ P 1 7 n (X1) - 0.7

0.3 ≥ P 1 7 n (X1) oder P 1 7 n (X1) ≤ 0.3

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 1 7 der Versuche mit einem Treffer. Also müssten dann doch bei 2 1 7 ≈ 14 Versuchen auch ungefähr 2 (≈ 1 7 ⋅14) Treffer auftreten.

Wir berechnen also mit unserem ersten n=14:
P 1 7 n (X1) ≈ 0.3851 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.3 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.3 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=17 die gesuchte Wahrscheinlichkeit unter 0.3 ist.

n muss also mindestens 17 sein, damit P 1 7 n (X1) ≤ 0.3 oder eben P 1 7 n (X2) ≥ 0.7 gilt.

Binomialvert. mit variablem n (höchst.)

Beispiel:

Ein Mathelehrer möchte neue Taschenrechner für seine Klasse bestellen. Die Wahrscheinlichkeit, dass einer der Taschenrechner ein Decepticon (bekannt aus dem Transformers-Filmen) ist, liegt bei p=0,05. Wie viele Rechner können bestellt werden, dass zu einer Wahrscheinlichkeit von 90% kein Descepticon unter ihnen ist?

Lösung einblenden
nP(X≤k)
......
10.95
20.9025
30.8574
......

Die Zufallsgröße X gibt Anzahl der Descepticons unter den Taschenrechnern an und ist im Idealfall binomialverteilt mit p = 0.05 und variablem n.

Es muss gelten: P0.05n (X0) ≥ 0.9

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 5% der Versuche mit einem Treffer. Also müssten dann doch bei 0 0.05 ≈ 0 Versuchen auch ungefähr 0 (≈0.05⋅0) Treffer auftreten.

Wir berechnen also mit unserem ersten n=0:
P0.05n (X0) ≈ 1 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.9 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.9 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=2 die gesuchte Wahrscheinlichkeit über 90% ist.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Ein neuer Multiple Choice Test mit 16 verschiedenen Fragen soll entwickelt werden. Dabei muss immer genau eine von mehreren Antwortmöglichkeiten richtig sein. Die Anzahl an Antwortmöglichkeiten soll bei allen Fragen gleich sein. Insgesamt soll der Test so konzipiert sein, dass die Wahrscheinlichkeit mehr als 3 Fragen nur durch Raten zufällig richtig zu beantworten (obwohl man keinerlei Wissen hat) bei höchstens 30% liegt. Bestimme die hierfür notwendige Mindestanzahl an Antwortmöglichkeiten bei jeder Frage.

Lösung einblenden
pP(X≤3)
......
1 5 0.5981
1 6 0.7291
......

Die Zufallsgröße X gibt die Anzahl der zufällig richtig geratenenen Antworten an. X ist binomialverteilt mit n=16 und unbekanntem Parameter p.

Es muss gelten: Pp16 (X3) =0.7 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp16 (X3) ('höchstens 3 Treffer bei 16 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 3 16 . Mit diesem p wäre ja 3= 3 16 ⋅16 der Erwartungswert und somit Pp16 (X3) irgendwo in der nähe von 50%. Wenn wir nun p= 3 16 mit 1 3 erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= 1 5 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 1 6 die gesuchte Wahrscheinlichkeit über 70% steigt.
Der Nenner, also die Anzahl der Antwortmöglichkeiten, muss also mindestens 6 sein.

Binomialvert. mit variablem k (höchst.)

Beispiel:

Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 17% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 80 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 20% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?

Lösung einblenden
kP(X≤k)
......
50.0041
60.0116
70.0277
80.0579
90.1073
100.1792
110.2728
120.3831
130.5013
140.6172
......

Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.17 und n = 80.

Es muss gelten: P0.1780 (Xk) < 0.2

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 10 immer noch weniger als 0.2 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1780 (X11) nimmt mit 27.28% einen Wert über 0.2 an.

Das größtmögliche k mit P0.1780 (Xk) < 0.2 ist somit k = 10.

Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 10 sein.

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einem Multiple-Choice-Test werden 20 Fragen gestellt. Bei jeder Frage gibt es 3 Antworten, von denen genau eine richtig ist. Die Wahrscheinlichkeit, dass man mit reinem Raten der richtigen Antworten durch Zufall trotzdem den Test besteht, soll unter 6% liegen. Wie viele Fragen müssen dann zum Bestehen des Tests mindestens richtig beantwortet werden?

Lösung einblenden
kP(X≤k)
......
50.2972
60.4793
70.6615
80.8095
90.9081
100.9624
110.987
120.9963
130.9991
140.9998
......

Die Zufallsgröße X gibt die Anzahl der richtig geratenen Fragen an und ist im Idealfall binomialverteilt mit p = 1 3 und n = 20.

Es muss gelten: P 1 3 20 (Xk) < 0.06 (oranger Bereich)

oder andersrum ausgedrückt: P 1 3 20 (Xk-1) ≥ 0.94 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 9 immer noch weniger als 0.94 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P 1 3 20 (X10) nimmt mit 96.24% einen Wert über 0.94 an.

Das kleinstmögliche k mit P 1 3 20 (Xk) = 1 - P 1 3 20 (Xk-1) < 0.06 ist somit k = 11.

Die Mindestanzahl richtiger Fragen zum Bestehen des Tests muss somit k = 11 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,6. Das Zufallsexperiment soll 93 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 93 Versuchen höchstens k Treffer sind, weniger als 75% betragen. Bestimme den größtmöglichen Wert für k.

Lösung einblenden
kP(X≤k)
......
530.3114
540.3892
550.4719
560.5561
570.6381
580.7144
590.7823
600.8401
610.8869
620.9232
......

Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.6 und n = 93.

Es muss gelten: P0.693 (Xk) < 0.75

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 58 immer noch weniger als 0.75 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.693 (X59) nimmt mit 78.23% einen Wert über 0.75 an.

Das größtmögliche k mit P0.693 (Xk) < 0.75 ist somit k = 58.

größtmöglicher Wert für k muss somit k = 58 sein.

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)