nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Schnittpunkte berechnen

Beispiel:

Gegegben sind die Funktionen f und g mit f(x)= x 6 + x 2 und g(x)= 2 x 4 . Bestimme die Schnittpunkte der Graphen.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

x 6 + x 2 = 2 x 4 | -2 x 4
x 6 -2 x 4 + x 2 = 0
x 2 ( x 4 -2 x 2 +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 4 -2 x 2 +1 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -2u +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · 1 21

u1,2 = +2 ± 4 -4 2

u1,2 = +2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

u = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - 1 = 1 - 1 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 1 ± 0 = 1

Rücksubstitution:

u1: x 2 = 1

x 2 = 1 | 2
x2 = - 1 = -1
x3 = 1 = 1

u2: x 2 = 1

x 2 = 1 | 2
x4 = - 1 = -1
x5 = 1 = 1

L={ -1 ; 0; 1 }

-1 ist 2-fache Lösung! 0 ist 2-fache Lösung! 1 ist 2-fache Lösung!

Damit haben wir die Schnittstellen. Jetzt müssen wir die x-Werte nur noch in einen der beiden Funktionsterme einsetzen:

x1 = -1 : f( -1 )= 2 ( -1 ) 4 = 2 Somit gilt: S1( -1 |2)

x2 = 0: f(0)= 2 0 4 = 0 Somit gilt: S2(0|0)

x3 = 1 : f( 1 )= 2 1 4 = 2 Somit gilt: S3( 1 |2)

Steigung gleichsetzen

Beispiel:

Bestimme alle Stellen, an denen die Tangenten an den Graph von f mit f(x)= 1 2 e 2x + e x parallel zur Geraden y = 6x -1 sind.

Lösung einblenden

Für die Steigung der Geraden y = 6x -1 gilt m = 6

Die Steigungen der Tangenten an f können wir mit der Ableitungsfunktion f' berechnen.

f(x)= 1 2 e 2x + e x

f'(x)= e 2x + e x

Also muss gelten:

e 2x + e x = 6 | -6
e 2x + e x -6 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 + u -6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -1 ± 1 2 -4 · 1 · ( -6 ) 21

u1,2 = -1 ± 1 +24 2

u1,2 = -1 ± 25 2

u1 = -1 + 25 2 = -1 +5 2 = 4 2 = 2

u2 = -1 - 25 2 = -1 -5 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -6 ) = 1 4 + 6 = 1 4 + 24 4 = 25 4

x1,2 = - 1 2 ± 25 4

x1 = - 1 2 - 5 2 = - 6 2 = -3

x2 = - 1 2 + 5 2 = 4 2 = 2

Rücksubstitution:

u1: e x = 2

e x = 2 |ln(⋅)
x1 = ln( 2 ) ≈ 0.6931

u2: e x = -3

e x = -3

Diese Gleichung hat keine Lösung!

L={ ln( 2 ) }

An diesen Stellen haben somit die Tangenten an f die Steigung 6 und sind somit parallel zur Geraden y = 6x -1 .

vermischte Gleichungen

Beispiel:

Löse die folgende Gleichung:

e 3x -2 e 2x -15 e x = 0

Lösung einblenden
e 3x -2 e 2x -15 e x = 0
( e 2x -2 e x -15 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 2x -2 e x -15 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -2u -15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -15 ) 21

u1,2 = +2 ± 4 +60 2

u1,2 = +2 ± 64 2

u1 = 2 + 64 2 = 2 +8 2 = 10 2 = 5

u2 = 2 - 64 2 = 2 -8 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -15 ) = 1+ 15 = 16

x1,2 = 1 ± 16

x1 = 1 - 4 = -3

x2 = 1 + 4 = 5

Rücksubstitution:

u1: e x = 5

e x = 5 |ln(⋅)
x1 = ln( 5 ) ≈ 1.6094

u2: e x = -3

e x = -3

Diese Gleichung hat keine Lösung!


2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

L={ ln( 5 ) }

Bruchgleichungen

Beispiel:

Löse die folgende Gleichung:

8x 3x +2 -4 = 0

Lösung einblenden

D=R\{ - 2 3 }

Wir multiplizieren den Nenner 3x +2 weg!

8x 3x +2 -4 = 0 |⋅( 3x +2 )
8x 3x +2 · ( 3x +2 ) -4 · ( 3x +2 ) = 0
8x -12x -8 = 0
-4x -8 = 0
-4x -8 = 0 | +8
-4x = 8 |:(-4 )
x = -2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -2 }

Gleichungen mit Polynomdivision

Beispiel:

Löse die folgende Gleichung:

x 3 -2 x 2 +7x -14 = 0

Lösung einblenden

Die einzige und letzte Chance, die Lösungen von x 3 -2 x 2 +7x -14 = 0 zu bestimmen, ist mit Polynomdivision.
Das funktioniert aber nur, wenn wir eine ganzzahlige Lösung durch Ausprobieren finden.
Dazu testen wir alle Teiler (mit beiden Vorzeichen) des Absolutglieds -14 .

2 ist eine Lösung, denn 2 3 -2 2 2 +72 -14 = 0.

Wir führen also eine Polynomdivison mit dem Divisor (x-2) durch.

( x 3 -2 x 2 +7x -14 ) : (x-2) = x 2 +0 +7
-( x 3 -2 x 2 )
0 +7x
-(0 0)
7x -14
-( 7x -14 )
0

es gilt also:

x 3 -2 x 2 +7x -14 = ( x 2 +0 +7 ) · ( x -2 )

( x 2 +0 +7 ) · ( x -2 ) = 0
( x 2 +7 ) ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 +7 = 0 | -7
x 2 = -7 | 2

Diese Gleichung hat keine (reele) Lösung!


2. Fall:

x -2 = 0 | +2
x1 = 2

L={ 2 }

Betragsgleichungen

Beispiel:

Löse die folgende Gleichung:

- 1 3 | -4x -16 | -8 = -20

Lösung einblenden
- 1 3 | -4x -16 | -8 = -20 | +8
- 1 3 | -4x -16 | = -12 |⋅ ( -3 )
| -4x -16 | = 36

1. Fall: -4x -16 ≥ 0:

-4x -16 = 36 | +16
-4x = 52 |:(-4 )
x1 = -13

Eigentlich müssen wir jetzt noch überprüfen, ob die Lösung(en) überhaupt der obigen Bedingung bei der Fallunterscheidung ( -4x -16 ≥ 0) genügt:

-4( -13 ) -16 = 36 ≥ 0

Die Lösung -13 genügt also der obigen Bedingung.

2. Fall: -4x -16 < 0:

-( -4x -16 ) = 36
4x +16 = 36 | -16
4x = 20 |:4
x2 = 5

Eigentlich müssen wir jetzt noch überprüfen, ob die Lösung(en) überhaupt der obigen Bedingung bei der Fallunterscheidung ( -4x -16 < 0) genügt:

-45 -16 = -36 < 0

Die Lösung 5 genügt also der obigen Bedingung.

L={ -13 ; 5 }

Lösungsanzahl in Abh. von Parameter

Beispiel:

Für welche Werte von t hat die Funktion ft mit ft(x)= ( x 2 - t x +5 t ) · e 1 4 t x genau 1 Nullstelle?

Lösung einblenden

Nach dem Satz vom Nullprodukt wird ( x 2 - t x +5 t ) · e 1 4 t x genau dann = 0, wenn x 2 - t x +5 t = 0 oder e 1 4 t x = 0 gilt:

Da ja aber e 1 4 t x für alle t und alle x immer größer als 0 ist, genügt es die Nullstellen von x 2 - t x +5 t zu untersuchen:

x 2 - t x +5 t =0 ist eine quadratische Gleichung, bei der wir am einfachsten die Mitternachtsformel (a-b-c-Formel) anwenden:

x1,2 = +1 t ± ( -1 t ) 2 -4 · 1 · 5 t 21 = +1 t ± t 2 -20 t 2

Wie viele Nullstellen jetzt hier wirklich rauskommen, hängt vom Radikand, also vom Term unter der Wurzel ab:

  • Ist t 2 -20 t > 0, so kann man die Wurzel bilden und es gibt (wegen dem ±) zwei Lösungen
  • Ist t 2 -20 t = 0, so ist auch die Wurzel =0 und es gibt nur eine Lösung
  • Ist t 2 -20 t <0, so existiert die Wurzel nicht und es gibt gar keine Lösung

Wir untersuchen also erstmal, wann der Radikand t 2 -20 t = 0 wird.

t 2 -20t = 0
t ( t -20 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

t1 = 0

2. Fall:

t -20 = 0 | +20
t2 = 20

Für t = 0 oder für t = 20 ist also die Wurzel =0 und es gibt nur eine Lösung.