nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Schnittpunkte berechnen

Beispiel:

Gegegben sind die Funktionen f und g mit f(x)= e 8x -2 e 5x und g(x)= 3 e 2x . Bestimme die Schnittpunkte der Graphen.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

e 8x -2 e 5x = 3 e 2x | -3 e 2x
e 8x -2 e 5x -3 e 2x = 0
( e 6x -2 e 3x -3 ) e 2x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 6x -2 e 3x -3 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e 3x

Draus ergibt sich die quadratische Gleichung:

u 2 -2u -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -3 ) 21

u1,2 = +2 ± 4 +12 2

u1,2 = +2 ± 16 2

u1 = 2 + 16 2 = 2 +4 2 = 6 2 = 3

u2 = 2 - 16 2 = 2 -4 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -3 ) = 1+ 3 = 4

x1,2 = 1 ± 4

x1 = 1 - 2 = -1

x2 = 1 + 2 = 3

Rücksubstitution:

u1: e 3x = 3

e 3x = 3 |ln(⋅)
3x = ln( 3 ) |:3
x1 = 1 3 ln( 3 ) ≈ 0.3662

u2: e 3x = -1

e 3x = -1

Diese Gleichung hat keine Lösung!


2. Fall:

e 2x = 0

Diese Gleichung hat keine Lösung!

L={ 1 3 ln( 3 ) }

Damit haben wir die Schnittstellen. Jetzt müssen wir die x-Werte nur noch in einen der beiden Funktionsterme einsetzen:

x1 = 1 3 ln( 3 ) : f( 1 3 ln( 3 ) )= 3 e 2( 1 3 ln( 3 ) ) = 6.24 Somit gilt: S1( 1 3 ln( 3 ) |6.24)

Steigung gleichsetzen

Beispiel:

Bestimme alle Stellen, an denen die Tangenten an den Graph von f mit f(x)= 1 2 e 2x -2 e x parallel zur Geraden y = 8x -5 sind.

Lösung einblenden

Für die Steigung der Geraden y = 8x -5 gilt m = 8

Die Steigungen der Tangenten an f können wir mit der Ableitungsfunktion f' berechnen.

f(x)= 1 2 e 2x -2 e x

f'(x)= e 2x -2 e x

Also muss gelten:

e 2x -2 e x = 8 | -8
e 2x -2 e x -8 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -2u -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -8 ) 21

u1,2 = +2 ± 4 +32 2

u1,2 = +2 ± 36 2

u1 = 2 + 36 2 = 2 +6 2 = 8 2 = 4

u2 = 2 - 36 2 = 2 -6 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -8 ) = 1+ 8 = 9

x1,2 = 1 ± 9

x1 = 1 - 3 = -2

x2 = 1 + 3 = 4

Rücksubstitution:

u1: e x = 4

e x = 4 |ln(⋅)
x1 = ln( 4 ) ≈ 1.3863
x1 = 2 ln( 2 )

u2: e x = -2

e x = -2

Diese Gleichung hat keine Lösung!

L={ 2 ln( 2 ) }

An diesen Stellen haben somit die Tangenten an f die Steigung 8 und sind somit parallel zur Geraden y = 8x -5 .

vermischte Gleichungen

Beispiel:

Löse die folgende Gleichung:

x 7 -9 x 4 +8x = 0

Lösung einblenden
x 7 -9 x 4 +8x = 0
x ( x 6 -9 x 3 +8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 6 -9 x 3 +8 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 3

Draus ergibt sich die quadratische Gleichung:

u 2 -9u +8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +9 ± ( -9 ) 2 -4 · 1 · 8 21

u1,2 = +9 ± 81 -32 2

u1,2 = +9 ± 49 2

u1 = 9 + 49 2 = 9 +7 2 = 16 2 = 8

u2 = 9 - 49 2 = 9 -7 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 9 2 ) 2 - 8 = 81 4 - 8 = 81 4 - 32 4 = 49 4

x1,2 = 9 2 ± 49 4

x1 = 9 2 - 7 2 = 2 2 = 1

x2 = 9 2 + 7 2 = 16 2 = 8

Rücksubstitution:

u1: x 3 = 8

x 3 = 8 | 3
x2 = 8 3 = 2

u2: x 3 = 1

x 3 = 1 | 3
x3 = 1 3 = 1

L={0; 1 ; 2 }

Bruchgleichungen

Beispiel:

Löse die folgende Gleichung:

9x x -2 -3 = 0

Lösung einblenden

D=R\{ 2 }

Wir multiplizieren den Nenner x -2 weg!

9x x -2 -3 = 0 |⋅( x -2 )
9x x -2 · ( x -2 ) -3 · ( x -2 ) = 0
9x -3x +6 = 0
6x +6 = 0
6x +6 = 0 | -6
6x = -6 |:6
x = -1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -1 }

Gleichungen mit Polynomdivision

Beispiel:

Löse die folgende Gleichung:

2 x 3 +9 x 2 + x -12 = 0

Lösung einblenden

Die einzige und letzte Chance, die Lösungen von 2 x 3 +9 x 2 + x -12 = 0 zu bestimmen, ist mit Polynomdivision.
Das funktioniert aber nur, wenn wir eine ganzzahlige Lösung durch Ausprobieren finden.
Dazu testen wir alle Teiler (mit beiden Vorzeichen) des Absolutglieds -12 .

1 ist eine Lösung, denn 2 1 3 +9 1 2 +1 -12 = 0.

Wir führen also eine Polynomdivison mit dem Divisor (x-1) durch.

( 2 x 3 +9 x 2 + x -12 ) : (x-1) = 2 x 2 +11x +12
-( 2 x 3 -2 x 2 )
11 x 2 + x
-( 11 x 2 -11x )
12x -12
-( 12x -12 )
0

es gilt also:

2 x 3 +9 x 2 + x -12 = ( 2 x 2 +11x +12 ) · ( x -1 )

( 2 x 2 +11x +12 ) ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 x 2 +11x +12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -11 ± 11 2 -4 · 2 · 12 22

x1,2 = -11 ± 121 -96 4

x1,2 = -11 ± 25 4

x1 = -11 + 25 4 = -11 +5 4 = -6 4 = -1,5

x2 = -11 - 25 4 = -11 -5 4 = -16 4 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 +11x +12 = 0 |: 2

x 2 + 11 2 x +6 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 11 4 ) 2 - 6 = 121 16 - 6 = 121 16 - 96 16 = 25 16

x1,2 = - 11 4 ± 25 16

x1 = - 11 4 - 5 4 = - 16 4 = -4

x2 = - 11 4 + 5 4 = - 6 4 = -1.5


2. Fall:

x -1 = 0 | +1
x3 = 1

Polynomdivision mit -4

L={ -4 ; -1,5 ; 1 }

Betragsgleichungen

Beispiel:

Löse die folgende Gleichung:

- 1 2 | -4x +16 | +3 = 15

Lösung einblenden
- 1 2 | -4x +16 | +3 = 15 | -3
- 1 2 | -4x +16 | = 12 |⋅ ( -2 )
| -4x +16 | = -24

Da der Betrag links immer ≥ 0 sein muss, rechts aber eine negative Zahl steht, hat diese Gleichung keine Lösung!

L={}

Lösungsanzahl in Abh. von Parameter

Beispiel:

Für welche Werte von t hat die Funktion ft mit ft(x)= ln( x 2 +5x -3 t ) genau 2 Nullstellen?

Lösung einblenden

ln(u) ist genau dann = 0, wenn e0=u, also 1 = u ist:

ln( x 2 +5x -3 t ) = 0

x 2 +5x -3 t = 1 |-1

x 2 +5x -3 t - 1 = 0

x 2 +5x + ( -3t -1 ) =0 ist eine quadratische Gleichung, bei der wir am einfachsten die Mitternachtsformel (a-b-c-Formel) anwenden:

x1,2 = -5 ± 5 2 -4 · 1 · ( -3t -1 ) 21 = -5 ± 25 + 12t +4 2

Wie viele Nullstellen jetzt hier wirklich rauskommen, hängt vom Radikand, also vom Term unter der Wurzel ab:

  • Ist 25 + 12t +4 > 0, so kann man die Wurzel bilden und es gibt (wegen dem ±) zwei Lösungen
  • Ist 25 + 12t +4 = 0, so ist auch die Wurzel =0 und es gibt nur eine Lösung
  • Ist 25 + 12t +4 <0, so existiert die Wurzel nicht und es gibt gar keine Lösung

Wir untersuchen also erstmal, wann der Radikand 25 + 12t +4 = 0 wird.

25 +12t +4 = 0
12t +29 = 0 | -29
12t = -29 |:12
t = - 29 12

Da rechts der Nullstelle t= - 29 12 beispielsweise für t = -1 der Radikand 25 + ( 12( -1 ) +4 ) = 17 > 0 wird, sind also die Funktionswerte von 25 + 12t +4 für t > - 29 12 größer 0 und für t < - 29 12 kleiner 0

Für t > - 29 12 ist also der Term unter der Wurzel positiv und es gibt zwei Lösungen.