nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Schnittpunkte berechnen

Beispiel:

Gegegben sind die Funktionen f und g mit f(x)= x 8 - x 2 und g(x)=0. Bestimme die Schnittpunkte der Graphen.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

x 8 - x 2 = 0
x 2 ( x 6 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 6 -1 = 0 | +1
x 6 = 1 | 6
x2 = - 1 6 = -1
x3 = 1 6 = 1

L={ -1 ; 0; 1 }

0 ist 2-fache Lösung!

Damit haben wir die Schnittstellen. Jetzt müssen wir die x-Werte nur noch in einen der beiden Funktionsterme einsetzen:

x1 = -1 : f( -1 )=0 = 0 Somit gilt: S1( -1 |0)

x2 = 0: f(0)=0 = 0 Somit gilt: S2(0|0)

x3 = 1 : f( 1 )=0 = 0 Somit gilt: S3( 1 |0)

Steigung gleichsetzen

Beispiel:

Bestimme alle Stellen, an denen die Tangenten an den Graph von f mit f(x)= 1 2 e 2x + e x parallel zur Geraden y = 42x +4 sind.

Lösung einblenden

Für die Steigung der Geraden y = 42x +4 gilt m = 42

Die Steigungen der Tangenten an f können wir mit der Ableitungsfunktion f' berechnen.

f(x)= 1 2 e 2x + e x

f'(x)= e 2x + e x

Also muss gelten:

e 2x + e x = 42 | -42
e 2x + e x -42 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 + u -42 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -1 ± 1 2 -4 · 1 · ( -42 ) 21

u1,2 = -1 ± 1 +168 2

u1,2 = -1 ± 169 2

u1 = -1 + 169 2 = -1 +13 2 = 12 2 = 6

u2 = -1 - 169 2 = -1 -13 2 = -14 2 = -7

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -42 ) = 1 4 + 42 = 1 4 + 168 4 = 169 4

x1,2 = - 1 2 ± 169 4

x1 = - 1 2 - 13 2 = - 14 2 = -7

x2 = - 1 2 + 13 2 = 12 2 = 6

Rücksubstitution:

u1: e x = 6

e x = 6 |ln(⋅)
x1 = ln( 6 ) ≈ 1.7918

u2: e x = -7

e x = -7

Diese Gleichung hat keine Lösung!

L={ ln( 6 ) }

An diesen Stellen haben somit die Tangenten an f die Steigung 42 und sind somit parallel zur Geraden y = 42x +4 .

vermischte Gleichungen

Beispiel:

Löse die folgende Gleichung:

e 8x -2 e 5x -24 e 2x = 0

Lösung einblenden
e 8x -2 e 5x -24 e 2x = 0
( e 6x -2 e 3x -24 ) e 2x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 6x -2 e 3x -24 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e 3x

Draus ergibt sich die quadratische Gleichung:

u 2 -2u -24 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -24 ) 21

u1,2 = +2 ± 4 +96 2

u1,2 = +2 ± 100 2

u1 = 2 + 100 2 = 2 +10 2 = 12 2 = 6

u2 = 2 - 100 2 = 2 -10 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -24 ) = 1+ 24 = 25

x1,2 = 1 ± 25

x1 = 1 - 5 = -4

x2 = 1 + 5 = 6

Rücksubstitution:

u1: e 3x = 6

e 3x = 6 |ln(⋅)
3x = ln( 6 ) |:3
x1 = 1 3 ln( 6 ) ≈ 0.5973

u2: e 3x = -4

e 3x = -4

Diese Gleichung hat keine Lösung!


2. Fall:

e 2x = 0

Diese Gleichung hat keine Lösung!

L={ 1 3 ln( 6 ) }

Bruchgleichungen

Beispiel:

Löse die folgende Gleichung:

2x -1 x +1 + 3x -4 x -7 = 0

Lösung einblenden

D=R\{0; -1 }

3x -4 x + 2x -1 x +1 -7 = 0

Wir multiplizieren den Nenner x weg!

3x -4 x + 2x -1 x +1 -7 = 0 |⋅( x )
3x -4 x · x + 2x -1 x +1 · x -7 · x = 0
3x -4 + ( 2x -1 ) x x +1 -7x = 0
3x -4 + 2 x 2 - x x +1 -7x = 0
2 x 2 - x x +1 +3x -7x -4 = 0

Wir multiplizieren den Nenner x +1 weg!

2 x 2 - x x +1 +3x -7x -4 = 0 |⋅( x +1 )
2 x 2 - x x +1 · ( x +1 ) + 3x · ( x +1 ) -7x · ( x +1 ) -4 · ( x +1 ) = 0
2 x 2 - x +3 x ( x +1 )-7 x ( x +1 ) -4x -4 = 0
2 x 2 - x + ( 3 x 2 +3x ) + ( -7 x 2 -7x ) -4x -4 = 0
-2 x 2 -9x -4 = 0

-2 x 2 -9x -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +9 ± ( -9 ) 2 -4 · ( -2 ) · ( -4 ) 2( -2 )

x1,2 = +9 ± 81 -32 -4

x1,2 = +9 ± 49 -4

x1 = 9 + 49 -4 = 9 +7 -4 = 16 -4 = -4

x2 = 9 - 49 -4 = 9 -7 -4 = 2 -4 = -0,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-2 " teilen:

-2 x 2 -9x -4 = 0 |: -2

x 2 + 9 2 x +2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 9 4 ) 2 - 2 = 81 16 - 2 = 81 16 - 32 16 = 49 16

x1,2 = - 9 4 ± 49 16

x1 = - 9 4 - 7 4 = - 16 4 = -4

x2 = - 9 4 + 7 4 = - 2 4 = -0.5

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -4 ; -0,5 }

Gleichungen mit Polynomdivision

Beispiel:

Löse die folgende Gleichung:

3 x 3 - x 2 -19x -15 = 0

Lösung einblenden

Die einzige und letzte Chance, die Lösungen von 3 x 3 - x 2 -19x -15 = 0 zu bestimmen, ist mit Polynomdivision.
Das funktioniert aber nur, wenn wir eine ganzzahlige Lösung durch Ausprobieren finden.
Dazu testen wir alle Teiler (mit beiden Vorzeichen) des Absolutglieds -15 .

-1 ist eine Lösung, denn 3 ( -1 ) 3 - ( -1 ) 2 -19( -1 ) -15 = 0.

Wir führen also eine Polynomdivison mit dem Divisor (x+1) durch.

( 3 x 3 - x 2 -19x -15 ) : (x+1) = 3 x 2 -4x -15
-( 3 x 3 +3 x 2 )
-4 x 2 -19x
-( -4 x 2 -4x )
-15x -15
-( -15x -15 )
0

es gilt also:

3 x 3 - x 2 -19x -15 = ( 3 x 2 -4x -15 ) · ( x +1 )

( 3 x 2 -4x -15 ) ( x +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

3 x 2 -4x -15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +4 ± ( -4 ) 2 -4 · 3 · ( -15 ) 23

x1,2 = +4 ± 16 +180 6

x1,2 = +4 ± 196 6

x1 = 4 + 196 6 = 4 +14 6 = 18 6 = 3

x2 = 4 - 196 6 = 4 -14 6 = -10 6 = - 5 3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "3 " teilen:

3 x 2 -4x -15 = 0 |: 3

x 2 - 4 3 x -5 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 2 3 ) 2 - ( -5 ) = 4 9 + 5 = 4 9 + 45 9 = 49 9

x1,2 = 2 3 ± 49 9

x1 = 2 3 - 7 3 = - 5 3 = -1.6666666666667

x2 = 2 3 + 7 3 = 9 3 = 3


2. Fall:

x +1 = 0 | -1
x3 = -1

Polynomdivision mit 3

L={ - 5 3 ; -1 ; 3 }

Betragsgleichungen

Beispiel:

Löse die folgende Gleichung:

| -2x -10 | -2 = -6

Lösung einblenden
| -2x -10 | -2 = -6 | +2
| -2x -10 | = -4

Da der Betrag links immer ≥ 0 sein muss, rechts aber eine negative Zahl steht, hat diese Gleichung keine Lösung!

L={}

Lösungsanzahl in Abh. von Parameter

Beispiel:

Für welche Werte von t hat die Funktion ft mit ft(x)= ln( x 2 -2x + t ) genau 0 Nullstellen?

Lösung einblenden

ln(u) ist genau dann = 0, wenn e0=u, also 1 = u ist:

ln( x 2 -2x + t ) = 0

x 2 -2x + t = 1 |-1

x 2 -2x + t - 1 = 0

x 2 -2x + t -1 =0 ist eine quadratische Gleichung, bei der wir am einfachsten die Mitternachtsformel (a-b-c-Formel) anwenden:

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( t -1 ) 21 = +2 ± 4 + ( -4t +4 ) 2

Wie viele Nullstellen jetzt hier wirklich rauskommen, hängt vom Radikand, also vom Term unter der Wurzel ab:

  • Ist 4 + ( -4t +4 ) > 0, so kann man die Wurzel bilden und es gibt (wegen dem ±) zwei Lösungen
  • Ist 4 + ( -4t +4 ) = 0, so ist auch die Wurzel =0 und es gibt nur eine Lösung
  • Ist 4 + ( -4t +4 ) <0, so existiert die Wurzel nicht und es gibt gar keine Lösung

Wir untersuchen also erstmal, wann der Radikand 4 + ( -4t +4 ) = 0 wird.

4 -4t +4 = 0
-4t +8 = 0 | -8
-4t = -8 |:(-4 )
t = 2

Da rechts der Nullstelle t= 2 beispielsweise für t = 3 der Radikand 4 + ( -43 +4 ) = -4 < 0 wird, sind also die Funktionswerte von 4 + ( -4t +4 ) für t > 2 kleiner 0 und für t < 2 größer 0

Für t > 2 ist also der Term unter der Wurzel < 0 und es gibt keine Lösung.