nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Schnittpunkte berechnen

Beispiel:

Gegegben sind die Funktionen f und g mit f(x)= x 3 +2x und g(x)= 24 x . Bestimme die Schnittpunkte der Graphen.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

D=R\{0}

Wir multiplizieren den Nenner x weg!

x 3 +2x = 24 x |⋅( x )
x 3 · x + 2x · x = 24 x · x
x 3 · x +2 x · x = 24
x 4 +2 x 2 = 24
x 4 +2 x 2 = 24 | -24
x 4 +2 x 2 -24 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 +2u -24 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -2 ± 2 2 -4 · 1 · ( -24 ) 21

u1,2 = -2 ± 4 +96 2

u1,2 = -2 ± 100 2

u1 = -2 + 100 2 = -2 +10 2 = 8 2 = 4

u2 = -2 - 100 2 = -2 -10 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -24 ) = 1+ 24 = 25

x1,2 = -1 ± 25

x1 = -1 - 5 = -6

x2 = -1 + 5 = 4

Rücksubstitution:

u1: x 2 = 4

x 2 = 4 | 2
x1 = - 4 = -2
x2 = 4 = 2

u2: x 2 = -6

x 2 = -6 | 2

Diese Gleichung hat keine (reele) Lösung!

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -2 ; 2 }

Damit haben wir die Schnittstellen. Jetzt müssen wir die x-Werte nur noch in einen der beiden Funktionsterme einsetzen:

x1 = -2 : f( -2 )= 24 ( -2 ) = -12 Somit gilt: S1( -2 |-12)

x2 = 2 : f( 2 )= 24 2 = 12 Somit gilt: S2( 2 |12)

Steigung gleichsetzen

Beispiel:

Bestimme alle Stellen, an denen die Tangenten an den Graph von f mit f(x)= 1 5 x 5 -2 x 3 parallel zur Geraden y = 27x +7 sind.

Lösung einblenden

Für die Steigung der Geraden y = 27x +7 gilt m = 27

Die Steigungen der Tangenten an f können wir mit der Ableitungsfunktion f' berechnen.

f(x)= 1 5 x 5 -2 x 3

f'(x)= x 4 -6 x 2

Also muss gelten:

x 4 -6 x 2 = 27 | -27
x 4 -6 x 2 -27 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -6u -27 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +6 ± ( -6 ) 2 -4 · 1 · ( -27 ) 21

u1,2 = +6 ± 36 +108 2

u1,2 = +6 ± 144 2

u1 = 6 + 144 2 = 6 +12 2 = 18 2 = 9

u2 = 6 - 144 2 = 6 -12 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -3 ) 2 - ( -27 ) = 9+ 27 = 36

x1,2 = 3 ± 36

x1 = 3 - 6 = -3

x2 = 3 + 6 = 9

Rücksubstitution:

u1: x 2 = 9

x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

u2: x 2 = -3

x 2 = -3 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -3 ; 3 }

An diesen Stellen haben somit die Tangenten an f die Steigung 27 und sind somit parallel zur Geraden y = 27x +7 .

vermischte Gleichungen

Beispiel:

Löse die folgende Gleichung:

e 6x - e 3x = 30

Lösung einblenden
e 6x - e 3x = 30 | -30
e 6x - e 3x -30 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e 3x

Draus ergibt sich die quadratische Gleichung:

u 2 - u -30 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -30 ) 21

u1,2 = +1 ± 1 +120 2

u1,2 = +1 ± 121 2

u1 = 1 + 121 2 = 1 +11 2 = 12 2 = 6

u2 = 1 - 121 2 = 1 -11 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -30 ) = 1 4 + 30 = 1 4 + 120 4 = 121 4

x1,2 = 1 2 ± 121 4

x1 = 1 2 - 11 2 = - 10 2 = -5

x2 = 1 2 + 11 2 = 12 2 = 6

Rücksubstitution:

u1: e 3x = 6

e 3x = 6 |ln(⋅)
3x = ln( 6 ) |:3
x1 = 1 3 ln( 6 ) ≈ 0.5973

u2: e 3x = -5

e 3x = -5

Diese Gleichung hat keine Lösung!

L={ 1 3 ln( 6 ) }

Bruchgleichungen

Beispiel:

Löse die folgende Gleichung:

2x +2 3x +9 -2 = 0

Lösung einblenden

D=R\{ -3 }

2x +2 3( x +3 ) -2 = 0 |(Nenner faktorisiert)

Wir multiplizieren den Nenner 3( x +3 ) weg!

2x +2 3( x +3 ) -2 = 0 |⋅( 3( x +3 ) )
2x +2 3( x +3 ) · ( 3( x +3 ) ) -2 · ( 3( x +3 ) ) = 0
2x +2 -6x -18 = 0
-4x -16 = 0
-4x -16 = 0 | +16
-4x = 16 |:(-4 )
x = -4

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -4 }

Gleichungen mit Polynomdivision

Beispiel:

Löse die folgende Gleichung:

3 x 3 - x 2 -19x -15 = 0

Lösung einblenden

Die einzige und letzte Chance, die Lösungen von 3 x 3 - x 2 -19x -15 = 0 zu bestimmen, ist mit Polynomdivision.
Das funktioniert aber nur, wenn wir eine ganzzahlige Lösung durch Ausprobieren finden.
Dazu testen wir alle Teiler (mit beiden Vorzeichen) des Absolutglieds -15 .

-1 ist eine Lösung, denn 3 ( -1 ) 3 - ( -1 ) 2 -19( -1 ) -15 = 0.

Wir führen also eine Polynomdivison mit dem Divisor (x+1) durch.

( 3 x 3 - x 2 -19x -15 ) : (x+1) = 3 x 2 -4x -15
-( 3 x 3 +3 x 2 )
-4 x 2 -19x
-( -4 x 2 -4x )
-15x -15
-( -15x -15 )
0

es gilt also:

3 x 3 - x 2 -19x -15 = ( 3 x 2 -4x -15 ) · ( x +1 )

( 3 x 2 -4x -15 ) ( x +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

3 x 2 -4x -15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +4 ± ( -4 ) 2 -4 · 3 · ( -15 ) 23

x1,2 = +4 ± 16 +180 6

x1,2 = +4 ± 196 6

x1 = 4 + 196 6 = 4 +14 6 = 18 6 = 3

x2 = 4 - 196 6 = 4 -14 6 = -10 6 = - 5 3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "3 " teilen:

3 x 2 -4x -15 = 0 |: 3

x 2 - 4 3 x -5 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 2 3 ) 2 - ( -5 ) = 4 9 + 5 = 4 9 + 45 9 = 49 9

x1,2 = 2 3 ± 49 9

x1 = 2 3 - 7 3 = - 5 3 = -1.6666666666667

x2 = 2 3 + 7 3 = 9 3 = 3


2. Fall:

x +1 = 0 | -1
x3 = -1

Polynomdivision mit 3

L={ - 5 3 ; -1 ; 3 }

Betragsgleichungen

Beispiel:

Löse die folgende Gleichung:

- | x -3 | +1 = -4

Lösung einblenden
- | x -3 | +1 = -4 | -1
- | x -3 | = -5 |: ( -1 )
| x -3 | = 5

1. Fall: x -3 ≥ 0:

x -3 = 5 | +3
x1 = 8

Eigentlich müssen wir jetzt noch überprüfen, ob die Lösung(en) überhaupt der obigen Bedingung bei der Fallunterscheidung ( x -3 ≥ 0) genügt:

8 -3 = 5 ≥ 0

Die Lösung 8 genügt also der obigen Bedingung.

2. Fall: x -3 < 0:

-( x -3 ) = 5
-x +3 = 5 | -3
-x = 2 |:(-1 )
x2 = -2

Eigentlich müssen wir jetzt noch überprüfen, ob die Lösung(en) überhaupt der obigen Bedingung bei der Fallunterscheidung ( x -3 < 0) genügt:

-2 -3 = -5 < 0

Die Lösung -2 genügt also der obigen Bedingung.

L={ -2 ; 8 }

Lösungsanzahl in Abh. von Parameter

Beispiel:

Für welche Werte von t hat die Funktion ft mit ft(x)= -2 t x 2 -4 genau 2 Nullstellen?

Lösung einblenden

Wir setzen ft(x) = 0 und lösen die Gleichung einfach mal in Abhängigkeit von t:

-2 t x 2 -4 = 0 | +4
-2 t x 2 = 4 |: ( -2 t )
x 2 = -2 1 t | 2
x1 = - ( -2 1 t ) = - ( - 2 t )
x2 = ( -2 1 t ) = ( - 2 t )

Man erkennt schnell, dass die Wurzeln (und damit die beiden zugehörigen Lösungen) existieren, wenn t < 0 ist. Für t > 0 existieren die Wurzeln und die beiden Lösungen nicht, da etwas negatives unter der Wurzel steht.

Für t=0 ergibt sich folgende Lösung:

-4 = 0 | +4
0 = 4

Diese Gleichung hat keine Lösung!

Für t < 0 gibt es also 2 Lösung(en).