nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Schnittpunkte berechnen

Beispiel:

Gegegben sind die Funktionen f und g mit f(x)= x 4 -3 und g(x)= -2 x 2 . Bestimme die Schnittpunkte der Graphen.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

x 4 -3 = -2 x 2 | +2 x 2
x 4 +2 x 2 -3 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 +2u -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

u1,2 = -2 ± 4 +12 2

u1,2 = -2 ± 16 2

u1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

u2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -3 ) = 1+ 3 = 4

x1,2 = -1 ± 4

x1 = -1 - 2 = -3

x2 = -1 + 2 = 1

Rücksubstitution:

u1: x 2 = 1

x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

u2: x 2 = -3

x 2 = -3 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -1 ; 1 }

Damit haben wir die Schnittstellen. Jetzt müssen wir die x-Werte nur noch in einen der beiden Funktionsterme einsetzen:

x1 = -1 : f( -1 )= -2 ( -1 ) 2 = -2 Somit gilt: S1( -1 |-2)

x2 = 1 : f( 1 )= -2 1 2 = -2 Somit gilt: S2( 1 |-2)

Steigung gleichsetzen

Beispiel:

Bestimme alle Stellen, an denen die Tangenten an den Graph von f mit f(x)= 1 4 e 4x - e 2x parallel zur Geraden y = 24x -7 sind.

Lösung einblenden

Für die Steigung der Geraden y = 24x -7 gilt m = 24

Die Steigungen der Tangenten an f können wir mit der Ableitungsfunktion f' berechnen.

f(x)= 1 4 e 4x - e 2x

f'(x)= e 4x -2 e 2x

Also muss gelten:

e 4x -2 e 2x = 24 | -24
e 4x -2 e 2x -24 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e 2x

Draus ergibt sich die quadratische Gleichung:

u 2 -2u -24 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -24 ) 21

u1,2 = +2 ± 4 +96 2

u1,2 = +2 ± 100 2

u1 = 2 + 100 2 = 2 +10 2 = 12 2 = 6

u2 = 2 - 100 2 = 2 -10 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -24 ) = 1+ 24 = 25

x1,2 = 1 ± 25

x1 = 1 - 5 = -4

x2 = 1 + 5 = 6

Rücksubstitution:

u1: e 2x = 6

e 2x = 6 |ln(⋅)
2x = ln( 6 ) |:2
x1 = 1 2 ln( 6 ) ≈ 0.8959

u2: e 2x = -4

e 2x = -4

Diese Gleichung hat keine Lösung!

L={ 1 2 ln( 6 ) }

An diesen Stellen haben somit die Tangenten an f die Steigung 24 und sind somit parallel zur Geraden y = 24x -7 .

vermischte Gleichungen

Beispiel:

Löse die folgende Gleichung:

e 6x -4 e 4x = 21 e 2x

Lösung einblenden
e 6x -4 e 4x = 21 e 2x | -21 e 2x
e 6x -4 e 4x -21 e 2x = 0
( e 4x -4 e 2x -21 ) e 2x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 4x -4 e 2x -21 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e 2x

Draus ergibt sich die quadratische Gleichung:

u 2 -4u -21 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +4 ± ( -4 ) 2 -4 · 1 · ( -21 ) 21

u1,2 = +4 ± 16 +84 2

u1,2 = +4 ± 100 2

u1 = 4 + 100 2 = 4 +10 2 = 14 2 = 7

u2 = 4 - 100 2 = 4 -10 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -2 ) 2 - ( -21 ) = 4+ 21 = 25

x1,2 = 2 ± 25

x1 = 2 - 5 = -3

x2 = 2 + 5 = 7

Rücksubstitution:

u1: e 2x = 7

e 2x = 7 |ln(⋅)
2x = ln( 7 ) |:2
x1 = 1 2 ln( 7 ) ≈ 0.973

u2: e 2x = -3

e 2x = -3

Diese Gleichung hat keine Lösung!


2. Fall:

e 2x = 0

Diese Gleichung hat keine Lösung!

L={ 1 2 ln( 7 ) }

Bruchgleichungen

Beispiel:

Löse die folgende Gleichung:

4x x +3 + 3x +1 2x + 5x +1 -2x = 0

Lösung einblenden

D=R\{0; -3 }

3x +1 -5x -1 2x + 4x x +3 = 0

Wir multiplizieren den Nenner 2x weg!

3x +1 -5x -1 2x + 4x x +3 = 0 |⋅( 2x )
3x +1 -5x -1 2x · 2x + 4x x +3 · 2x = 0
3x +1 -5x -1 +2 4 x · x x +3 = 0
3x +1 -5x -1 + 8 x 2 x +3 = 0
8 x 2 x +3 +3x -5x +1 -1 = 0

Wir multiplizieren den Nenner x +3 weg!

8 x 2 x +3 +3x -5x +1 -1 = 0 |⋅( x +3 )
8 x 2 x +3 · ( x +3 ) + 3x · ( x +3 ) -5x · ( x +3 ) + 1 · ( x +3 ) -1 · ( x +3 ) = 0
8 x 2 +3 x ( x +3 )-5 x ( x +3 ) + x +3 - x -3 = 0
8 x 2 + ( 3 x 2 +9x ) + ( -5 x 2 -15x ) + x +3 - x -3 = 0
6 x 2 -6x = 0
6 x 2 -6x = 0
6 x ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

Lösung x=0 ist nicht in der Definitionsmenge!

L={ 1 }

Gleichungen mit Polynomdivision

Beispiel:

Löse die folgende Gleichung:

x 3 -2 x 2 +4x -8 = 0

Lösung einblenden

Die einzige und letzte Chance, die Lösungen von x 3 -2 x 2 +4x -8 = 0 zu bestimmen, ist mit Polynomdivision.
Das funktioniert aber nur, wenn wir eine ganzzahlige Lösung durch Ausprobieren finden.
Dazu testen wir alle Teiler (mit beiden Vorzeichen) des Absolutglieds -8 .

2 ist eine Lösung, denn 2 3 -2 2 2 +42 -8 = 0.

Wir führen also eine Polynomdivison mit dem Divisor (x-2) durch.

( x 3 -2 x 2 +4x -8 ) : (x-2) = x 2 +0 +4
-( x 3 -2 x 2 )
0 +4x
-(0 0)
4x -8
-( 4x -8 )
0

es gilt also:

x 3 -2 x 2 +4x -8 = ( x 2 +0 +4 ) · ( x -2 )

( x 2 +0 +4 ) · ( x -2 ) = 0
( x 2 +4 ) ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 +4 = 0 | -4
x 2 = -4 | 2

Diese Gleichung hat keine (reele) Lösung!


2. Fall:

x -2 = 0 | +2
x1 = 2

L={ 2 }

Betragsgleichungen

Beispiel:

Löse die folgende Gleichung:

- 1 2 | x -3 | -6 = -5

Lösung einblenden
- 1 2 | x -3 | -6 = -5 | +6
- 1 2 | x -3 | = 1 |⋅ ( -2 )
| x -3 | = -2

Da der Betrag links immer ≥ 0 sein muss, rechts aber eine negative Zahl steht, hat diese Gleichung keine Lösung!

L={}

Lösungsanzahl in Abh. von Parameter

Beispiel:

Für welche Werte von t hat die Funktion ft mit ft(x)= x 2 +3 t x +2 t genau 0 Nullstellen?

Lösung einblenden

x 2 +3 t x +2 t =0 ist eine quadratische Gleichung, bei der wir am einfachsten die Mitternachtsformel (a-b-c-Formel) anwenden:

x1,2 = -3 t ± ( 3 t ) 2 -4 · 1 · 2 t 21 = -3 t ± 9 t 2 -8 t 2

Wie viele Nullstellen jetzt hier wirklich rauskommen, hängt vom Radikand, also vom Term unter der Wurzel ab:

  • Ist 9 t 2 -8 t > 0, so kann man die Wurzel bilden und es gibt (wegen dem ±) zwei Lösungen
  • Ist 9 t 2 -8 t = 0, so ist auch die Wurzel =0 und es gibt nur eine Lösung
  • Ist 9 t 2 -8 t <0, so existiert die Wurzel nicht und es gibt gar keine Lösung

Wir untersuchen also erstmal, wann der Radikand 9 t 2 -8 t = 0 wird.

9 t 2 -8t = 0
t ( 9t -8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

t1 = 0

2. Fall:

9t -8 = 0 | +8
9t = 8 |:9
t2 = 8 9

Da bei 9 t 2 -8 t eine positive Zahl vor dem t² steht, ist der Graph von 9 t 2 -8 t eine nach oben geöffnete Parabel, bei der die Funktionswerte zwischen den Nullstellen negativ und jeweils links und rechts der Nullstellen positiv sind.

Für 0 < t < 8 9 , also für t > 0 und t < 8 9 ist also der Term unter der Wurzel < 0 und es gibt keine Lösung.