nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Schnittpunkte berechnen

Beispiel:

Gegegben sind die Funktionen f und g mit f(x)= x 5 + x 3 und g(x)= 20x . Bestimme die Schnittpunkte der Graphen.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

x 5 + x 3 = 20x | -20x
x 5 + x 3 -20x = 0
x ( x 4 + x 2 -20 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 4 + x 2 -20 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 + u -20 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -1 ± 1 2 -4 · 1 · ( -20 ) 21

u1,2 = -1 ± 1 +80 2

u1,2 = -1 ± 81 2

u1 = -1 + 81 2 = -1 +9 2 = 8 2 = 4

u2 = -1 - 81 2 = -1 -9 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -20 ) = 1 4 + 20 = 1 4 + 80 4 = 81 4

x1,2 = - 1 2 ± 81 4

x1 = - 1 2 - 9 2 = - 10 2 = -5

x2 = - 1 2 + 9 2 = 8 2 = 4

Rücksubstitution:

u1: x 2 = 4

x 2 = 4 | 2
x2 = - 4 = -2
x3 = 4 = 2

u2: x 2 = -5

x 2 = -5 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -2 ; 0; 2 }

Damit haben wir die Schnittstellen. Jetzt müssen wir die x-Werte nur noch in einen der beiden Funktionsterme einsetzen:

x1 = -2 : f( -2 )= 20( -2 ) = -40 Somit gilt: S1( -2 |-40)

x2 = 0: f(0)= 200 = 0 Somit gilt: S2(0|0)

x3 = 2 : f( 2 )= 202 = 40 Somit gilt: S3( 2 |40)

Steigung gleichsetzen

Beispiel:

Bestimme alle Stellen, an denen die Tangenten an den Graph von f mit f(x)= 1 7 x 7 - 7 4 x 4 parallel zur Geraden y = 8x sind.

Lösung einblenden

Für die Steigung der Geraden y = 8x gilt m = 8

Die Steigungen der Tangenten an f können wir mit der Ableitungsfunktion f' berechnen.

f(x)= 1 7 x 7 - 7 4 x 4

f'(x)= x 6 -7 x 3

Also muss gelten:

x 6 -7 x 3 = 8 | -8
x 6 -7 x 3 -8 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 3

Draus ergibt sich die quadratische Gleichung:

u 2 -7u -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +7 ± ( -7 ) 2 -4 · 1 · ( -8 ) 21

u1,2 = +7 ± 49 +32 2

u1,2 = +7 ± 81 2

u1 = 7 + 81 2 = 7 +9 2 = 16 2 = 8

u2 = 7 - 81 2 = 7 -9 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 7 2 ) 2 - ( -8 ) = 49 4 + 8 = 49 4 + 32 4 = 81 4

x1,2 = 7 2 ± 81 4

x1 = 7 2 - 9 2 = - 2 2 = -1

x2 = 7 2 + 9 2 = 16 2 = 8

Rücksubstitution:

u1: x 3 = 8

x 3 = 8 | 3
x1 = 8 3 = 2

u2: x 3 = -1

x 3 = -1 | 3
x2 = - 1 3 = -1

L={ -1 ; 2 }

An diesen Stellen haben somit die Tangenten an f die Steigung 8 und sind somit parallel zur Geraden y = 8x .

vermischte Gleichungen

Beispiel:

Löse die folgende Gleichung:

e 2x +3 e x -10 = 0

Lösung einblenden
e 2x +3 e x -10 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 +3u -10 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 1 · ( -10 ) 21

u1,2 = -3 ± 9 +40 2

u1,2 = -3 ± 49 2

u1 = -3 + 49 2 = -3 +7 2 = 4 2 = 2

u2 = -3 - 49 2 = -3 -7 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -10 ) = 9 4 + 10 = 9 4 + 40 4 = 49 4

x1,2 = - 3 2 ± 49 4

x1 = - 3 2 - 7 2 = - 10 2 = -5

x2 = - 3 2 + 7 2 = 4 2 = 2

Rücksubstitution:

u1: e x = 2

e x = 2 |ln(⋅)
x1 = ln( 2 ) ≈ 0.6931

u2: e x = -5

e x = -5

Diese Gleichung hat keine Lösung!

L={ ln( 2 ) }

Bruchgleichungen

Beispiel:

Löse die folgende Gleichung:

8x 3x -1 -2 = 0

Lösung einblenden

D=R\{ 1 3 }

Wir multiplizieren den Nenner 3x -1 weg!

8x 3x -1 -2 = 0 |⋅( 3x -1 )
8x 3x -1 · ( 3x -1 ) -2 · ( 3x -1 ) = 0
8x -6x +2 = 0
2x +2 = 0
2x +2 = 0 | -2
2x = -2 |:2
x = -1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -1 }

Gleichungen mit Polynomdivision

Beispiel:

Löse die folgende Gleichung:

x 3 + x 2 -10x +8 = 0

Lösung einblenden

Die einzige und letzte Chance, die Lösungen von x 3 + x 2 -10x +8 = 0 zu bestimmen, ist mit Polynomdivision.
Das funktioniert aber nur, wenn wir eine ganzzahlige Lösung durch Ausprobieren finden.
Dazu testen wir alle Teiler (mit beiden Vorzeichen) des Absolutglieds 8 .

1 ist eine Lösung, denn 1 3 + 1 2 -101 +8 = 0.

Wir führen also eine Polynomdivison mit dem Divisor (x-1) durch.

( x 3 + x 2 -10x +8 ) : (x-1) = x 2 +2x -8
-( x 3 - x 2 )
2 x 2 -10x
-( 2 x 2 -2x )
-8x +8
-( -8x +8 )
0

es gilt also:

x 3 + x 2 -10x +8 = ( x 2 +2x -8 ) · ( x -1 )

( x 2 +2x -8 ) ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 +2x -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · ( -8 ) 21

x1,2 = -2 ± 4 +32 2

x1,2 = -2 ± 36 2

x1 = -2 + 36 2 = -2 +6 2 = 4 2 = 2

x2 = -2 - 36 2 = -2 -6 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -8 ) = 1+ 8 = 9

x1,2 = -1 ± 9

x1 = -1 - 3 = -4

x2 = -1 + 3 = 2


2. Fall:

x -1 = 0 | +1
x3 = 1

Polynomdivision mit 2

Polynomdivision mit -4

L={ -4 ; 1 ; 2 }

Betragsgleichungen

Beispiel:

Löse die folgende Gleichung:

- 1 2 | x -5 | -9 = -6

Lösung einblenden
- 1 2 | x -5 | -9 = -6 | +9
- 1 2 | x -5 | = 3 |⋅ ( -2 )
| x -5 | = -6

Da der Betrag links immer ≥ 0 sein muss, rechts aber eine negative Zahl steht, hat diese Gleichung keine Lösung!

L={}

Lösungsanzahl in Abh. von Parameter

Beispiel:

Für welche Werte von t hat die Funktion ft mit ft(x)= x 2 +3x -5 t genau 2 Nullstellen?

Lösung einblenden

x 2 +3x -5 t =0 ist eine quadratische Gleichung, bei der wir am einfachsten die Mitternachtsformel (a-b-c-Formel) anwenden:

x1,2 = -3 ± 3 2 -4 · 1 · ( -5 t ) 21 = -3 ± 9 +20 t 2

Wie viele Nullstellen jetzt hier wirklich rauskommen, hängt vom Radikand, also vom Term unter der Wurzel ab:

  • Ist 9 +20 t > 0, so kann man die Wurzel bilden und es gibt (wegen dem ±) zwei Lösungen
  • Ist 9 +20 t = 0, so ist auch die Wurzel =0 und es gibt nur eine Lösung
  • Ist 9 +20 t <0, so existiert die Wurzel nicht und es gibt gar keine Lösung

Wir untersuchen also erstmal, wann der Radikand 9 +20 t = 0 wird.

9 +20t = 0
20t +9 = 0 | -9
20t = -9 |:20
t = - 9 20 = -0.45

Da rechts der Nullstelle t= - 9 20 beispielsweise für t = 1 der Radikand 9 +201 = 29 > 0 wird, sind also die Funktionswerte von 9 +20 t für t > - 9 20 größer 0 und für t < - 9 20 kleiner 0

Für t > - 9 20 ist also der Term unter der Wurzel positiv und es gibt zwei Lösungen.