nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

4 x 2 -4x +1 = 0

Lösung einblenden

4 x 2 -4x +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +4 ± ( -4 ) 2 -4 · 4 · 1 24

x1,2 = +4 ± 16 -16 8

x1,2 = +4 ± 0 8

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 4 8 = 1 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "4 " teilen:

4 x 2 -4x +1 = 0 |: 4

x 2 - x + 1 4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( 1 4 ) = 1 4 - 1 4 = 0 4 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 1 2 ± 0 = 1 2

L={ 1 2 }

1 2 ist 2-fache Lösung!

Nullprodukt

Beispiel:

Löse die folgende Gleichung:

x 2 = 4 3 x

Lösung einblenden
x 2 = 4 3 x | - 4 3 x
x 2 - 4 3 x = 0
1 3 x ( 3x -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

3x -4 = 0 | +4
3x = 4 |:3
x2 = 4 3

L={0; 4 3 }