nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Intervall Normalverteilung (einfach)

Beispiel:

Die Zufallsgröße X ist normalverteilt mit dem Erwartungswert μ=3 und der Standardabweichung σ=1.4 .

Berechne P(1 ≤ X ≤ 2.4).

Runde dein Ergebnis auf 3 Stellen hinter dem Komma.

Lösung einblenden

Hier kann man einfach die WTR-Befehle ("Normalcdf" beim TI, bzw. "Kumul. Normal-V" beim Casio) verwenden: μ und σ, dann die Intervallgrenzen eingeben - und schon kann man das Ergebnis ablesen.

P(1 ≤ X ≤ 2.4) ≈ 0.2576

Intervall Normalverteilung rückwärts

Beispiel:

Die Zufallsgröße X ist normalverteilt mit dem Erwartungswert μ=40 und der Standardabweichung σ=5.5 .

Es gilt P(X ≤ k) = 0.2. Bestimme k.

Runde auf eine Stelle hinter dem Komma genau.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Der WTR liefert für P(X ≤ k) = 0.2 den Wert k ≈ 35.371.

(TI: invNormal, Casio: Inv. Normal-V. )

Normalverteilung Anwendung

Beispiel:

Eine Firma produziert 80 mm lange Schrauben. Aufgrund mehrerer Faktoren beim Produktionsprozess treten Schwankungen bei der tatsächlichen Länge auf. Dabei beträgt die Standardabweichung 0,3 mm. Bestimme die Wahrscheinlichkeit, dass eine zufällig gewählte Schraube größer oder gleich 79,9 mm ist.
(Bitte auf 3 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X beschreibt die Schraubenlänge in mm, sie wird als normalverteilt angenommen mit dem Erwartungswert μ = 80 und der Standardabweichung σ = 0.3.

Somit kann man einfach die WTR-Befehle ("Normalcdf" beim TI, bzw. "Kumul. Normal-V" beim Casio) verwenden: Erst μ und σ, dann die Intervallgrenzen eingeben. Die rechte Intervallgrenze wäre hier jedoch + ∞. Stattdessen kann man einfach einen sehr großen Wert eingeben, z.B.: 10000000.

Jetzt lässt sich das Ergebnis ablesen: P(X ≥ 79.9) ≈ 0.6306

Normalverteilung Anwendung (rückwärts)

Beispiel:

Eine Firma produziert 70 mm lange Schrauben. Aufgrund mehrerer Faktoren beim Produktionsprozesse treten Schwankungen bei der tatsächlichen Länge auf. Dabei beträgt die Standardabweichung 0,2 mm. Wie kurz darf dann eine Schraube höchstens sein, damit sie zu den kürzesten 30% der Schrauben gehört.
(Bitte auf 2 Stellen nach dem Komma runden, ohne Einheiten eingeben!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Zufallsgröße X beschreibt die Schraubenlänge in mm, sie wird als normalverteilt angenommen mit dem Erwartungswert μ = 70 und der Standardabweichung σ = 0.2.

Gesucht ist somit das k, so dass P(X ≤ k) = 0.3 gilt.

Der WTR liefert für P(X ≤ k) = 0.3 den Wert k ≈ 69.895.

(TI: invNormal, Casio: Inv. Normal-V. )

Mittelwert, Standardabw. ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Zufallsgröße X ist normalverteilt. Ihr Schaubild zeigt die zugehörige Gauß'sche Glockenkurve mit den ganzzahligen Parametern μ und σ.

Gib die Werte für μ und σ an.

Lösung einblenden

Den Mittelwert μ= -5 kann man einfach am x-Wert des Hochpunkts der Glockenkurve ablesen.

Die Standardabweichung σ = 3 kann man am Abstand der x-Werte des Hochpunkts vom Wendepunkt ablesen.

Dichtefunktion aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Zufallsgröße X ist normalverteilt. Ihr Schaubild zeigt die zugehörige Gauß'sche Glockenkurve mit den ganzzahligen Parametern μ und σ.

Gib den Funktionsterm der Dichtefunktion an.

Lösung einblenden

Den Mittelwert μ= 5 kann man einfach am x-Wert des Hochpunkts der Glockenkurve ablesen.

Die Standardabweichung σ = 5 kann man am Abstand der x-Werte des Hochpunkts vom Wendepunkt ablesen.

Eingesetzt in die allgemeine Dichtefunktion: φ(x) = 1 σ · 2π · e - 1 2 ( x - μ σ ) 2 ergibt:

φ(x) = 1 5 2π · e - 1 2 ( x -5 5 ) 2

μ und σ ablesen und Intervall berechnen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Zufallsgröße X ist normalverteilt. Ihr Schaubild zeigt die zugehörige Gauß'sche Glockenkurve mit den ganzzahligen Parametern μ und σ.

Gib die Werte für μ und σ an und berechne damit die eingefärbte Fläche.

Lösung einblenden

Den Mittelwert μ= -5 kann man einfach am x-Wert des Hochpunkts der Glockenkurve ablesen.

Die Standardabweichung σ = 2 kann man am Abstand der x-Werte von Hochpunkt und Wendepunkt ablesen.

Jetzt kann man einfach einfach die WTR-Befehle ("Normalcdf" beim TI, bzw. "Kumul. Normal-V" beim Casio) verwenden: μ und σ, dann die Intervallgrenzen eingeben - und schließlich das Ergebnis ablesen:

P(-9 ≤ X ≤ -7) ≈ 0.1359

Symmetrie nutzen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Zufallsgröße X ist normalverteilt. Ihr Schaubild zeigt die zugehörige Gauß'sche Glockenkurve mit einem ganzzahligen Erwartungswert μ. Der Inhalt der gefärbten Fläche beträgt 0.221.

Bestimme P(0 ≤ X ≤ 2).

Gib die Wahrscheinlichkeit auf 3 Stellen nach dem Komma genau an.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir wissen, dass das Schaubild einer normalverteilten Zufallsgröße achsenssymmetrisch zur senkrechten Gerade durch den Hochpunkt ist, hier also zu x = 1.

Somit gilt auch für den helleren blauen Flächeninhalt, der der Wahrscheinlichkeit P( X ≥ 2) entspricht: P( X ≥ 2) = 0.221.

Für die roten Fläche(n) ergibt sich dann die Restwahrscheinlichkeit:
1 - 0.221 - 0.221 = 0.558,

also P(0 ≤ X ≤ 2) = 0.558

Standardabweichung bestimmen

Beispiel:

Der Punkt P(-7|0.0798) liegt auf der Gauß'schen Glockenkurve mit ganzzahligem Parameter σ und μ = -7.

Bestimme die Standardabweichung σ.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Der gegebene Punkt ist der Hochpunkt der Gauß' schen Glockenkurve, weil ja der gegebene x-Wert gerade dem Erwartungswert μ = -7 entspricht.

Um einen ersten möglichen Wert für eine Standardabweichung σ zu bekommen, berechen wir am besten den Quotient von 0,5 und dem y-Wert der gegebenen Hochpunkts, also 0.5 0.0798 ≈ 6.266 und runden diesen auf σ1 = 6.

Damit berechnen wir nun den y-Wert der Glockenkurve (mit μ = -7 und σ1=6) an der gegebenen Stelle x = -7 und erhalten f1(-7) = 0.0665
(TI: DISTR -> 1: Normalpdf; Casio: Dichte ..).

Wir wissen ja: Je größer das σ ist, desto breiter wird die Glockenkurve. Da ja aber die ganze Fläche unter der Glockenkurve (die ja der Gesamt-Wahrscheinlichkeit für alles entspricht) immer genau 1 ist, muss die breitere Glockenkurve dementsprechend auch flacher und damit mit einem niedrigeren Hochpunkt ausfallen. Somit gilt:

Je höher das σ, desto niedriger der y-Wert des Hochpunkts.

Und da der y-Wert unserer ersten Kurve mit σ1=6 (in der Abbilung in grün) zu tief war, muss also σ1 zu groß sein und wir müssen jetzt eben schrittweise kleinere Standardabweichungen σ durchprobieren und die zugehörigen y-Werte an der Stelle x = -7 berechnen:

μ = -7σ = 5f(-7) = 0.0798

Somit muss die gesuchte Standardabweichung σ = 5 sein.

Sigmaregel rückwärts

Beispiel:

X ist normalverteilt mit μ = 110 und σ. Es gilt P(110 ≤ X ≤ 146) ≈ 0,4985. Bestimme σ.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Es gilt: P(110 ≤ X ≤ 146) ≈ 0,4985
oder anders ausgedrückt:
P(μ ≤ X ≤ μ + 36) ≈ 0.997 2

Wegen der Symmetrie der Gauß'schen Glockenkurve gilt dann:
P(μ - 36 ≤ X ≤ μ + 36) ≈ 0,997

Aufgrund der Sigma-Regel P(μ - 3⋅σ ≤ X ≤ μ - 3⋅σ) ≈ 0.997
muss also 3⋅σ = 36 sein.

Für die Standardabweichung gilt somit: σ = 12 .

variabler Erwartungswert (Anwendungen)

Beispiel:

Bei einer Getränkeabfüllanlage kann man die Füllmenge der Flaschen auf ganze ml einstellen. Trotzdem ist dann nicht in allen abgefüllten Flaschen ganz exakt gleich viel drin. Man kann aber davon ausgehen, dass die tatsächliche Füllmenge normalverteilt ist mit der eingestellten Füllmenge als Erwartungswert und einer Standardabweichung von 1,5 ml. Auf welchen Wert (ganzzahlig in ml) muss man die Abfüllanlage mindestens einstellen, damit in einer zufällig abgefüllten Flasche mit einer Wahrscheinlichkeit von mindestens 75% mindestens 700 ml drin ist?

Lösung einblenden

Die Zufallsgröße X beschreibt die Abfüllmenge in ml.

Zunächst untersuchen wir die Wahrscheinlichkeit, wenn der Erwartungswert μ = 700 gewählt würde. Aus Symmetriegründen wäre dann aber P(X ≥ 700) = 0,5.

Deswegen wird nun der Erwartungswert schrittweise immer um eine Einheit erhöht, bis die gesuchte Wahrscheinlichkeit P(X ≥ 700) mindestens 0.75 ist:

μ = 700: P(X ≥ 700) = 0.5

μ = 701: P(X ≥ 700) = 0.7475

μ = 702: P(X ≥ 700) = 0.9088

Man muss also den Erwartungswert auf mindestens μ = 702 einstellen.

Normalverteilung variables σ

Beispiel:

Eine Maschine soll Schrauben der Länge 9 mm herstellen. Ein Kunde will die Maschine aber nur kaufen, wenn die Wahrscheinlichkeit kleiner als 20% ist, dass die Länge einer Schraube um mehr als 0,5 mm von den geforderten 9 mm abweicht. Man kann davon ausgehen, dass die Schraubenlänge normalverteilt ist mit dem Erwartungswert 9. Welche Standardabweichung (auf eine Stelle hinter dem Komma genau) darf die Normalverteilung dieser Maschine höchstens haben?

Lösung einblenden

Die Zufallsgröße X beschreibt die Schraubenlänge in mm.

Gesucht ist die Standardabweichung σ, so dass P(X ≤ 8.5) + P(X ≥ 9.5) < 20% oder eben, dass P(8.5 ≤ X ≤ 9.5) ≥ 0.8 gilt.

Je kleiner das σ ist, desto enger und höher ist die Glockenkurve der Dichtefunktion. Wir starten also mit einem sehr kleinen σ und erhöhen dieses so lange, bis P(8.5 ≤ X ≤ 9.5) unter die 0.8 sinkt:

σ = 0.1: P(8.5 ≤ X ≤ 9.5) ≈ 1

σ = 0.2: P(8.5 ≤ X ≤ 9.5) ≈ 0.9876

σ = 0.3: P(8.5 ≤ X ≤ 9.5) ≈ 0.9044

σ = 0.4: P(8.5 ≤ X ≤ 9.5) ≈ 0.7887

Die Standardabweichung darf also höchstens σ = 0.3 einstellen.

Normalverteilung Anwendung

Beispiel:

Ein exotisches Insekt wird im Mittel 5 cm lang. Dabei beträgt die Standardabweichung der Körperlänge 1 cm.Bestimme die Wahrscheinlichkeit, dass ein zufällig gewähltes Insekt größer oder gleich 5 cm ist.
(Bitte auf 3 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X beschreibt die Körperlänge des Insekts im cm, sie wird als normalverteilt angenommen mit dem Erwartungswert μ = 5 und der Standardabweichung σ = 1.

Somit kann man einfach die WTR-Befehle ("Normalcdf" beim TI, bzw. "Kumul. Normal-V" beim Casio) verwenden: Erst μ und σ, dann die Intervallgrenzen eingeben. Die rechte Intervallgrenze wäre hier jedoch + ∞. Stattdessen kann man einfach einen sehr großen Wert eingeben, z.B.: 10000000.

Jetzt lässt sich das Ergebnis ablesen: P(X ≥ 5) ≈ 0.5

Kombination Normal- und Binomialverteilung

Beispiel:

Eine Firma produziert 40 mm lange Schrauben. Aufgrund mehrerer Faktoren beim Produktionsprozess treten Schwankungen bei der tatsächlichen Länge auf. Dabei beträgt die Standardabweichung 0,5 mm. Die Schrauben werden dabei in Kartons mit 60 Stück verpackt. Ist eine Schraube kürzer als 39,7 mm, so gilt sie als zu kurz. Wie groß ist die Wahrscheinlichkeit, dass in einem zufällig gewählten Karton nicht mehr als 13 Schrauben zu kurz sind?

Lösung einblenden

Zuerst berechnen wir die Wahrscheinlichkeit dafür, dass eine Schraube als zu kurz gilt. Die Zufallsgröße Y beschreibt dabei die Schraubenlänge in mm, sie wird als normalverteilt angenommen mit dem Erwartungswert μ = 40 und der Standardabweichung σ = 0.5.

Mit derm WTR lässt sich so P(Y ≤ 39.7) ≈ 0.2743 berechnen.

(TI: Normalcdf, Casio: Kumul. Normal-V. )

Und weil dies für jedes der 60 Exemplare gilt, können wir die Zufallsgröße X (, die die Anzahl der zu kurzen Schrauben in einem Karton zählt) als binomialverteilt mit n = 60 und p = 0.274 annehmen.

Für die gesuchte Wahrscheinlichkeit gilt somit:
P0.27460 (X13) =

P0.27460 (X13) = 0.1979

(TI-Befehl: binomcdf(60,0.274,13) - binomcdf(60,0.274,-1))

Die gesuchte Wahrscheinlichkeit beträgt somit ca. 19,8%.

Kombination Normal- und Binomialverteilung rw

Beispiel:

Die Äpfel einer großen Plantage haben in einem bestimmten Jahr im Mittel einen "Durchmesser" von 10,1 cm und eine Standardabweichung von 2 cm. Der Großhandel nimmt nur Äpfel an, die zwischen 8 und 11 cm groß sind. Wie viele Äpfel muss man mindestens ernten, um mit einer Wahrscheinlichkeit von mindestens 70% mindestens 50 Stück an den Großhandel verkaufen zu können?

Lösung einblenden

Zuerst berechnen wir die Wahrscheinlichkeit dafür, dass ein zufällig gewählter Apfel im geforderten Größenbereich liegt. Die Zufallsgröße Y beschreibt dabei den Durchmessers eines Apfels, sie wird als normalverteilt angenommen mit dem Erwartungswert μ = 10.1 und der Standardabweichung σ = 2.

Mit derm WTR lässt sich so P(8 ≤ Y ≤ 11) ≈ 0.526786 berechnen.

(TI: Normalcdf, Casio: Kumul. Normal-V. )

Und weil dies für jedes Exemplar gilt, können wir die Zufallsgröße X (, die die Anzahl der Äpfel im geforderten Größenbereich zählt) als binomialverteilt mit unbekanntem n und p = 0.526786 annehmen.

nP(X≤k)
......
950.4548
960.4127
970.3721
980.3332
990.2964
......

Die Zufallsgröße X gibt Äpfel im geforderten Größenbereich an und ist im Idealfall binomialverteilt mit p = 0.526786 und variablem n.

Es muss gelten: P0.527n (X50) ≥ 0.7

Weil man ja aber P0.527n (X50) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.527n (X50) = 1 - P0.527n (X49) ≥ 0.7 |+ P0.527n (X49) - 0.7

0.3 ≥ P0.527n (X49) oder P0.527n (X49) ≤ 0.3

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 52.6786% der Versuche mit einem Treffer. Also müssten dann doch bei 50 0.526786 ≈ 95 Versuchen auch ungefähr 50 (≈0.526786⋅95) Treffer auftreten.

Wir berechnen also mit unserem ersten n=95:
P0.527n (X49) ≈ 0.4548 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.3 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.3 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=99 die gesuchte Wahrscheinlichkeit unter 0.3 ist.

n muss also mindestens 99 sein, damit P0.527n (X49) ≤ 0.3 oder eben P0.527n (X50) ≥ 0.7 gilt.