nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Intervall Normalverteilung (einfach)

Beispiel:

Die Zufallsgröße X ist normalverteilt mit dem Erwartungswert μ=4 und der Standardabweichung σ=2.2 .

Berechne P(X ≥ 1.8).

Runde dein Ergebnis auf 3 Stellen hinter dem Komma.

Lösung einblenden

Hier kann man einfach die WTR-Befehle ("Normalcdf" beim TI, bzw. "Kumul. Normal-V" beim Casio) verwenden: Erst μ und σ, dann die Intervallgrenzen eingeben. Die rechte Intervallgrenze wäre hier jedoch + ∞. Stattdessen kann man einfach einen sehr großen Wert eingeben, z.B.: 10000000.

Jetzt kann man das Ergebnis ablesen: P(X ≥ 1.8) ≈ 0.8413

Intervall Normalverteilung rückwärts

Beispiel:

Die Zufallsgröße X ist normalverteilt mit dem Erwartungswert μ=50 und der Standardabweichung σ=4 .

Es gilt P(X ≥ k) = 0.05. Bestimme k.

Runde auf eine Stelle hinter dem Komma genau.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Der WTR kann leider kein k berechnen mit P(X ≥ k) = 0.05, weil er immer nur ein k bei P(X ≤ k) = p berechnen kann.

Also nutzen wir aus, dass P(X ≤ k) = 0.95 (im Schaubild die blaue Fläche) gelten muss, wenn P(X ≥ k) = 0.05 (im Schaubild die rote Fläche) gilt.

Für P(X ≤ k) = 0.95 liefert der WTR k ≈ 56.579.

(TI: invNormal, Casio: Inv. Normal-V. )

Normalverteilung Anwendung

Beispiel:

Man geht davon aus, dass die Intelligenz bei Menschen normalverteilt ist. Ein Intelligenztest wird immer so skaliert, dass der Erwartungswert des IQ bei 100 und die Standardabweichung bei 15 liegt. Bestimme die Wahrscheinlichkeit, dass ein zufällig gewählter Mensch einen Intelligenzquotient größer oder gleich 76 hat.
(Bitte auf 3 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X beschreibt den Intelligenzquotient IQ, sie wird als normalverteilt angenommen mit dem Erwartungswert μ = 100 und der Standardabweichung σ = 15.

Somit kann man einfach die WTR-Befehle ("Normalcdf" beim TI, bzw. "Kumul. Normal-V" beim Casio) verwenden: Erst μ und σ, dann die Intervallgrenzen eingeben. Die rechte Intervallgrenze wäre hier jedoch + ∞. Stattdessen kann man einfach einen sehr großen Wert eingeben, z.B.: 10000000.

Jetzt lässt sich das Ergebnis ablesen: P(X ≥ 76) ≈ 0.9452

Normalverteilung Anwendung (rückwärts)

Beispiel:

Ein exotisches Insekt wird im Mittel 3 cm lang. Dabei beträgt die Standardabweichung der Körperlänge 0,6 cm. Wie lang muss dann ein solches Insekt mindenstens sein, damit es zu den längsten 65% dieser Insekten gehört.
(Bitte auf 2 Stellen nach dem Komma runden, ohne Einheiten eingeben!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Zufallsgröße X beschreibt die Körperlänge des Insekts im cm, sie wird als normalverteilt angenommen mit dem Erwartungswert μ = 3 und der Standardabweichung σ = 0.6.

Gesucht ist somit das k, so dass P(X ≥ k) = 0.65 gilt.

Der WTR kann leider kein k berechnen mit P(X ≥ k) = 0.65, weil er immer nur ein k bei P(X ≤ k) = p berechnen kann.

Also nutzen wir aus, dass P(X ≤ k) = 0.35 (im Schaubild die blaue Fläche) gelten muss, wenn P(X ≥ k) = 0.65 (im Schaubild die rote Fläche) gilt.

Für P(X ≤ k) = 0.35 liefert der WTR k ≈ 2.769.

(TI: invNormal, Casio: Inv. Normal-V. )

Mittelwert, Standardabw. ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Zufallsgröße X ist normalverteilt. Ihr Schaubild zeigt die zugehörige Gauß'sche Glockenkurve mit den ganzzahligen Parametern μ und σ.

Gib die Werte für μ und σ an.

Lösung einblenden

Den Mittelwert μ= -2 kann man einfach am x-Wert des Hochpunkts der Glockenkurve ablesen.

Die Standardabweichung σ = 2 kann man am Abstand der x-Werte des Hochpunkts vom Wendepunkt ablesen.

μ und σ ablesen und Interval berechnen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Zufallsgröße X ist normalverteilt. Ihr Schaubild zeigt die zugehörige Gauß'sche Glockenkurve mit den ganzzahligen Parametern μ und σ.

Gib die Werte für μ und σ an und berechne damit die eingefärbte Fläche.

Lösung einblenden

Den Mittelwert μ= 5 kann man einfach am x-Wert des Hochpunkts der Glockenkurve ablesen.

Die Standardabweichung σ = 5 kann man am Abstand der x-Werte des Hochpunkts vom Wendepunkt ablesen.

Jetzt kann man einfach einfach die WTR-Befehle ("Normalcdf" beim TI, bzw. "Kumul. Normal-V" beim Casio) verwenden: μ und σ, dann die Intervallgrenzen eingeben - und schließlich das Ergebnis ablesen:

P(-2 ≤ X ≤ 5) ≈ 0.4192

Symmetrie nutzen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Zufallsgröße X ist normalverteilt. Ihr Schaubild zeigt die zugehörige Gauß'sche Glockenkurve mit einem ganzzahligen Erwartungswert μ. Der Inhalt der gefärbten Fläche beträgt 0.298.

Bestimme P(X ≤ -5).

Gib die Wahrscheinlichkeit auf 3 Stellen nach dem Komma genau an.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir wissen, dass das Schaubild einer normalverteilten Zufallsgröße achsenssymmetrisch zur senkrechten Gerade durch den Hochpunkt ist, hier also zu x = -4.

Somit gilt auch für den helleren blauen Flächeninhalt, der der Wahrscheinlichkeit P(-5 ≤ X ≤ -4) entspricht: P(-5 ≤ X ≤ -4) = 0.298.

Die beiden roten Flächen teilen sich dann die Restwahrscheinlichkeit:
1 - 0.298 - 0.298 = 0.404

Aus den bereits oben genannten Symmetriegründen sind aber auch die beiden roten Flächen gleich groß, so dass für die gesuchte (dunklere) Fläche gilt:

P(X ≤ -5) = 0.404 2 = 0.202

Standardabweichung bestimmen

Beispiel:

Der Punkt P(3|0.0266) liegt auf der Gauß'schen Glockenkurve mit ganzzahligem Parameter σ und μ = 3.

Bestimme die Standardabweichung σ.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist ja der Hochpunkt der Gauß' schen Glockenkurve, weil ja der gegebene x-Wert gerade dem Erwartungswert μ = 3 entspricht.

Um einen ersten möglichen Wert für eine Standardabweichung σ zu bekommen, berechen wir am besten den Quotient von 0,5 und dem y-Wert der gegebenen Hochpunkts, also 0.5 0.0266 ≈ 18.797 und runden diesen auf σ1 = 19.

Damit berechnen wir nun den y-Wert der Glockenkurve (mit μ = 3 und σ1=19) an der gegebenen Stelle x = 3 und erhalten f1(3) = 0.021
(TI: DISTR -> 1: Normalpdf; Casio: Dichte ..).

Wir wissen ja: Je größer das σ ist, desto breiter wird die Glockenkurve. Da ja aber die ganze Fläche unter der Glockenkurve (die ja der Gesamt-Wahrscheinlichkeit für alles entspricht) immer genau 1 ist, muss die breitere Glockenkurve dementsprechend auch flacher und damit mit einem niedrigeren Hochpunkt ausfallen. Somit gilt:

Je höher das σ, desto niedriger der y-Wert des Hochpunkts.

Und das der y-Wert unserer ersten Kurve mit σ1=19 (in der Abbilung in grün) zu tief war, muss also σ1 zu groß sein und wir müssen jetzt eben schrittweise kleinere Standardabweichungen σ durchprobieren und die zugehörigen y-Werte an der Stelle x = 3 berechnen:

μ = 3σ = 18f(3) = 0.0222
μ = 3σ = 17f(3) = 0.0235
μ = 3σ = 16f(3) = 0.0249
μ = 3σ = 15f(3) = 0.0266

Somit muss die gesuchte Standardabweichung σ = 15 sein.

variabler Erwartungswert (Anwendungen)

Beispiel:

Bei einer Getränkeabfüllanlage kann man die Füllmenge der Flaschen auf ganze ml einstellen. Trotzdem ist dann nicht in allen abgefüllten Flaschen ganz exakt gleich viel drin. Man kann aber davon ausgehen, dass die tatsächliche Füllmenge normalverteilt ist mit der eingestellten Füllmenge als Erwartungswert und einer Standardabweichung von 3,5 ml. Auf welchen Wert (ganzzahlig in ml) muss man die Abfüllanlage mindestens einstellen, damit in einer zufällig abgefüllten Flasche mit einer Wahrscheinlichkeit von mindestens 75% mindestens 600 ml drin ist?

Lösung einblenden

Die Zufallsgröße X beschreibt die Abfüllmenge in ml.

Zunächst untersuchen wir die Wahrscheinlichkeit, wenn der Erwartungswert μ = 600 gewählt würde. Aus Symmetriegründen wäre dann aber P(X ≥ 600) = 0,5.

Deswegen wird nun der Erwartungswert schrittweise immer um eine Einheit erhöht, bis die gesuchte Wahrscheinlichkeit P(X ≥ 600) mindestens 0.75 ist:

μ = 600: P(X ≥ 600) = 0.5

μ = 601: P(X ≥ 600) = 0.6125

μ = 602: P(X ≥ 600) = 0.7161

μ = 603: P(X ≥ 600) = 0.8043

Man muss also den Erwartungswert auf mindestens μ = 603 einstellen.

Normalverteilung Anwendung

Beispiel:

Man geht davon aus, dass die Intelligenz bei Menschen normalverteilt ist. Ein Intelligenztest wird immer so skaliert, dass der Erwartungswert des IQ bei 100 und die Standardabweichung bei 15 liegt. Bestimme die Wahrscheinlichkeit, dass ein zufällig gewählter Mensch einen Intelligenzquotient größer oder gleich 79 hat.
(Bitte auf 3 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X beschreibt den Intelligenzquotient IQ, sie wird als normalverteilt angenommen mit dem Erwartungswert μ = 100 und der Standardabweichung σ = 15.

Somit kann man einfach die WTR-Befehle ("Normalcdf" beim TI, bzw. "Kumul. Normal-V" beim Casio) verwenden: Erst μ und σ, dann die Intervallgrenzen eingeben. Die rechte Intervallgrenze wäre hier jedoch + ∞. Stattdessen kann man einfach einen sehr großen Wert eingeben, z.B.: 10000000.

Jetzt lässt sich das Ergebnis ablesen: P(X ≥ 79) ≈ 0.9192

Kombination Normal- und Binomialverteilung

Beispiel:

Man geht davon aus, dass die Intelligenz bei Menschen normalverteilt ist. Ein Intelligenztest wird immer so skaliert, dass der Erwartungswert des IQ bei 100 und die Standardabweichung bei 15 liegt. Es werden 90 Menschen zufällig ausgesucht und getestet. Wie hoch ist dabei die Wahrscheinlichkeit, dass darunter mindestens 3 Hochbegabte, also mit einem IQ von mindestens 130, sind?

Lösung einblenden

Zuerst berechnen wir die Wahrscheinlichkeit dafür, dass ein zufällig gewählter Mensch hochbegabt ist. Die Zufallsgröße Y beschreibt dabei den Intelligenzquotient IQ, sie wird als normalverteilt angenommen mit dem Erwartungswert μ = 100 und der Standardabweichung σ = 15.

Mit derm WTR lässt sich so P(Y ≥ 130) ≈ 0.0228 berechnen.

(TI: Normalcdf, Casio: Kumul. Normal-V. )

Und weil dies für jedes der 90 Exemplare gilt, können wir die Zufallsgröße X (, die die Anzahl der hochbegabten Menschen mit einem IQ über 130 zählt) als binomialverteilt mit n = 90 und p = 0.023 annehmen.

Für die gesuchte Wahrscheinlichkeit gilt somit:
P0.02390 (X3) =

1 - P0.02390 (X2) ≈ 1 - 0.6637 = 0.3363

(TI-Befehl: binomcdf(90,0.023,90) - binomcdf(90,0.023,2))

Die gesuchte Wahrscheinlichkeit beträgt somit ca. 33,6%.

Kombination Normal- und Binomialverteilung rw

Beispiel:

Die Äpfel einer großen Plantage haben in einem bestimmten Jahr einen maximalen Durchmesser von 9,5 cm und eine Standardabweichung von 2,5 cm. Der Großhandel nimmt nur Äpfel an, die zwischen 8 und 11 cm groß sind. Wie viele Äpfel muss man mindestens ernten, um mit einer Wahrscheinlichkeit von mindestens 95% mindestens 50 Stück an den Großhandel verkaufen zu können?

Lösung einblenden

Zuerst berechnen wir die Wahrscheinlichkeit dafür, dass ein zufällig gewählter Apfel im geforderten Größenbereich liegt. Die Zufallsgröße Y beschreibt dabei den maximalen Durchmessers eines Apfels, sie wird als normalverteilt angenommen mit dem Erwartungswert μ = 9.5 und der Standardabweichung σ = 2.5.

Mit derm WTR lässt sich so P(8 ≤ Y ≤ 11) ≈ 0.4515 berechnen.

(TI: Normalcdf, Casio: Kumul. Normal-V. )

Und weil dies für jedes Exemplar gilt, können wir die Zufallsgröße X (, die die Anzahl der Äpfel im geforderten Größenbereich zählt) als binomialverteilt mit unbekanntem n und p = 0.4515 annehmen.

nP(X≤k)
......
1260.0925
1270.0805
1280.0698
1290.0603
1300.0519
1310.0445
......

Die Zufallsgröße X gibt Äpfel im geforderten Größenbereich an und ist im Idealfall binomialverteilt mit p = 0.4515 und variablem n.

Es muss gelten: P0.452n (X50) ≥ 0.95

Weil man ja aber P0.452n (X50) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.452n (X50) = 1 - P0.452n (X49) ≥ 0.95 |+ P0.452n (X49) - 0.95

0.05 ≥ P0.452n (X49) oder P0.452n (X49) ≤ 0.05

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 45.15% der Versuche mit einem Treffer. Also müssten dann doch bei 50 0.4515 ≈ 111 Versuchen auch ungefähr 50 (≈0.4515⋅111) Treffer auftreten.

Wir berechnen also mit unserem ersten n=111:
P0.452n (X49) ≈ 0.4544 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.05 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.05 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=131 die gesuchte Wahrscheinlichkeit unter 0.05 ist.

n muss also mindestens 131 sein, damit P0.452n (X49) ≤ 0.05 oder eben P0.452n (X50) ≥ 0.95 gilt.