nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Intervall Normalverteilung (einfach)

Beispiel:

Die Zufallsgröße X ist normalverteilt mit dem Erwartungswert μ=2 und der Standardabweichung σ=0.2 .

Berechne P(X ≤ 1.7).

Runde dein Ergebnis auf 3 Stellen hinter dem Komma.

Lösung einblenden

Hier kann man einfach die WTR-Befehle ("Normalcdf" beim TI, bzw. "Kumul. Normal-V" beim Casio) verwenden: Erst μ und σ, dann die Intervallgrenzen eingeben. Die linke Intervallgrenze wäre hier jedoch - ∞. Stattdessen kann man einfach einen sehr kleinen Wert eingeben, z.B.: -10000000.

Jetzt kann man das Ergebnis ablesen: P(X ≤ 1.7) ≈ 0.0668

Intervall Normalverteilung rückwärts

Beispiel:

Die Zufallsgröße X ist normalverteilt mit dem Erwartungswert μ=10 und der Standardabweichung σ=6 .

Es gilt P(X ≤ k) = 0.3. Bestimme k.

Runde auf eine Stelle hinter dem Komma genau.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Der WTR liefert für P(X ≤ k) = 0.3 den Wert k ≈ 6.854.

(TI: invNormal, Casio: Inv. Normal-V. )

Normalverteilung Anwendung

Beispiel:

Man geht davon aus, dass die Intelligenz bei Menschen normalverteilt ist. Ein Intelligenztest wird immer so skaliert, dass der Erwartungswert des IQ bei 100 und die Standardabweichung bei 15 liegt. Bestimme die Wahrscheinlichkeit, dass ein zufällig gewählter Mensch einen Intelligenzquotient größer oder gleich 97 hat.
(Bitte auf 3 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X beschreibt den Intelligenzquotient IQ, sie wird als normalverteilt angenommen mit dem Erwartungswert μ = 100 und der Standardabweichung σ = 15.

Somit kann man einfach die WTR-Befehle ("Normalcdf" beim TI, bzw. "Kumul. Normal-V" beim Casio) verwenden: Erst μ und σ, dann die Intervallgrenzen eingeben. Die rechte Intervallgrenze wäre hier jedoch + ∞. Stattdessen kann man einfach einen sehr großen Wert eingeben, z.B.: 10000000.

Jetzt lässt sich das Ergebnis ablesen: P(X ≥ 97) ≈ 0.5793

Normalverteilung Anwendung (rückwärts)

Beispiel:

Man geht davon aus, dass die Intelligenz bei Menschen normalverteilt ist. Ein Intelligenztest wird immer so skaliert, dass der Erwartungswert des IQ bei 100 und die Standardabweichung bei 15 liegt. Welchen IQ darf man höchstens haben, um zu den dümmsten 70% der Bevölkerung zu gehören.
(Bitte auf 2 Stellen nach dem Komma runden, ohne Einheiten eingeben!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Zufallsgröße X beschreibt den Intelligenzquotient IQ, sie wird als normalverteilt angenommen mit dem Erwartungswert μ = 100 und der Standardabweichung σ = 15.

Gesucht ist somit das k, so dass P(X ≤ k) = 0.7 gilt.

Der WTR liefert für P(X ≤ k) = 0.7 den Wert k ≈ 107.866.

(TI: invNormal, Casio: Inv. Normal-V. )

Mittelwert, Standardabw. ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Zufallsgröße X ist normalverteilt. Ihr Schaubild zeigt die zugehörige Gauß'sche Glockenkurve mit den ganzzahligen Parametern μ und σ.

Gib die Werte für μ und σ an.

Lösung einblenden

Den Mittelwert μ= 5 kann man einfach am x-Wert des Hochpunkts der Glockenkurve ablesen.

Die Standardabweichung σ = 5 kann man am Abstand der x-Werte des Hochpunkts vom Wendepunkt ablesen.

μ und σ ablesen und Interval berechnen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Zufallsgröße X ist normalverteilt. Ihr Schaubild zeigt die zugehörige Gauß'sche Glockenkurve mit den ganzzahligen Parametern μ und σ.

Gib die Werte für μ und σ an und berechne damit die eingefärbte Fläche.

Lösung einblenden

Den Mittelwert μ= 4 kann man einfach am x-Wert des Hochpunkts der Glockenkurve ablesen.

Die Standardabweichung σ = 1 kann man am Abstand der x-Werte des Hochpunkts vom Wendepunkt ablesen.

Jetzt kann man einfach einfach die WTR-Befehle ("Normalcdf" beim TI, bzw. "Kumul. Normal-V" beim Casio) verwenden: μ und σ, dann die Intervallgrenzen eingeben - und schließlich das Ergebnis ablesen:

P(3 ≤ X ≤ 4) ≈ 0.3413

Symmetrie nutzen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Zufallsgröße X ist normalverteilt. Ihr Schaubild zeigt die zugehörige Gauß'sche Glockenkurve mit einem ganzzahligen Erwartungswert μ. Der Inhalt der gefärbten Fläche beträgt 0.452.

Bestimme P( X ≥ 2).

Gib die Wahrscheinlichkeit auf 3 Stellen nach dem Komma genau an.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir wissen, dass das Schaubild einer normalverteilten Zufallsgröße achsenssymmetrisch zur senkrechten Gerade durch den Hochpunkt ist, hier also zu x = 0.

Somit gilt auch für den helleren blauen Flächeninhalt, der der Wahrscheinlichkeit P(0 ≤ X ≤ 2) entspricht: P(0 ≤ X ≤ 2) = 0.452.

Die beiden roten Flächen teilen sich dann die Restwahrscheinlichkeit:
1 - 0.452 - 0.452 = 0.096

Aus den bereits oben genannten Symmetriegründen sind aber auch die beiden roten Flächen gleich groß, so dass für die gesuchte (dunklere) Fläche gilt:

P( X ≥ 2) = 0.096 2 = 0.048

Standardabweichung bestimmen

Beispiel:

Der Punkt P(9|0.1995) liegt auf der Gauß'schen Glockenkurve mit ganzzahligem Parameter σ und μ = 9.

Bestimme die Standardabweichung σ.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist ja der Hochpunkt der Gauß' schen Glockenkurve, weil ja der gegebene x-Wert gerade dem Erwartungswert μ = 9 entspricht.

Um einen ersten möglichen Wert für eine Standardabweichung σ zu bekommen, berechen wir am besten den Quotient von 0,5 und dem y-Wert der gegebenen Hochpunkts, also 0.5 0.1995 ≈ 2.506 und runden diesen auf σ1 = 3.

Damit berechnen wir nun den y-Wert der Glockenkurve (mit μ = 9 und σ1=3) an der gegebenen Stelle x = 9 und erhalten f1(9) = 0.133
(TI: DISTR -> 1: Normalpdf; Casio: Dichte ..).

Wir wissen ja: Je größer das σ ist, desto breiter wird die Glockenkurve. Da ja aber die ganze Fläche unter der Glockenkurve (die ja der Gesamt-Wahrscheinlichkeit für alles entspricht) immer genau 1 ist, muss die breitere Glockenkurve dementsprechend auch flacher und damit mit einem niedrigeren Hochpunkt ausfallen. Somit gilt:

Je höher das σ, desto niedriger der y-Wert des Hochpunkts.

Und das der y-Wert unserer ersten Kurve mit σ1=3 (in der Abbilung in grün) zu tief war, muss also σ1 zu groß sein und wir müssen jetzt eben schrittweise kleinere Standardabweichungen σ durchprobieren und die zugehörigen y-Werte an der Stelle x = 9 berechnen:

μ = 9σ = 2f(9) = 0.1995

Somit muss die gesuchte Standardabweichung σ = 2 sein.

variabler Erwartungswert (Anwendungen)

Beispiel:

Bei einem Riesenrad kann man die Laufzeit für eine Umdrehung immer auf ganze Sekunden einstellen. Trotzdem ist dann nicht jede Umdrehung exakt gleich lang. Man kann aber davon ausgehen, dass die Umdrehungszeit normalverteilt ist mit der eingestellten Zeitdauer als Erwartungswert und einer Standardabweichung von 3,5 s. Ein Schausteller bewirbt sein Riesenrad mit einer Umlaufzeit von 4 min. Auf welchen Wert (ganzzahlig in s) muss man das Riesenrad einstellen, so dass eine Umdrehung mit einer Wahrscheinlichkeit von mindestens 90% mindestens die 4 min lang ist?

Lösung einblenden

Die Zufallsgröße X beschreibt die Laufzeit des Riesenrads für eine Umdrehung in Sekunden.

Zunächst untersuchen wir die Wahrscheinlichkeit, wenn der Erwartungswert μ = 240 gewählt würde. Aus Symmetriegründen wäre dann aber P(X ≥ 240) = 0,5.

Deswegen wird nun der Erwartungswert schrittweise immer um eine Einheit erhöht, bis die gesuchte Wahrscheinlichkeit P(X ≥ 240) mindestens 0.9 ist:

μ = 240: P(X ≥ 240) = 0.5

μ = 241: P(X ≥ 240) = 0.6125

μ = 242: P(X ≥ 240) = 0.7161

μ = 243: P(X ≥ 240) = 0.8043

μ = 244: P(X ≥ 240) = 0.8735

μ = 245: P(X ≥ 240) = 0.9234

Man muss also den Erwartungswert auf mindestens μ = 245 einstellen.

Normalverteilung Anwendung (rückwärts)

Beispiel:

Ein exotisches Insekt wird im Mittel 6 cm lang. Dabei beträgt die Standardabweichung der Körperlänge 1 cm. Wie lang muss dann ein solches Insekt mindenstens sein, damit es zu den längsten 45% dieser Insekten gehört.
(Bitte auf 2 Stellen nach dem Komma runden, ohne Einheiten eingeben!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Zufallsgröße X beschreibt die Körperlänge des Insekts im cm, sie wird als normalverteilt angenommen mit dem Erwartungswert μ = 6 und der Standardabweichung σ = 1.

Gesucht ist somit das k, so dass P(X ≥ k) = 0.45 gilt.

Der WTR kann leider kein k berechnen mit P(X ≥ k) = 0.45, weil er immer nur ein k bei P(X ≤ k) = p berechnen kann.

Also nutzen wir aus, dass P(X ≤ k) = 0.55 (im Schaubild die blaue Fläche) gelten muss, wenn P(X ≥ k) = 0.45 (im Schaubild die rote Fläche) gilt.

Für P(X ≤ k) = 0.55 liefert der WTR k ≈ 6.126.

(TI: invNormal, Casio: Inv. Normal-V. )

Kombination Normal- und Binomialverteilung

Beispiel:

Ein exotisches Insekt wird im Mittel 45 mm lang. Dabei beträgt die Standardabweichung der Körperlänge 7 mm. Ein Forscher entdeckt insgesamt 60 solcher Insekten. Bestimme die Wahrscheinlichkeit dafür, dass mindestens 3, aber nicht mehr als 6 dieser Insekten größer als 52 mm sind.

Lösung einblenden

Zuerst berechnen wir die Wahrscheinlichkeit dafür, dass ein Insekt die geforderte Größe hat. Die Zufallsgröße Y beschreibt dabei die Körperlänge des Insekts, sie wird als normalverteilt angenommen mit dem Erwartungswert μ = 45 und der Standardabweichung σ = 7.

Mit derm WTR lässt sich so P(Y ≥ 52) ≈ 0.1587 berechnen.

(TI: Normalcdf, Casio: Kumul. Normal-V. )

Und weil dies für jedes der 60 Exemplare gilt, können wir die Zufallsgröße X (, die die Anzahl der Insekten mit der geforderten Mindestgröße zählt) als binomialverteilt mit n = 60 und p = 0.159 annehmen.

Für die gesuchte Wahrscheinlichkeit gilt somit:
P0.15960 (3X6) =

...
0
1
2
3
4
5
6
7
8
...

P0.15960 (X6) - P0.15960 (X2) ≈ 0.141 - 0.0024 = 0.1386

(TI-Befehl: binomcdf(60,0.159,6) - binomcdf(60,0.159,2))

Die gesuchte Wahrscheinlichkeit beträgt somit ca. 13,9%.

Kombination Normal- und Binomialverteilung rw

Beispiel:

Man geht davon aus, dass die Intelligenz bei Menschen normalverteilt ist. Ein Intelligenztest wird immer so skaliert, dass der Erwartungswert des IQ bei 100 und die Standardabweichung bei 15 liegt. Wie viele Menschen müsste man zufällig wählen, damit die Wahrscheinlichkeit mindestens 60% beträgt, dass darunter mindestens 4 Hochbegabte (mit einem IQ von mindestens 130) sind?

Lösung einblenden

Zuerst berechnen wir die Wahrscheinlichkeit dafür, dass ein zufällig gewählter Mensch hochbegabt ist. Die Zufallsgröße Y beschreibt dabei den Intelligenzquotient IQ, sie wird als normalverteilt angenommen mit dem Erwartungswert μ = 100 und der Standardabweichung σ = 15.

Mit derm WTR lässt sich so P(Y ≥ 130) ≈ 0.02275 berechnen.

(TI: Normalcdf, Casio: Kumul. Normal-V. )

Und weil dies für jedes Exemplar gilt, können wir die Zufallsgröße X (, die die Anzahl der die hochbegabten Menschen mit einem IQ über 130 zählt) als binomialverteilt mit unbekanntem n und p = 0.02275 annehmen.

nP(X≤k)
......
1780.4215
1790.4171
1800.4127
1810.4084
1820.404
1830.3997
......

Die Zufallsgröße X gibt die hochbegabten Menschen mit einem IQ über 130 an und ist im Idealfall binomialverteilt mit p = 0.02275 und variablem n.

Es muss gelten: P0.023n (X4) ≥ 0.6

Weil man ja aber P0.023n (X4) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.023n (X4) = 1 - P0.023n (X3) ≥ 0.6 |+ P0.023n (X3) - 0.6

0.4 ≥ P0.023n (X3) oder P0.023n (X3) ≤ 0.4

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 2.275% der Versuche mit einem Treffer. Also müssten dann doch bei 4 0.02275 ≈ 176 Versuchen auch ungefähr 4 (≈0.02275⋅176) Treffer auftreten.

Wir berechnen also mit unserem ersten n=176:
P0.023n (X3) ≈ 0.4304 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.4 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.4 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=183 die gesuchte Wahrscheinlichkeit unter 0.4 ist.

n muss also mindestens 183 sein, damit P0.023n (X3) ≤ 0.4 oder eben P0.023n (X4) ≥ 0.6 gilt.