nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Kettenregel ohne e-Fktn (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= 1 3 cos( - 1 3 x +4 ) und vereinfache:

Lösung einblenden

f(x)= 1 3 cos( - 1 3 x +4 )

f'(x)= - 1 3 sin( - 1 3 x +4 ) · ( - 1 3 +0 )

= - 1 3 sin( - 1 3 x +4 ) · ( - 1 3 )

= 1 9 sin( - 1 3 x +4 )

Kettenregel ohne e-Fktn 2 (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= ( 1 2 x +2 ) 3 und vereinfache:

Lösung einblenden

f(x)= ( 1 2 x +2 ) 3

f'(x)= 3 ( 1 2 x +2 ) 2 · ( 1 2 +0 )

= 3 ( 1 2 x +2 ) 2 · ( 1 2 )

= 3 2 ( 1 2 x +2 ) 2

Kettenregel ohne e-Fktn (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= - 3 x 2 -5 und vereinfache:

Lösung einblenden

f(x)= - 3 x 2 -5

= - ( 3 x 2 -5 ) 1 2

=> f'(x) = - 1 2 ( 3 x 2 -5 ) - 1 2 · ( 6x +0 )

f'(x)= - 1 2 3 x 2 -5 · ( 6x +0 )

= - 1 2 3 x 2 -5 · ( 6x )

= -3 x 3 x 2 -5

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(2).

Lösung einblenden

Wir können der Zeichnung rechts f(2) = 0 entnehmen.

Also gilt h(2) = g(f(2)) = g(0)

g(0) können wir auch wieder am (blauen) Graph ablesen:
h(2) = g(f(2)) = g(0) = 0.

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = 0 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = 0 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(-2|0), der auf dem Graph von g liegt, also gilt:
0 = g(-2)
Wegen 0 = h(x)= g(f(x))= g(-2) gilt also f(x) = -2.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =-2 sind.

Diese erkennen wir bei Q1(2|-2) und Q2(0|-2), also bei
x1 = 2 und x2 = 0

Verkettung von f und f' (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(-1)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(-1) = 0 entnehmen.

Wir suchen also f(f '(-1)) = f(0).

f(0) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(-1)) = f(0) = 3 2 .

Summe f(x) und f'(x) (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(1) + f '(1).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der Tangente eingezeichneten Tangente f '(1) = 0 entnehmen.

Außerdem können wir natürlich f(1) = -2 am Schaubild ablesen:

Also gilt: f(1) + f '(1) = -2 + 0 = -2.

nur Produktregel ohne e-Fktn

Beispiel:

Berechne die Ableitung von f mit f(x)= sin( x ) · cos( x ) und vereinfache:

Lösung einblenden

f(x)= sin( x ) · cos( x )

f'(x)= cos( x ) · cos( x ) + sin( x ) · ( - sin( x ) )

= ( cos( x ) ) 2 - sin( x ) · sin( x )

= ( cos( x ) ) 2 - ( sin( x ) ) 2

Ketten- und Produktregel (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= -3 ( -2x -3 ) 4 und vereinfache:

Lösung einblenden

f(x)= -3 ( -2x -3 ) 4

f'(x)= -12 ( -2x -3 ) 3 · ( -2 +0 )

= -12 ( -2x -3 ) 3 · ( -2 )

= 24 ( -2x -3 ) 3

Ketten- und Produktregel (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= ( x -7 ) · sin( 3x ) und vereinfache:

Lösung einblenden

f(x)= ( x -7 ) · sin( 3x )

f'(x)= ( 1 +0 ) · sin( 3x ) + ( x -7 ) · cos( 3x ) · 3

= sin( 3x ) + ( x -7 ) · 3 cos( 3x )

= sin( 3x ) +3 ( x -7 ) · cos( 3x )

Kettenregel graphisch

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=f(g(x)).
Bestimme h(2) und h '(2).

Lösung einblenden

Berechnung von h(2) = f(g(2))

Wir können der Zeichnung rechts g(2) = -2 entnehmen.

Also gilt h(2) = f(g(2)) = g(-2)

g(-2) können wir auch wieder am (blauen) Graph ablesen:
h(2) = f(g(2)) = f(-2) = 0.

Berechnung von h '(2)

Um h '(2) zu berechnen, müssen wir zuerst die Kettenregel anwenden

h '(2) = f '(g(2)) ⋅ g'(2)

Wir haben ja bereits oben der Zeichnung g(2) = -2 entnommen.

f '(g(2)) = f '(-2) erhalten wir, indem wir die Tangentensteigung an den Graph von f an der Stelle x = -2 ablesen (siehe grüne Tangente):

f '(g(2)) = f' (-2) ≈ -2

Damit fehlt nur g'(2), was sich ja einfach als Steigung der blauen Geraden ablesen lässt (weil die Steigung bei dieser Geraden an jeder Stelle gleich ist).

g' (2) = m = 0.5

Somit erhalten wir:

h '(2) = = f '(g(2)) ⋅ g'(2) = f' (-2) ⋅ g'(2) ≈ -2 ⋅ 0.5 ≈ -1.

Anzahl Nullstellen bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= 2( x -3 ) und der Graph einer Funktion g (in der Abbildung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?

Lösung einblenden

Zuerst bestimmen wir die Nullstellen der Funktion f:

2( x -3 ) = 0
2x -6 = 0 | +6
2x = 6 |:2
x = 3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das bedeutet, dass f(3)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch gerade die x-Werte sein, für die g(x) = 3 gilt, denn dann gilt ja f(g(x)) = f( 3) = 0.

Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = 3 besitzt.

Man erkennt - notfalls durch Einzeichnen einer Geraden y = 3, dass dies gerade 1 Schnittpunkts sind.

Das heißt, dass dieser 1 x-Wert dieses Schnittpunkts alle Lösungen von f(g(x)) = f( 3) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 -25
und der Graph einer Funktion g (in der Abbildung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x )⋅g(x) + ( x 2 -25 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = -4 und bei x = 4 sind.
Der Extrempunkt des Graphs liegt bei x = 0, (also gilt g '(0) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 -25 = 0 | +25
x 2 = 25 | 2
x1 = - 25 = -5
x2 = 25 = 5

Für die Ableitung von f mit f(x)= x 2 -25 gilt: f'(x)= 2x . Diese setzen wir = 0:

2x = 0 |:2
x = 0

Wir haben also sowohl bei f als auch bei g eine eine Extremstelle bei x = 0, wodurch mit f'(0)=0 und g'(0)=0 in beiden Summanden der Produktregel eine Null als Faktor vorhanden ist.
es gilt also h'(0) = f'(0)⋅g(0) + f(0)⋅g'(0) = 0⋅g(0) + f(0)⋅0 = 0.

Damit hat h an der Stelle x = 0 eine waagrechte Tangente.

Anzahl Nullstellen bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= 2( x +3 ) und der Graph einer Funktion g (in der Abbildung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?

Lösung einblenden

Zuerst bestimmen wir die Nullstellen der Funktion f:

2( x +3 ) = 0
2x +6 = 0 | -6
2x = -6 |:2
x = -3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das bedeutet, dass f(-3)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch gerade die x-Werte sein, für die g(x) = -3 gilt, denn dann gilt ja f(g(x)) = f( -3) = 0.

Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = -3 besitzt.

Man erkennt - notfalls durch Einzeichnen einer Geraden y = -3, dass dies gerade 0 Schnittpunkte sind.

Das heißt, dass diese 0 x-Werte dieser Schnittpunkte alle Lösungen von f(g(x)) = f( -3) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.