- Klasse 5-6
- Klasse 7-8
- Klasse 9-10
- Kursstufe
- COSH
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Kettenregel ohne e-Fktn (BF)
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Kettenregel ohne e-Fktn 2 (BF)
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
=
=> f'(x) =
=
=
Kettenregel ohne e-Fktn (LF)
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Verkettung vorwärts
Beispiel:
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(1).
Wir können der Zeichnung rechts f(1) = 0 entnehmen.
Also gilt h(1) = g(f(1)) = g(0)
g(0) können wir auch wieder am (blauen) Graph ablesen:
h(1) = g(f(1)) = g(0) = 0.
Verkettung rückwärts
Beispiel:
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = 3 gilt.
Wenn wir auf der y-Achse bei y = 3 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit
P(2|3), der auf dem Graph von g liegt, also gilt:
3 = g(2)
Wegen 3 = h(x)= g(f(x))= g(2) gilt also f(x) = 2.
Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =2 sind.
Diese erkennen wir bei Q1(-2|2) und Q2(2|2), also bei
x1 = -2 und x2 = 2
Verkettung von f und f' (ohne F)
Beispiel:
Bestimme f(f '(0)).
Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(0) = entnehmen.
Wir suchen also f(f '(0)) = f().
f() können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):
f(f '(0)) = f() = .
Verkettung vorwärts
Beispiel:
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(2).
Wir können der Zeichnung rechts f(2) = -2 entnehmen.
Also gilt h(2) = g(f(2)) = g(-2)
g(-2) können wir auch wieder am (blauen) Graph ablesen:
h(2) = g(f(2)) = g(-2) = -3.
nur Produktregel ohne e-Fktn
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ketten- und Produktregel (BF)
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
=
=> f'(x) =
=
=
=
Ketten- und Produktregel (LF)
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
=
=
=
Anzahl Nullstellen bei Verkettung
Beispiel:
Gegeben ist eine ganzrationale Funktion f mit und der Graph einer Funktion g (in der Abblidung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.
Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?
Zuerst bestimmen wir die Nullstellen der Funktion f:
= | |||
= | | | ||
= | |: | ||
= |
Das bedeutet, dass f(-3)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch
gerade die x-Werte sein, für die g(x) = -3 gilt, denn dann gilt ja f(g(x)) = f( -3) = 0.
Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = -3 besitzt.
Man erkennt - notfalls durch Einzeichnen einer Geraden y = -3, dass dies gerade 1 Schnittpunkts sind.
Das heißt, dass dieser 1 x-Wert dieses Schnittpunkts alle Lösungen von f(g(x)) = f( -3) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.
waagr. Tang. bei Produkt/Verkettung
Beispiel:
Gegeben ist eine ganzrationale Funktion f mit
und der Graph einer Funktion g (in der Abblidung rechts).
Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.
Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.
Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Kettenregel wissen wir, dass für die Ableitung von h(x)=f(g(x)) gilt:
h'(x) = f'(g(x))⋅g'(x).
Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = -2 und bei
x = 2 sind.
Der Extrempunkt des Graphs liegt bei x = 0, (also gilt g '(0) = 0).
Damit ist ja bereits ein Faktor des Kettenregelprodukts =0. Wenn wir also x = 0 in h'(x) einsetzen, erhalten wir: h'(0) = f'(g(0))⋅g'(0) = f'(g(0))⋅0 = 0.
Damit hat h an der Stelle x = 0 eine waagrechte Tangente.
waagr. Tang. bei Produkt/Verkettung
Beispiel:
Gegeben ist eine ganzrationale Funktion f mit
und der Graph einer Funktion g (in der Abblidung rechts).
Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.
Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.
Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Kettenregel wissen wir, dass für die Ableitung von h(x)=f(g(x)) gilt:
h'(x) = f'(g(x))⋅g'(x).
Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = -2 und bei
x = 4 sind.
Der Extrempunkt des Graphs liegt bei x = 1, (also gilt g '(1) = 0).
Damit ist ja bereits ein Faktor des Kettenregelprodukts =0. Wenn wir also x = 1 in h'(x) einsetzen, erhalten wir: h'(1) = f'(g(1))⋅g'(1) = f'(g(1))⋅0 = 0.
Damit hat h an der Stelle x = 1 eine waagrechte Tangente.