nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Kettenregel ohne e-Fktn (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= -3 cos( -x -5 ) und vereinfache:

Lösung einblenden

f(x)= -3 cos( -x -5 )

f'(x)= 3 sin( -x -5 ) · ( -1 +0 )

= 3 sin( -x -5 ) · ( -1 )

= -3 sin( -x -5 )

Kettenregel ohne e-Fktn 2 (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= 2 ( - 3 2 x -5 ) 3 und vereinfache:

Lösung einblenden

f(x)= 2 ( - 3 2 x -5 ) 3

= 2 ( - 3 2 x -5 ) -3

=> f'(x) = -6 ( - 3 2 x -5 ) -4 · ( - 3 2 +0 )

f'(x)= - 6 ( - 3 2 x -5 ) 4 · ( - 3 2 +0 )

= - 6 ( - 3 2 x -5 ) 4 · ( - 3 2 )

= 9 ( - 3 2 x -5 ) 4

Kettenregel ohne e-Fktn (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= - 1 x -3 und vereinfache:

Lösung einblenden

f(x)= - 1 x -3

= - ( x -3 ) -1

=> f'(x) = ( x -3 ) -2 · ( 1 +0 )

f'(x)= 1 ( x -3 ) 2 · ( 1 +0 )

= 1 ( x -3 ) 2 · ( 1 )

= 1 ( x -3 ) 2

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(-1).

Lösung einblenden

Wir können der Zeichnung rechts f(-1) = 1 entnehmen.

Also gilt h(-1) = g(f(-1)) = g(1)

g(1) können wir auch wieder am (blauen) Graph ablesen:
h(-1) = g(f(-1)) = g(1) = -1.

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = 0 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = 0 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(-3|0), der auf dem Graph von g liegt, also gilt:
0 = g(-3)
Wegen 0 = h(x)= g(f(x))= g(-3) gilt also f(x) = -3.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =-3 sind.

Diese erkennen wir bei Q1(0|-3) und Q2(2|-3), also bei
x1 = 0 und x2 = 2

Verkettung von f und f' (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(-1)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(-1) = -1 entnehmen.

Wir suchen also f(f '(-1)) = f(-1).

f(-1) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(-1)) = f(-1) = -1 .

Summe f(x) und f'(x) (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(3) + f '(3).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der Tangente eingezeichneten Tangente f '(3) = 2 entnehmen.

Außerdem können wir natürlich f(3) = 1 am Schaubild ablesen:

Also gilt: f(3) + f '(3) = 1 + 2 = 3.

nur Produktregel ohne e-Fktn

Beispiel:

Berechne die Ableitung von f mit f(x)= sin( x ) · x 5 und vereinfache:

Lösung einblenden

f(x)= sin( x ) · x 5

f'(x)= cos( x ) · x 5 + sin( x ) · 5 x 4

= cos( x ) x 5 +5 sin( x ) x 4

Ketten- und Produktregel (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= x 4 · -2x -1 und vereinfache:

Lösung einblenden

f(x)= x 4 · -2x -1

= x 4 · ( -2x -1 ) 1 2

=> f'(x) = 4 x 3 · ( -2x -1 ) 1 2 + x 4 · 1 2 ( -2x -1 ) - 1 2 · ( -2 +0 )

f'(x)= 4 x 3 · -2x -1 + x 4 · 1 2 -2x -1 · ( -2 +0 )

= 4 x 3 -2x -1 + x 4 · 1 2 -2x -1 · ( -2 )

= 4 x 3 -2x -1 + x 4 · ( - 1 -2x -1 )

= 4 x 3 -2x -1 - x 4 -2x -1

Ketten- und Produktregel (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= cos( x 2 +1 ) und vereinfache:

Lösung einblenden

f(x)= cos( x 2 +1 )

f'(x)= - sin( x 2 +1 ) · ( 2x +0 )

= - sin( x 2 +1 ) · ( 2x )

= -2 sin( x 2 +1 ) x

= -2 x · sin( x 2 +1 )

Anzahl Nullstellen bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= 3x und der Graph einer Funktion g (in der Abblidung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?

Lösung einblenden

Zuerst bestimmen wir die Nullstellen der Funktion f:

3x = 0 |:3
x = 0
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das bedeutet, dass f(0)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch gerade die x-Werte sein, für die g(x) = 0 gilt, denn dann gilt ja f(g(x)) = f( 0) = 0.

Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = 0 besitzt.

Man erkennt - notfalls durch Einzeichnen einer Geraden y = 0, dass dies gerade 2 Schnittpunkte sind.

Das heißt, dass diese 2 x-Werte dieser Schnittpunkte alle Lösungen von f(g(x)) = f( 0) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 -16
und der Graph einer Funktion g (in der Abblidung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x )⋅g(x) + ( x 2 -16 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = -3 und bei x = 3 sind.
Der Extrempunkt des Graphs liegt bei x = 0, (also gilt g '(0) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 -16 = 0 | +16
x 2 = 16 | 2
x1 = - 16 = -4
x2 = 16 = 4

Für die Ableitung von f mit f(x)= x 2 -16 gilt: f'(x)= 2x . Diese setzen wir = 0:

2x = 0 |:2
x = 0

Wir haben also sowohl bei f als auch bei g eine eine Extremstelle bei x = 0, wodurch mit f'(0)=0 und g'(0)=0 in beiden Summanden der Produktregel eine Null als Faktor vorhanden ist.
es gilt also h'(0) = f'(0)⋅g(0) + f(0)⋅g'(0) = 0⋅g(0) + f(0)⋅0 = 0.

Damit hat h an der Stelle x = 0 eine waagrechte Tangente.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 +6x +9
und der Graph einer Funktion g (in der Abblidung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x +6 )⋅g(x) + ( x 2 +6x +9 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = -1 und bei x = 1 sind.
Der Extrempunkt des Graphs liegt bei x = 0, (also gilt g '(0) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 +6x +9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -6 ± 6 2 -4 · 1 · 9 21

x1,2 = -6 ± 36 -36 2

x1,2 = -6 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -6 2 = -3

Theoretisch erkennen wir schon hier, dass an dieser doppelten Nullstelle auch ein Extrempunkt vorliegen muss, wir rechnen aber trotzdem noch mal nach:

Für die Ableitung von f mit f(x)= x 2 +6x +9 gilt: f'(x)= 2x +6 . Diese setzen wir = 0:

2x +6 = 0 | -6
2x = -6 |:2
x = -3

Es gilt also f(-3) = f'(-3) = 0, somit gilt h'(-3) = f'(-3)⋅g(-3) + f(-3)⋅g'(-3) = 0⋅g(-3) + 0⋅g'(-3) = 0.

Somit hat h an der Stelle x =-3 eine waagrechte Tangente.