nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Kettenregel ohne e-Fktn (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= ( 3x -4 ) 2 und vereinfache:

Lösung einblenden

f(x)= ( 3x -4 ) 2

f'(x)= 2( 3x -4 ) · ( 3 +0 )

= 2( 3x -4 ) · ( 3 )

= 6( 3x -4 )

Kettenregel ohne e-Fktn 2 (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= 3 x +1 und vereinfache:

Lösung einblenden

f(x)= 3 x +1

= 3 ( x +1 ) -1

=> f'(x) = -3 ( x +1 ) -2 · ( 1 +0 )

f'(x)= - 3 ( x +1 ) 2 · ( 1 +0 )

= - 3 ( x +1 ) 2 · ( 1 )

= - 3 ( x +1 ) 2

Kettenregel ohne e-Fktn (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= cos( -3 x 3 -1 ) und vereinfache:

Lösung einblenden

f(x)= cos( -3 x 3 -1 )

f'(x)= - sin( -3 x 3 -1 ) · ( -9 x 2 +0 )

= - sin( -3 x 3 -1 ) · ( -9 x 2 )

= 9 sin( -3 x 3 -1 ) x 2

= 9 x 2 · sin( -3 x 3 -1 )

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(-1).

Lösung einblenden

Wir können der Zeichnung rechts f(-1) = -2 entnehmen.

Also gilt h(-1) = g(f(-1)) = g(-2)

g(-2) können wir auch wieder am (blauen) Graph ablesen:
h(-1) = g(f(-1)) = g(-2) = 0.

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = 1 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = 1 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(2|1), der auf dem Graph von g liegt, also gilt:
1 = g(2)
Wegen 1 = h(x)= g(f(x))= g(2) gilt also f(x) = 2.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =2 sind.

Diese erkennen wir bei Q1(1|2) und Q2(-3|2), also bei
x1 = 1 und x2 = -3

Verkettung von f und f' (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(2)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(2) = 2 entnehmen.

Wir suchen also f(f '(2)) = f(2).

f(2) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(2)) = f(2) = 0.

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(-1).

Lösung einblenden

Wir können der Zeichnung rechts f(-1) = 3 entnehmen.

Also gilt h(-1) = g(f(-1)) = g(3)

g(3) können wir auch wieder am (blauen) Graph ablesen:
h(-1) = g(f(-1)) = g(3) = 1.

nur Produktregel ohne e-Fktn

Beispiel:

Berechne die Ableitung von f mit f(x)= sin( x ) · x 2 und vereinfache:

Lösung einblenden

f(x)= sin( x ) · x 2

f'(x)= cos( x ) · x 2 + sin( x ) · 2x

= cos( x ) x 2 +2 sin( x ) x

Ketten- und Produktregel (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= - 1 3x +2 und vereinfache:

Lösung einblenden

f(x)= - 1 3x +2

= - ( 3x +2 ) -1

=> f'(x) = ( 3x +2 ) -2 · ( 3 +0 )

f'(x)= 1 ( 3x +2 ) 2 · ( 3 +0 )

= 1 ( 3x +2 ) 2 · ( 3 )

= 3 ( 3x +2 ) 2

Ketten- und Produktregel (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= x 3 · sin( x 3 ) und vereinfache:

Lösung einblenden

f(x)= x 3 · sin( x 3 )

f'(x)= 3 x 2 · sin( x 3 ) + x 3 · cos( x 3 ) · 3 x 2

= 3 x 2 · sin( x 3 ) + x 3 · 3 cos( x 3 ) x 2

= 3 x 2 · sin( x 3 ) +3 x 3 cos( x 3 ) x 2

= 3 x 2 · sin( x 3 ) +3 x 5 · cos( x 3 )

Kettenregel graphisch

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=f(g(x)).
Bestimme h(2) und h '(2).

Lösung einblenden

Berechnung von h(2) = f(g(2))

Wir können der Zeichnung rechts g(2) = -1 entnehmen.

Also gilt h(2) = f(g(2)) = g(-1)

g(-1) können wir auch wieder am (blauen) Graph ablesen:
h(2) = f(g(2)) = f(-1) = -1.

Berechnung von h '(2)

Um h '(2) zu berechnen, müssen wir zuerst die Kettenregel anwenden

h '(2) = f '(g(2)) ⋅ g'(2)

Wir haben ja bereits oben der Zeichnung g(2) = -1 entnommen.

f '(g(2)) = f '(-1) erhalten wir, indem wir die Tangentensteigung an den Graph von f an der Stelle x = -1 ablesen (siehe grüne Tangente):

f '(g(2)) = f' (-1) ≈ -4

Damit fehlt nur g'(2), was sich ja einfach als Steigung der blauen Geraden ablesen lässt (weil die Steigung bei dieser Geraden an jeder Stelle gleich ist).

g' (2) = m = 0.5

Somit erhalten wir:

h '(2) = = f '(g(2)) ⋅ g'(2) = f' (-1) ⋅ g'(2) ≈ -4 ⋅ 0.5 ≈ -2.

Anzahl Nullstellen bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= ( x -1 ) 2 und der Graph einer Funktion g (in der Abbildung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?

Lösung einblenden

Zuerst bestimmen wir die Nullstellen der Funktion f:

( x -1 ) 2 = 0 | 2
x -1 = 0
x -1 = 0 | +1
x = 1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das bedeutet, dass f(1)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch gerade die x-Werte sein, für die g(x) = 1 gilt, denn dann gilt ja f(g(x)) = f( 1) = 0.

Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = 1 besitzt.

Man erkennt - notfalls durch Einzeichnen einer Geraden y = 1, dass dies gerade 2 Schnittpunkte sind.

Das heißt, dass diese 2 x-Werte dieser Schnittpunkte alle Lösungen von f(g(x)) = f( 1) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 +4x +4
und der Graph einer Funktion g (in der Abbildung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x +4 )⋅g(x) + ( x 2 +4x +4 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = -4 und bei x = 4 sind.
Der Extrempunkt des Graphs liegt bei x = 0, (also gilt g '(0) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 +4x +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -4 ± 4 2 -4 · 1 · 4 21

x1,2 = -4 ± 16 -16 2

x1,2 = -4 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - 4 = 4 - 4 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -2 ± 0 = -2

Theoretisch erkennen wir schon hier, dass an dieser doppelten Nullstelle auch ein Extrempunkt vorliegen muss, wir rechnen aber trotzdem noch mal nach:

Für die Ableitung von f mit f(x)= x 2 +4x +4 gilt: f'(x)= 2x +4 . Diese setzen wir = 0:

2x +4 = 0 | -4
2x = -4 |:2
x = -2

Es gilt also f(-2) = f'(-2) = 0, somit gilt h'(-2) = f'(-2)⋅g(-2) + f(-2)⋅g'(-2) = 0⋅g(-2) + 0⋅g'(-2) = 0.

Somit hat h an der Stelle x =-2 eine waagrechte Tangente.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 3 +5x +4
und der Graph einer Funktion g (in der Abbildung rechts).

Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Kettenregel wissen wir, dass für die Ableitung von h(x)=f(g(x)) gilt:
h'(x) = f'(g(x))⋅g'(x).

Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = -3 und bei x = 3 sind.
Der Extrempunkt des Graphs liegt bei x = 0, (also gilt g '(0) = 0).

Damit ist ja bereits ein Faktor des Kettenregelprodukts =0. Wenn wir also x = 0 in h'(x) einsetzen, erhalten wir:
h'(0) = f'(g(0))⋅g'(0) = f'(g(0))⋅0 = 0.

Damit hat h an der Stelle x = 0 eine waagrechte Tangente.