nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Kettenregel ohne e-Fktn (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= - 3 4 cos( -2x +5 ) und vereinfache:

Lösung einblenden

f(x)= - 3 4 cos( -2x +5 )

f'(x)= 3 4 sin( -2x +5 ) · ( -2 +0 )

= 3 4 sin( -2x +5 ) · ( -2 )

= - 3 2 sin( -2x +5 )

Kettenregel ohne e-Fktn 2 (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= - 1 2 - 1 2 x -4 und vereinfache:

Lösung einblenden

f(x)= - 1 2 - 1 2 x -4

= - 1 2 ( - 1 2 x -4 ) 1 2

=> f'(x) = - 1 4 ( - 1 2 x -4 ) - 1 2 · ( - 1 2 +0 )

f'(x)= - 1 4 - 1 2 x -4 · ( - 1 2 +0 )

= - 1 4 - 1 2 x -4 · ( - 1 2 )

= 1 8 - 1 2 x -4

Kettenregel ohne e-Fktn (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= -3 ( x 3 -3 ) 2 und vereinfache:

Lösung einblenden

f(x)= -3 ( x 3 -3 ) 2

f'(x)= -6( x 3 -3 ) · ( 3 x 2 +0 )

= -6( x 3 -3 ) · ( 3 x 2 )

= -18 ( x 3 -3 ) x 2

= -18 x 2 ( x 3 -3 )

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(-1).

Lösung einblenden

Wir können der Zeichnung rechts f(-1) = 0 entnehmen.

Also gilt h(-1) = g(f(-1)) = g(0)

g(0) können wir auch wieder am (blauen) Graph ablesen:
h(-1) = g(f(-1)) = g(0) = 0.

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = -1 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = -1 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(-1|-1), der auf dem Graph von g liegt, also gilt:
-1 = g(-1)
Wegen -1 = h(x)= g(f(x))= g(-1) gilt also f(x) = -1.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =-1 sind.

Diese erkennen wir bei Q1(-2|-1) und Q2(0|-1), also bei
x1 = -2 und x2 = 0

Verkettung von f und f' (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(2)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(2) = 2 entnehmen.

Wir suchen also f(f '(2)) = f(2).

f(2) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(2)) = f(2) = -2 .

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = 2 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = 2 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(3|2), der auf dem Graph von g liegt, also gilt:
2 = g(3)
Wegen 2 = h(x)= g(f(x))= g(3) gilt also f(x) = 3.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =3 sind.

Diese erkennen wir bei Q1(3|3) und Q2(-1|3), also bei
x1 = 3 und x2 = -1

nur Produktregel ohne e-Fktn

Beispiel:

Berechne die Ableitung von f mit f(x)= sin( x ) · 1 x 2 und vereinfache:

Lösung einblenden

f(x)= sin( x ) · 1 x 2

= sin( x ) · x -2

=> f'(x) = cos( x ) · x -2 + sin( x ) · ( -2 x -3 )

f'(x)= cos( x ) · 1 x 2 + sin( x ) · ( - 2 x 3 )

= cos( x ) x 2 -2 sin( x ) x 3

Ketten- und Produktregel (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= sin( x ) · -5x -4 und vereinfache:

Lösung einblenden

f(x)= sin( x ) · -5x -4

= sin( x ) · ( -5x -4 ) 1 2

=> f'(x) = cos( x ) · ( -5x -4 ) 1 2 + sin( x ) · 1 2 ( -5x -4 ) - 1 2 · ( -5 +0 )

f'(x)= cos( x ) · -5x -4 + sin( x ) · 1 2 -5x -4 · ( -5 +0 )

= cos( x ) -5x -4 + sin( x ) · 1 2 -5x -4 · ( -5 )

= cos( x ) -5x -4 + sin( x ) · ( - 5 2 -5x -4 )

= cos( x ) -5x -4 - 5 2 sin( x ) -5x -4

Ketten- und Produktregel (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= ( 2x -7 ) · cos( 3x ) und vereinfache:

Lösung einblenden

f(x)= ( 2x -7 ) · cos( 3x )

f'(x)= ( 2 +0 ) · cos( 3x ) + ( 2x -7 ) · ( - sin( 3x ) · 3 )

= 2 cos( 3x ) + ( 2x -7 ) · ( -3 sin( 3x ) )

= 2 cos( 3x ) -3 ( 2x -7 ) · sin( 3x )

Kettenregel graphisch

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=f(g(x)).
Bestimme h(-2) und h '(-2).

Lösung einblenden

Berechnung von h(-2) = f(g(-2))

Wir können der Zeichnung rechts g(-2) = 1 entnehmen.

Also gilt h(-2) = f(g(-2)) = g(1)

g(1) können wir auch wieder am (blauen) Graph ablesen:
h(-2) = f(g(-2)) = f(1) = -1.

Berechnung von h '(-2)

Um h '(-2) zu berechnen, müssen wir zuerst die Kettenregel anwenden

h '(-2) = f '(g(-2)) ⋅ g'(-2)

Wir haben ja bereits oben der Zeichnung g(-2) = 1 entnommen.

f '(g(-2)) = f '(1) erhalten wir, indem wir die Tangentensteigung an den Graph von f an der Stelle x = 1 ablesen (siehe grüne Tangente):

f '(g(-2)) = f' (1) ≈ -1

Damit fehlt nur g'(-2), was sich ja einfach als Steigung der blauen Geraden ablesen lässt (weil die Steigung bei dieser Geraden an jeder Stelle gleich ist).

g' (-2) = m = -2

Somit erhalten wir:

h '(-2) = = f '(g(-2)) ⋅ g'(-2) = f' (1) ⋅ g'(-2) ≈ -1 ⋅ -2 ≈ 2.

Anzahl Nullstellen bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= 3( x -2 ) und der Graph einer Funktion g (in der Abbildung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?

Lösung einblenden

Zuerst bestimmen wir die Nullstellen der Funktion f:

3( x -2 ) = 0
3x -6 = 0 | +6
3x = 6 |:3
x = 2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das bedeutet, dass f(2)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch gerade die x-Werte sein, für die g(x) = 2 gilt, denn dann gilt ja f(g(x)) = f( 2) = 0.

Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = 2 besitzt.

Man erkennt - notfalls durch Einzeichnen einer Geraden y = 2, dass dies gerade 0 Schnittpunkte sind.

Das heißt, dass diese 0 x-Werte dieser Schnittpunkte alle Lösungen von f(g(x)) = f( 2) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 -2x -8
und der Graph einer Funktion g (in der Abbildung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x -2 )⋅g(x) + ( x 2 -2x -8 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = -1 und bei x = 3 sind.
Der Extrempunkt des Graphs liegt bei x = 1, (also gilt g '(1) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 -2x -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -8 ) 21

x1,2 = +2 ± 4 +32 2

x1,2 = +2 ± 36 2

x1 = 2 + 36 2 = 2 +6 2 = 8 2 = 4

x2 = 2 - 36 2 = 2 -6 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -8 ) = 1+ 8 = 9

x1,2 = 1 ± 9

x1 = 1 - 3 = -2

x2 = 1 + 3 = 4

Für die Ableitung von f mit f(x)= x 2 -2x -8 gilt: f'(x)= 2x -2 . Diese setzen wir = 0:

2x -2 = 0 | +2
2x = 2 |:2
x = 1

Wir haben also sowohl bei f als auch bei g eine eine Extremstelle bei x = 1, wodurch mit f'(1)=0 und g'(1)=0 in beiden Summanden der Produktregel eine Null als Faktor vorhanden ist.
es gilt also h'(1) = f'(1)⋅g(1) + f(1)⋅g'(1) = 0⋅g(1) + f(1)⋅0 = 0.

Damit hat h an der Stelle x = 1 eine waagrechte Tangente.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 -2x -3
und der Graph einer Funktion g (in der Abbildung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x -2 )⋅g(x) + ( x 2 -2x -3 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell die Nullstellen von g bei x = -1 und bei x = 1.
(also gilt g(-1) = g(-1) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 -2x -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -3 ) 21

x1,2 = +2 ± 4 +12 2

x1,2 = +2 ± 16 2

x1 = 2 + 16 2 = 2 +4 2 = 6 2 = 3

x2 = 2 - 16 2 = 2 -4 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -3 ) = 1+ 3 = 4

x1,2 = 1 ± 4

x1 = 1 - 2 = -1

x2 = 1 + 2 = 3

Wir haben also sowohl bei f als auch bei g eine eine Nullstelle bei x = -1, wodurch in beiden Summanden der Produktregel eine Null als Faktor vorhanden ist.
es gilt also h'(-1) = f'(-1)⋅g(-1) + f(-1)⋅g'(-1) = f'(-1)⋅0 + 0⋅g'(-1) = 0.

Damit hat h an der Stelle x = -1 eine waagrechte Tangente.