nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Kettenregel ohne e-Fktn (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= -2 ( 3 2 x -3 ) 4 und vereinfache:

Lösung einblenden

f(x)= -2 ( 3 2 x -3 ) 4

f'(x)= -8 ( 3 2 x -3 ) 3 · ( 3 2 +0 )

= -8 ( 3 2 x -3 ) 3 · ( 3 2 )

= -12 ( 3 2 x -3 ) 3

Kettenregel ohne e-Fktn 2 (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= 2 ( -x -3 ) 3 und vereinfache:

Lösung einblenden

f(x)= 2 ( -x -3 ) 3

= 2 ( -x -3 ) -3

=> f'(x) = -6 ( -x -3 ) -4 · ( -1 +0 )

f'(x)= - 6 ( -x -3 ) 4 · ( -1 +0 )

= - 6 ( -x -3 ) 4 · ( -1 )

= 6 ( -x -3 ) 4

Kettenregel ohne e-Fktn (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= 2 ( 3x -3 ) 4 und vereinfache:

Lösung einblenden

f(x)= 2 ( 3x -3 ) 4

f'(x)= 8 ( 3x -3 ) 3 · ( 3 +0 )

= 8 ( 3x -3 ) 3 · ( 3 )

= 24 ( 3x -3 ) 3

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(3).

Lösung einblenden

Wir können der Zeichnung rechts f(3) = 0 entnehmen.

Also gilt h(3) = g(f(3)) = g(0)

g(0) können wir auch wieder am (blauen) Graph ablesen:
h(3) = g(f(3)) = g(0) = -2.

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = 1 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = 1 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(0|1), der auf dem Graph von g liegt, also gilt:
1 = g(0)
Wegen 1 = h(x)= g(f(x))= g(0) gilt also f(x) = 0.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =0 sind.

Diese erkennen wir bei Q1(0|0) und Q2(2|0), also bei
x1 = 0 und x2 = 2

Verkettung von f und f' (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(-1)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(-1) = 0 entnehmen.

Wir suchen also f(f '(-1)) = f(0).

f(0) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(-1)) = f(0) = 0.

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = 0 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = 0 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(-1|0), der auf dem Graph von g liegt, also gilt:
0 = g(-1)
Wegen 0 = h(x)= g(f(x))= g(-1) gilt also f(x) = -1.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =-1 sind.

Diese erkennen wir bei Q1(-1|-1) und Q2(1|-1), also bei
x1 = -1 und x2 = 1

nur Produktregel ohne e-Fktn

Beispiel:

Berechne die Ableitung von f mit f(x)= x 2 · cos( x ) und vereinfache:

Lösung einblenden

f(x)= x 2 · cos( x )

f'(x)= 2x · cos( x ) + x 2 · ( - sin( x ) )

= 2 x · cos( x ) - x 2 · sin( x )

Ketten- und Produktregel (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= x 3 · 3x -5 und vereinfache:

Lösung einblenden

f(x)= x 3 · 3x -5

= x 3 · ( 3x -5 ) 1 2

=> f'(x) = 3 x 2 · ( 3x -5 ) 1 2 + x 3 · 1 2 ( 3x -5 ) - 1 2 · ( 3 +0 )

f'(x)= 3 x 2 · 3x -5 + x 3 · 1 2 3x -5 · ( 3 +0 )

= 3 x 2 3x -5 + x 3 · 1 2 3x -5 · ( 3 )

= 3 x 2 3x -5 + x 3 · 3 2 3x -5

= 3 x 2 3x -5 + 3 2 x 3 3x -5

Ketten- und Produktregel (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= ( 2x +2 ) · sin( x 3 ) und vereinfache:

Lösung einblenden

f(x)= ( 2x +2 ) · sin( x 3 )

f'(x)= ( 2 +0 ) · sin( x 3 ) + ( 2x +2 ) · cos( x 3 ) · 3 x 2

= 2 sin( x 3 ) + ( 2x +2 ) · 3 cos( x 3 ) x 2

= 2 sin( x 3 ) +3 ( 2x +2 ) cos( x 3 ) x 2

Kettenregel graphisch

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=f(g(x)).
Bestimme h(1) und h '(1).

Lösung einblenden

Berechnung von h(1) = f(g(1))

Wir können der Zeichnung rechts g(1) = -3 entnehmen.

Also gilt h(1) = f(g(1)) = g(-3)

g(-3) können wir auch wieder am (blauen) Graph ablesen:
h(1) = f(g(1)) = f(-3) = -1.

Berechnung von h '(1)

Um h '(1) zu berechnen, müssen wir zuerst die Kettenregel anwenden

h '(1) = f '(g(1)) ⋅ g'(1)

Wir haben ja bereits oben der Zeichnung g(1) = -3 entnommen.

f '(g(1)) = f '(-3) erhalten wir, indem wir die Tangentensteigung an den Graph von f an der Stelle x = -3 ablesen (siehe grüne Tangente):

f '(g(1)) = f' (-3) ≈ 4

Damit fehlt nur g'(1), was sich ja einfach als Steigung der blauen Geraden ablesen lässt (weil die Steigung bei dieser Geraden an jeder Stelle gleich ist).

g' (1) = m = 1

Somit erhalten wir:

h '(1) = = f '(g(1)) ⋅ g'(1) = f' (-3) ⋅ g'(1) ≈ 4 ⋅ 1 ≈ 4.

Anzahl Nullstellen bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= 2( x +4 ) und der Graph einer Funktion g (in der Abbildung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?

Lösung einblenden

Zuerst bestimmen wir die Nullstellen der Funktion f:

2( x +4 ) = 0
2x +8 = 0 | -8
2x = -8 |:2
x = -4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das bedeutet, dass f(-4)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch gerade die x-Werte sein, für die g(x) = -4 gilt, denn dann gilt ja f(g(x)) = f( -4) = 0.

Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = -4 besitzt.

Man erkennt - notfalls durch Einzeichnen einer Geraden y = -4, dass dies gerade 1 Schnittpunkts sind.

Das heißt, dass dieser 1 x-Wert dieses Schnittpunkts alle Lösungen von f(g(x)) = f( -4) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 -4
und der Graph einer Funktion g (in der Abbildung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x )⋅g(x) + ( x 2 -4 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = -3 und bei x = 3 sind.
Der Extrempunkt des Graphs liegt bei x = 0, (also gilt g '(0) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 -4 = 0 | +4
x 2 = 4 | 2
x1 = - 4 = -2
x2 = 4 = 2

Für die Ableitung von f mit f(x)= x 2 -4 gilt: f'(x)= 2x . Diese setzen wir = 0:

2x = 0 |:2
x = 0

Wir haben also sowohl bei f als auch bei g eine eine Extremstelle bei x = 0, wodurch mit f'(0)=0 und g'(0)=0 in beiden Summanden der Produktregel eine Null als Faktor vorhanden ist.
es gilt also h'(0) = f'(0)⋅g(0) + f(0)⋅g'(0) = 0⋅g(0) + f(0)⋅0 = 0.

Damit hat h an der Stelle x = 0 eine waagrechte Tangente.

Anzahl Nullstellen bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= ( x +1 ) 2 und der Graph einer Funktion g (in der Abbildung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?

Lösung einblenden

Zuerst bestimmen wir die Nullstellen der Funktion f:

( x +1 ) 2 = 0 | 2
x +1 = 0
x +1 = 0 | -1
x = -1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das bedeutet, dass f(-1)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch gerade die x-Werte sein, für die g(x) = -1 gilt, denn dann gilt ja f(g(x)) = f( -1) = 0.

Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = -1 besitzt.

Man erkennt - notfalls durch Einzeichnen einer Geraden y = -1, dass dies gerade 2 Schnittpunkte sind.

Das heißt, dass diese 2 x-Werte dieser Schnittpunkte alle Lösungen von f(g(x)) = f( -1) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.