nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Kettenregel ohne e-Fktn (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= - 3 4 ( x -4 ) 2 und vereinfache:

Lösung einblenden

f(x)= - 3 4 ( x -4 ) 2

f'(x)= - 3 2 ( x -4 ) · ( 1 +0 )

= - 3 2 ( x -4 ) · ( 1 )

= - 3 2 ( x -4 )

Kettenregel ohne e-Fktn 2 (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= - 1 3 - 1 2 x -2 und vereinfache:

Lösung einblenden

f(x)= - 1 3 - 1 2 x -2

= - 1 3 ( - 1 2 x -2 ) 1 2

=> f'(x) = - 1 6 ( - 1 2 x -2 ) - 1 2 · ( - 1 2 +0 )

f'(x)= - 1 6 - 1 2 x -2 · ( - 1 2 +0 )

= - 1 6 - 1 2 x -2 · ( - 1 2 )

= 1 12 - 1 2 x -2

Kettenregel ohne e-Fktn (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= - 3x +3 und vereinfache:

Lösung einblenden

f(x)= - 3x +3

= - ( 3x +3 ) 1 2

=> f'(x) = - 1 2 ( 3x +3 ) - 1 2 · ( 3 +0 )

f'(x)= - 1 2 3x +3 · ( 3 +0 )

= - 1 2 3x +3 · ( 3 )

= - 3 2 3x +3

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(1).

Lösung einblenden

Wir können der Zeichnung rechts f(1) = 2 entnehmen.

Also gilt h(1) = g(f(1)) = g(2)

g(2) können wir auch wieder am (blauen) Graph ablesen:
h(1) = g(f(1)) = g(2) = 3.

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = 0 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = 0 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(1|0), der auf dem Graph von g liegt, also gilt:
0 = g(1)
Wegen 0 = h(x)= g(f(x))= g(1) gilt also f(x) = 1.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =1 sind.

Diese erkennen wir bei Q1(-3|1) und Q2(1|1), also bei
x1 = -3 und x2 = 1

Verkettung von f und f' (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(-1)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(-1) = 0 entnehmen.

Wir suchen also f(f '(-1)) = f(0).

f(0) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(-1)) = f(0) = 1 2 .

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(2).

Lösung einblenden

Wir können der Zeichnung rechts f(2) = 0 entnehmen.

Also gilt h(2) = g(f(2)) = g(0)

g(0) können wir auch wieder am (blauen) Graph ablesen:
h(2) = g(f(2)) = g(0) = 0.

nur Produktregel ohne e-Fktn

Beispiel:

Berechne die Ableitung von f mit f(x)= cos( x ) · sin( x ) und vereinfache:

Lösung einblenden

f(x)= cos( x ) · sin( x )

f'(x)= - sin( x ) · sin( x ) + cos( x ) · cos( x )

= - sin( x ) · sin( x ) + ( cos( x ) ) 2

= - ( sin( x ) ) 2 + ( cos( x ) ) 2

Ketten- und Produktregel (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= 3 ( 3x -5 ) 4 und vereinfache:

Lösung einblenden

f(x)= 3 ( 3x -5 ) 4

f'(x)= 12 ( 3x -5 ) 3 · ( 3 +0 )

= 12 ( 3x -5 ) 3 · ( 3 )

= 36 ( 3x -5 ) 3

Ketten- und Produktregel (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= ( x +7 ) · sin( -3x ) und vereinfache:

Lösung einblenden

f(x)= ( x +7 ) · sin( -3x )

f'(x)= ( 1 +0 ) · sin( -3x ) + ( x +7 ) · cos( -3x ) · ( -3 )

= sin( -3x ) + ( x +7 ) · ( -3 cos( -3x ) )

= sin( -3x ) -3 ( x +7 ) · cos( -3x )

Anzahl Nullstellen bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= 3( x +1 ) und der Graph einer Funktion g (in der Abblidung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?

Lösung einblenden

Zuerst bestimmen wir die Nullstellen der Funktion f:

3( x +1 ) = 0
3x +3 = 0 | -3
3x = -3 |:3
x = -1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das bedeutet, dass f(-1)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch gerade die x-Werte sein, für die g(x) = -1 gilt, denn dann gilt ja f(g(x)) = f( -1) = 0.

Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = -1 besitzt.

Man erkennt - notfalls durch Einzeichnen einer Geraden y = -1, dass dies gerade 4 Schnittpunkte sind.

Das heißt, dass diese 4 x-Werte dieser Schnittpunkte alle Lösungen von f(g(x)) = f( -1) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 +2x -15
und der Graph einer Funktion g (in der Abblidung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x +2 )⋅g(x) + ( x 2 +2x -15 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = -4 und bei x = 2 sind.
Der Extrempunkt des Graphs liegt bei x = -1, (also gilt g '(-1) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 +2x -15 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · ( -15 ) 21

x1,2 = -2 ± 4 +60 2

x1,2 = -2 ± 64 2

x1 = -2 + 64 2 = -2 +8 2 = 6 2 = 3

x2 = -2 - 64 2 = -2 -8 2 = -10 2 = -5

Für die Ableitung von f mit f(x)= x 2 +2x -15 gilt: f'(x)= 2x +2 . Diese setzen wir = 0:

2x +2 = 0 | -2
2x = -2 |:2
x = -1

Wir haben also sowohl bei f als auch bei g eine eine Extremstelle bei x = -1, wodurch mit f'(-1)=0 und g'(-1)=0 in beiden Summanden der Produktregel eine Null als Faktor vorhanden ist.
es gilt also h'(-1) = f'(-1)⋅g(-1) + f(-1)⋅g'(-1) = 0⋅g(-1) + f(-1)⋅0 = 0.

Damit hat h an der Stelle x = -1 eine waagrechte Tangente.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 -16
und der Graph einer Funktion g (in der Abblidung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x )⋅g(x) + ( x 2 -16 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = -3 und bei x = 3 sind.
Der Extrempunkt des Graphs liegt bei x = 0, (also gilt g '(0) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 -16 = 0 | +16
x 2 = 16 | 2
x1 = - 16 = -4
x2 = 16 = 4

Für die Ableitung von f mit f(x)= x 2 -16 gilt: f'(x)= 2x . Diese setzen wir = 0:

2x = 0 |:2
x = 0

Wir haben also sowohl bei f als auch bei g eine eine Extremstelle bei x = 0, wodurch mit f'(0)=0 und g'(0)=0 in beiden Summanden der Produktregel eine Null als Faktor vorhanden ist.
es gilt also h'(0) = f'(0)⋅g(0) + f(0)⋅g'(0) = 0⋅g(0) + f(0)⋅0 = 0.

Damit hat h an der Stelle x = 0 eine waagrechte Tangente.