nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Kettenregel ohne e-Fktn (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= ( 2x +5 ) 5 und vereinfache:

Lösung einblenden

f(x)= ( 2x +5 ) 5

f'(x)= 5 ( 2x +5 ) 4 · ( 2 +0 )

= 5 ( 2x +5 ) 4 · ( 2 )

= 10 ( 2x +5 ) 4

Kettenregel ohne e-Fktn 2 (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= - 1 2 sin( - 1 2 x -1 ) und vereinfache:

Lösung einblenden

f(x)= - 1 2 sin( - 1 2 x -1 )

f'(x)= - 1 2 cos( - 1 2 x -1 ) · ( - 1 2 +0 )

= - 1 2 cos( - 1 2 x -1 ) · ( - 1 2 )

= 1 4 cos( - 1 2 x -1 )

Kettenregel ohne e-Fktn (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= -3 ( sin( x ) -1 ) 3 und vereinfache:

Lösung einblenden

f(x)= -3 ( sin( x ) -1 ) 3

f'(x)= -9 ( sin( x ) -1 ) 2 · ( cos( x ) +0 )

= -9 ( sin( x ) -1 ) 2 · ( cos( x ) )

= -9 ( sin( x ) -1 ) 2 · cos( x )

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(0).

Lösung einblenden

Wir können der Zeichnung rechts f(0) = -1 entnehmen.

Also gilt h(0) = g(f(0)) = g(-1)

g(-1) können wir auch wieder am (blauen) Graph ablesen:
h(0) = g(f(0)) = g(-1) = 1.

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = 2 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = 2 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(0|2), der auf dem Graph von g liegt, also gilt:
2 = g(0)
Wegen 2 = h(x)= g(f(x))= g(0) gilt also f(x) = 0.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =0 sind.

Diese erkennen wir bei Q1(-2|0) und Q2(2|0), also bei
x1 = -2 und x2 = 2

Verkettung von f und f' (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(1)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(1) = 0 entnehmen.

Wir suchen also f(f '(1)) = f(0).

f(0) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(1)) = f(0) = - 5 2 .

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(0).

Lösung einblenden

Wir können der Zeichnung rechts f(0) = -3 entnehmen.

Also gilt h(0) = g(f(0)) = g(-3)

g(-3) können wir auch wieder am (blauen) Graph ablesen:
h(0) = g(f(0)) = g(-3) = 1.

nur Produktregel ohne e-Fktn

Beispiel:

Berechne die Ableitung von f mit f(x)= x 5 · sin( x ) und vereinfache:

Lösung einblenden

f(x)= x 5 · sin( x )

f'(x)= 5 x 4 · sin( x ) + x 5 · cos( x )

= 5 x 4 · sin( x ) + x 5 · cos( x )

Ketten- und Produktregel (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= x 3 · sin( -3x +2 ) und vereinfache:

Lösung einblenden

f(x)= x 3 · sin( -3x +2 )

f'(x)= 3 x 2 · sin( -3x +2 ) + x 3 · cos( -3x +2 ) · ( -3 +0 )

= 3 x 2 · sin( -3x +2 ) + x 3 · cos( -3x +2 ) · ( -3 )

= 3 x 2 · sin( -3x +2 ) + x 3 · ( -3 cos( -3x +2 ) )

= 3 x 2 · sin( -3x +2 ) -3 x 3 · cos( -3x +2 )

Ketten- und Produktregel (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= x 4 · cos( 4x -1 ) und vereinfache:

Lösung einblenden

f(x)= x 4 · cos( 4x -1 )

f'(x)= 4 x 3 · cos( 4x -1 ) + x 4 · ( - sin( 4x -1 ) · ( 4 +0 ) )

= 4 x 3 · cos( 4x -1 ) + x 4 · ( - sin( 4x -1 ) · ( 4 ) )

= 4 x 3 · cos( 4x -1 ) + x 4 · ( -4 sin( 4x -1 ) )

= 4 x 3 · cos( 4x -1 ) -4 x 4 · sin( 4x -1 )

Anzahl Nullstellen bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= ( x -1 ) 2 und der Graph einer Funktion g (in der Abbildung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?

Lösung einblenden

Zuerst bestimmen wir die Nullstellen der Funktion f:

( x -1 ) 2 = 0 | 2
x -1 = 0
x -1 = 0 | +1
x = 1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das bedeutet, dass f(1)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch gerade die x-Werte sein, für die g(x) = 1 gilt, denn dann gilt ja f(g(x)) = f( 1) = 0.

Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = 1 besitzt.

Man erkennt - notfalls durch Einzeichnen einer Geraden y = 1, dass dies gerade 3 Schnittpunkte sind.

Das heißt, dass diese 3 x-Werte dieser Schnittpunkte alle Lösungen von f(g(x)) = f( 1) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 +2x -15
und der Graph einer Funktion g (in der Abbildung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x +2 )⋅g(x) + ( x 2 +2x -15 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell die Nullstellen von g bei x = -5 und bei x = 1.
(also gilt g(-5) = g(-5) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 +2x -15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · ( -15 ) 21

x1,2 = -2 ± 4 +60 2

x1,2 = -2 ± 64 2

x1 = -2 + 64 2 = -2 +8 2 = 6 2 = 3

x2 = -2 - 64 2 = -2 -8 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -15 ) = 1+ 15 = 16

x1,2 = -1 ± 16

x1 = -1 - 4 = -5

x2 = -1 + 4 = 3

Wir haben also sowohl bei f als auch bei g eine eine Nullstelle bei x = -5, wodurch in beiden Summanden der Produktregel eine Null als Faktor vorhanden ist.
es gilt also h'(-5) = f'(-5)⋅g(-5) + f(-5)⋅g'(-5) = f'(-5)⋅0 + 0⋅g'(-5) = 0.

Damit hat h an der Stelle x = -5 eine waagrechte Tangente.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 -9
und der Graph einer Funktion g (in der Abbildung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x )⋅g(x) + ( x 2 -9 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir sofort, dass bei x = 2 sowohl eine Nullstelle als auch eine waagrechte Tangente vorliegt,
es gilt also: g(2) = g'(2) = 0.

Somit ist bei x = 2 in beiden Summanden der Produktregel eine Null als Faktor,
es gilt also h'(2) = f'(2)⋅g(2) + f(2)⋅g'(2) = f'(2)⋅0 + f(2)⋅0 = 0.

Damit hat h an der Stelle x = 2 eine waagrechte Tangente.