Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Kettenregel ohne e-Fktn (BF)
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Kettenregel ohne e-Fktn 2 (BF)
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
=
=> f'(x) =
=
=
Kettenregel ohne e-Fktn (LF)
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Verkettung vorwärts
Beispiel:
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(3).
Wir können der Zeichnung rechts f(3) = 0 entnehmen.
Also gilt h(3) = g(f(3)) = g(0)
g(0) können wir auch wieder am (blauen) Graph ablesen:
h(3) = g(f(3)) = g(0) = -2.
Verkettung rückwärts
Beispiel:
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = 1 gilt.
Wenn wir auf der y-Achse bei y = 1 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit
P(0|1), der auf dem Graph von g liegt, also gilt:
1 = g(0)
Wegen 1 = h(x)= g(f(x))= g(0) gilt also f(x) = 0.
Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =0 sind.
Diese erkennen wir bei Q1(0|0) und Q2(2|0), also bei
x1 = 0 und x2 = 2
Verkettung von f und f' (ohne F)
Beispiel:
Bestimme f(f '(-1)).
Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(-1) = entnehmen.
Wir suchen also f(f '(-1)) = f().
f() können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):
f(f '(-1)) = f() =
Verkettung rückwärts
Beispiel:
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = 0 gilt.
Wenn wir auf der y-Achse bei y = 0 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit
P(-1|0), der auf dem Graph von g liegt, also gilt:
0 = g(-1)
Wegen 0 = h(x)= g(f(x))= g(-1) gilt also f(x) = -1.
Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =-1 sind.
Diese erkennen wir bei Q1(-1|-1) und Q2(1|-1), also bei
x1 = -1 und x2 = 1
nur Produktregel ohne e-Fktn
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ketten- und Produktregel (BF)
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
=
=> f'(x) =
=
=
=
Ketten- und Produktregel (LF)
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Kettenregel graphisch
Beispiel:
Die Funktion h ist gegeben durch h(x)=f(g(x)).
Bestimme h(1) und h '(1).
Berechnung von h(1) = f(g(1))
Wir können der Zeichnung rechts g(1) = -3 entnehmen.
Also gilt h(1) = f(g(1)) = g(-3)
g(-3) können wir auch wieder am (blauen) Graph ablesen:
h(1) = f(g(1)) = f(-3) = -1.
Berechnung von h '(1)
Um h '(1) zu berechnen, müssen wir zuerst die Kettenregel anwenden
h '(1) = f '(g(1)) ⋅ g'(1)
Wir haben ja bereits oben der Zeichnung g(1) = -3 entnommen.
f '(g(1)) = f '(-3) erhalten wir, indem wir die Tangentensteigung an den Graph von f an der Stelle x = -3 ablesen (siehe grüne Tangente):
f '(g(1)) = f' (-3) ≈ 4
Damit fehlt nur g'(1), was sich ja einfach als Steigung der blauen Geraden ablesen lässt (weil die Steigung bei dieser Geraden an jeder Stelle gleich ist).
g' (1) = m = 1
Somit erhalten wir:
h '(1) = = f '(g(1)) ⋅ g'(1) = f' (-3) ⋅ g'(1) ≈ 4 ⋅ 1 ≈ 4.
Anzahl Nullstellen bei Verkettung
Beispiel:
Gegeben ist eine ganzrationale Funktion f mit und der Graph einer Funktion g (in der Abbildung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.
Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?
Zuerst bestimmen wir die Nullstellen der Funktion f:
| = | |||
| = | | | ||
| = | |: | ||
| = |
Das bedeutet, dass f(-4)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch
gerade die x-Werte sein, für die g(x) = -4 gilt, denn dann gilt ja f(g(x)) = f( -4) = 0.
Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = -4 besitzt.
Man erkennt - notfalls durch Einzeichnen einer Geraden y = -4, dass dies gerade 1 Schnittpunkts sind.
Das heißt, dass dieser 1 x-Wert dieses Schnittpunkts alle Lösungen von f(g(x)) = f( -4) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.
waagr. Tang. bei Produkt/Verkettung
Beispiel:
Gegeben ist eine ganzrationale Funktion f mit
und der Graph einer Funktion g (in der Abbildung rechts).
Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).
Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.
Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass
h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( )⋅g(x) + ( )⋅g'(x)
gilt.
Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.
Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:
Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = -3 und bei x = 3 sind.
Der Extrempunkt des Graphs liegt bei x = 0, (also gilt g '(0) = 0).
Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:
| = | | | ||
| = | | | ||
| x1 | = |
|
=
|
| x2 | = |
|
=
|
Für die Ableitung von f mit
|
|
= | |: |
|
|
|
= |
Wir haben also sowohl bei f als auch bei g eine eine Extremstelle bei x = 0, wodurch mit f'(0)=0 und g'(0)=0 in beiden Summanden der
Produktregel eine Null als Faktor vorhanden ist.
es gilt also h'(0) =
f'(0)⋅g(0) + f(0)⋅g'(0) = 0⋅g(0) + f(0)⋅0 = 0.
Damit hat h an der Stelle x = 0 eine waagrechte Tangente.
Anzahl Nullstellen bei Verkettung
Beispiel:
Gegeben ist eine ganzrationale Funktion f mit
Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?
Zuerst bestimmen wir die Nullstellen der Funktion f:
|
|
= | |
|
|
|
|
= |
|
|
= | |
|
|
|
|
= |
|
Das bedeutet, dass f(-1)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch
gerade die x-Werte sein, für die g(x) = -1 gilt, denn dann gilt ja f(g(x)) = f( -1) = 0.
Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = -1 besitzt.
Man erkennt - notfalls durch Einzeichnen einer Geraden y = -1, dass dies gerade 2 Schnittpunkte sind.
Das heißt, dass diese 2 x-Werte dieser Schnittpunkte alle Lösungen von f(g(x)) = f( -1) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.
