nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Kettenregel ohne e-Fktn (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= ( -x +3 ) 2 und vereinfache:

Lösung einblenden

f(x)= ( -x +3 ) 2

f'(x)= 2( -x +3 ) · ( -1 +0 )

= 2( -x +3 ) · ( -1 )

= -2( -x +3 )

Kettenregel ohne e-Fktn 2 (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= 2 - 3 2 x -1 und vereinfache:

Lösung einblenden

f(x)= 2 - 3 2 x -1

= 2 ( - 3 2 x -1 ) 1 2

=> f'(x) = ( - 3 2 x -1 ) - 1 2 · ( - 3 2 +0 )

f'(x)= 1 - 3 2 x -1 · ( - 3 2 +0 )

= 1 - 3 2 x -1 · ( - 3 2 )

= - 3 2 - 3 2 x -1

Kettenregel ohne e-Fktn (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= sin( - x 2 +1 ) und vereinfache:

Lösung einblenden

f(x)= sin( - x 2 +1 )

f'(x)= cos( - x 2 +1 ) · ( -2x +0 )

= cos( - x 2 +1 ) · ( -2x )

= -2 cos( - x 2 +1 ) x

= -2 x · cos( - x 2 +1 )

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(-1).

Lösung einblenden

Wir können der Zeichnung rechts f(-1) = 2 entnehmen.

Also gilt h(-1) = g(f(-1)) = g(2)

g(2) können wir auch wieder am (blauen) Graph ablesen:
h(-1) = g(f(-1)) = g(2) = 2.

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = -1 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = -1 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(3|-1), der auf dem Graph von g liegt, also gilt:
-1 = g(3)
Wegen -1 = h(x)= g(f(x))= g(3) gilt also f(x) = 3.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =3 sind.

Diese erkennen wir bei Q1(2|3) und Q2(-2|3), also bei
x1 = 2 und x2 = -2

Verkettung von f und f' (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(1)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(1) = 0 entnehmen.

Wir suchen also f(f '(1)) = f(0).

f(0) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(1)) = f(0) = - 1 2 .

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = 1 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = 1 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(0|1), der auf dem Graph von g liegt, also gilt:
1 = g(0)
Wegen 1 = h(x)= g(f(x))= g(0) gilt also f(x) = 0.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =0 sind.

Diese erkennen wir bei Q1(-2|0) und Q2(0|0), also bei
x1 = -2 und x2 = 0

nur Produktregel ohne e-Fktn

Beispiel:

Berechne die Ableitung von f mit f(x)= x 3 · cos( x ) und vereinfache:

Lösung einblenden

f(x)= x 3 · cos( x )

= x 1 3 · cos( x )

=> f'(x) = 1 3 x - 2 3 · cos( x ) + x 1 3 · ( - sin( x ) )

f'(x)= 1 3 ( x 3 ) 2 · cos( x ) + x 3 · ( - sin( x ) )

= 1 3 cos( x ) ( x 3 ) 2 - x 3 · sin( x )

Ketten- und Produktregel (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= ( x +3 ) · cos( -3x -1 ) und vereinfache:

Lösung einblenden

f(x)= ( x +3 ) · cos( -3x -1 )

f'(x)= ( 1 +0 ) · cos( -3x -1 ) + ( x +3 ) · ( - sin( -3x -1 ) · ( -3 +0 ) )

= cos( -3x -1 ) + ( x +3 ) · ( - sin( -3x -1 ) · ( -3 ) )

= cos( -3x -1 ) + ( x +3 ) · 3 sin( -3x -1 )

= cos( -3x -1 ) +3 ( x +3 ) · sin( -3x -1 )

Ketten- und Produktregel (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= x 3 · sin( x 2 ) und vereinfache:

Lösung einblenden

f(x)= x 3 · sin( x 2 )

= x 1 3 · sin( x 2 )

=> f'(x) = 1 3 x - 2 3 · sin( x 2 ) + x 1 3 · cos( x 2 ) · 2x

f'(x)= 1 3 ( x 3 ) 2 · sin( x 2 ) + x 3 · cos( x 2 ) · 2x

= 1 3 sin( x 2 ) ( x 3 ) 2 + x 3 · 2 cos( x 2 ) x

= 1 3 sin( x 2 ) ( x 3 ) 2 +2 x 3 cos( x 2 ) x

= 1 3 sin( x 2 ) ( x 3 ) 2 +2 ( x 3 ) 4 · cos( x 2 )

Kettenregel graphisch

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=f(g(x)).
Bestimme h(1) und h '(1).

Lösung einblenden

Berechnung von h(1) = f(g(1))

Wir können der Zeichnung rechts g(1) = -2 entnehmen.

Also gilt h(1) = f(g(1)) = g(-2)

g(-2) können wir auch wieder am (blauen) Graph ablesen:
h(1) = f(g(1)) = f(-2) = 0.

Berechnung von h '(1)

Um h '(1) zu berechnen, müssen wir zuerst die Kettenregel anwenden

h '(1) = f '(g(1)) ⋅ g'(1)

Wir haben ja bereits oben der Zeichnung g(1) = -2 entnommen.

f '(g(1)) = f '(-2) erhalten wir, indem wir die Tangentensteigung an den Graph von f an der Stelle x = -2 ablesen (siehe grüne Tangente):

f '(g(1)) = f' (-2) ≈ -1

Damit fehlt nur g'(1), was sich ja einfach als Steigung der blauen Geraden ablesen lässt (weil die Steigung bei dieser Geraden an jeder Stelle gleich ist).

g' (1) = m = 2

Somit erhalten wir:

h '(1) = = f '(g(1)) ⋅ g'(1) = f' (-2) ⋅ g'(1) ≈ -1 ⋅ 2 ≈ -2.

Anzahl Nullstellen bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= 3( x -1 ) und der Graph einer Funktion g (in der Abbildung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?

Lösung einblenden

Zuerst bestimmen wir die Nullstellen der Funktion f:

3( x -1 ) = 0
3x -3 = 0 | +3
3x = 3 |:3
x = 1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das bedeutet, dass f(1)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch gerade die x-Werte sein, für die g(x) = 1 gilt, denn dann gilt ja f(g(x)) = f( 1) = 0.

Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = 1 besitzt.

Man erkennt - notfalls durch Einzeichnen einer Geraden y = 1, dass dies gerade 2 Schnittpunkte sind.

Das heißt, dass diese 2 x-Werte dieser Schnittpunkte alle Lösungen von f(g(x)) = f( 1) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 -2x -8
und der Graph einer Funktion g (in der Abbildung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x -2 )⋅g(x) + ( x 2 -2x -8 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell die Nullstellen von g bei x = -2 und bei x = 0.
(also gilt g(-2) = g(-2) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 -2x -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -8 ) 21

x1,2 = +2 ± 4 +32 2

x1,2 = +2 ± 36 2

x1 = 2 + 36 2 = 2 +6 2 = 8 2 = 4

x2 = 2 - 36 2 = 2 -6 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -8 ) = 1+ 8 = 9

x1,2 = 1 ± 9

x1 = 1 - 3 = -2

x2 = 1 + 3 = 4

Wir haben also sowohl bei f als auch bei g eine eine Nullstelle bei x = -2, wodurch in beiden Summanden der Produktregel eine Null als Faktor vorhanden ist.
es gilt also h'(-2) = f'(-2)⋅g(-2) + f(-2)⋅g'(-2) = f'(-2)⋅0 + 0⋅g'(-2) = 0.

Damit hat h an der Stelle x = -2 eine waagrechte Tangente.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 -9
und der Graph einer Funktion g (in der Abbildung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x )⋅g(x) + ( x 2 -9 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir sofort, dass bei x = -1 sowohl eine Nullstelle als auch eine waagrechte Tangente vorliegt,
es gilt also: g(-1) = g'(-1) = 0.

Somit ist bei x = -1 in beiden Summanden der Produktregel eine Null als Faktor,
es gilt also h'(-1) = f'(-1)⋅g(-1) + f(-1)⋅g'(-1) = f'(-1)⋅0 + f(-1)⋅0 = 0.

Damit hat h an der Stelle x = -1 eine waagrechte Tangente.