nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Kettenregel ohne e-Fktn (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= ( 3 4 x +5 ) 4 und vereinfache:

Lösung einblenden

f(x)= ( 3 4 x +5 ) 4

f'(x)= 4 ( 3 4 x +5 ) 3 · ( 3 4 +0 )

= 4 ( 3 4 x +5 ) 3 · ( 3 4 )

= 3 ( 3 4 x +5 ) 3

Kettenregel ohne e-Fktn 2 (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= - 1 ( x +3 ) 2 und vereinfache:

Lösung einblenden

f(x)= - 1 ( x +3 ) 2

= - ( x +3 ) -2

=> f'(x) = 2 ( x +3 ) -3 · ( 1 +0 )

f'(x)= 2 ( x +3 ) 3 · ( 1 +0 )

= 2 ( x +3 ) 3 · ( 1 )

= 2 ( x +3 ) 3

Kettenregel ohne e-Fktn (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= -3 sin( -2 x 3 -2 ) und vereinfache:

Lösung einblenden

f(x)= -3 sin( -2 x 3 -2 )

f'(x)= -3 cos( -2 x 3 -2 ) · ( -6 x 2 +0 )

= -3 cos( -2 x 3 -2 ) · ( -6 x 2 )

= 18 cos( -2 x 3 -2 ) x 2

= 18 x 2 · cos( -2 x 3 -2 )

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(0).

Lösung einblenden

Wir können der Zeichnung rechts f(0) = 0 entnehmen.

Also gilt h(0) = g(f(0)) = g(0)

g(0) können wir auch wieder am (blauen) Graph ablesen:
h(0) = g(f(0)) = g(0) = -1.

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = 4 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = 4 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(1|4), der auf dem Graph von g liegt, also gilt:
4 = g(1)
Wegen 4 = h(x)= g(f(x))= g(1) gilt also f(x) = 1.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =1 sind.

Diese erkennen wir bei Q1(-3|1) und Q2(1|1), also bei
x1 = -3 und x2 = 1

Verkettung von f und f' (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(-2)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(-2) = -2 entnehmen.

Wir suchen also f(f '(-2)) = f(-2).

f(-2) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(-2)) = f(-2) = 2 .

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(-1).

Lösung einblenden

Wir können der Zeichnung rechts f(-1) = -3 entnehmen.

Also gilt h(-1) = g(f(-1)) = g(-3)

g(-3) können wir auch wieder am (blauen) Graph ablesen:
h(-1) = g(f(-1)) = g(-3) = -1.

nur Produktregel ohne e-Fktn

Beispiel:

Berechne die Ableitung von f mit f(x)= cos( x ) · ( -4 x 2 -2x ) und vereinfache:

Lösung einblenden

f(x)= cos( x ) · ( -4 x 2 -2x )

f'(x)= - sin( x ) · ( -4 x 2 -2x ) + cos( x ) · ( -8x -2 )

= - sin( x ) ( -4 x 2 -2x ) + cos( x ) ( -8x -2 )

Ketten- und Produktregel (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= 2 ( -2x -1 ) 5 und vereinfache:

Lösung einblenden

f(x)= 2 ( -2x -1 ) 5

f'(x)= 10 ( -2x -1 ) 4 · ( -2 +0 )

= 10 ( -2x -1 ) 4 · ( -2 )

= -20 ( -2x -1 ) 4

Ketten- und Produktregel (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= x · sin( x 3 ) und vereinfache:

Lösung einblenden

f(x)= x · sin( x 3 )

= x 1 2 · sin( x 3 )

=> f'(x) = 1 2 x - 1 2 · sin( x 3 ) + x 1 2 · cos( x 3 ) · 3 x 2

f'(x)= 1 2 x · sin( x 3 ) + x · cos( x 3 ) · 3 x 2

= 1 2 sin( x 3 ) x + x · 3 cos( x 3 ) x 2

= 1 2 sin( x 3 ) x +3 x cos( x 3 ) x 2

= 1 2 sin( x 3 ) x +3 ( x ) 5 · cos( x 3 )

Kettenregel graphisch

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=f(g(x)).
Bestimme h(-2) und h '(-2).

Lösung einblenden

Berechnung von h(-2) = f(g(-2))

Wir können der Zeichnung rechts g(-2) = 2 entnehmen.

Also gilt h(-2) = f(g(-2)) = g(2)

g(2) können wir auch wieder am (blauen) Graph ablesen:
h(-2) = f(g(-2)) = f(2) = -2.

Berechnung von h '(-2)

Um h '(-2) zu berechnen, müssen wir zuerst die Kettenregel anwenden

h '(-2) = f '(g(-2)) ⋅ g'(-2)

Wir haben ja bereits oben der Zeichnung g(-2) = 2 entnommen.

f '(g(-2)) = f '(2) erhalten wir, indem wir die Tangentensteigung an den Graph von f an der Stelle x = 2 ablesen (siehe grüne Tangente):

f '(g(-2)) = f' (2) ≈ -1

Damit fehlt nur g'(-2), was sich ja einfach als Steigung der blauen Geraden ablesen lässt (weil die Steigung bei dieser Geraden an jeder Stelle gleich ist).

g' (-2) = m = -0.5

Somit erhalten wir:

h '(-2) = = f '(g(-2)) ⋅ g'(-2) = f' (2) ⋅ g'(-2) ≈ -1 ⋅ -0.5 ≈ 0.5.

Anzahl Nullstellen bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= 3( x +2 ) und der Graph einer Funktion g (in der Abbildung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?

Lösung einblenden

Zuerst bestimmen wir die Nullstellen der Funktion f:

3( x +2 ) = 0
3x +6 = 0 | -6
3x = -6 |:3
x = -2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das bedeutet, dass f(-2)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch gerade die x-Werte sein, für die g(x) = -2 gilt, denn dann gilt ja f(g(x)) = f( -2) = 0.

Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = -2 besitzt.

Man erkennt - notfalls durch Einzeichnen einer Geraden y = -2, dass dies gerade 3 Schnittpunkte sind.

Das heißt, dass diese 3 x-Werte dieser Schnittpunkte alle Lösungen von f(g(x)) = f( -2) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 +6x +9
und der Graph einer Funktion g (in der Abbildung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x +6 )⋅g(x) + ( x 2 +6x +9 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = -2 und bei x = 4 sind.
Der Extrempunkt des Graphs liegt bei x = 1, (also gilt g '(1) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 +6x +9 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · 1 · 9 21

x1,2 = -6 ± 36 -36 2

x1,2 = -6 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 3 2 - 9 = 9 - 9 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -3 ± 0 = -3

Theoretisch erkennen wir schon hier, dass an dieser doppelten Nullstelle auch ein Extrempunkt vorliegen muss, wir rechnen aber trotzdem noch mal nach:

Für die Ableitung von f mit f(x)= x 2 +6x +9 gilt: f'(x)= 2x +6 . Diese setzen wir = 0:

2x +6 = 0 | -6
2x = -6 |:2
x = -3

Es gilt also f(-3) = f'(-3) = 0, somit gilt h'(-3) = f'(-3)⋅g(-3) + f(-3)⋅g'(-3) = 0⋅g(-3) + 0⋅g'(-3) = 0.

Somit hat h an der Stelle x =-3 eine waagrechte Tangente.

Anzahl Nullstellen bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= 3( x +4 ) und der Graph einer Funktion g (in der Abbildung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?

Lösung einblenden

Zuerst bestimmen wir die Nullstellen der Funktion f:

3( x +4 ) = 0
3x +12 = 0 | -12
3x = -12 |:3
x = -4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das bedeutet, dass f(-4)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch gerade die x-Werte sein, für die g(x) = -4 gilt, denn dann gilt ja f(g(x)) = f( -4) = 0.

Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = -4 besitzt.

Man erkennt - notfalls durch Einzeichnen einer Geraden y = -4, dass dies gerade 1 Schnittpunkts sind.

Das heißt, dass dieser 1 x-Wert dieses Schnittpunkts alle Lösungen von f(g(x)) = f( -4) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.