nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Kettenregel ohne e-Fktn (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= -3 cos( -x +1 ) und vereinfache:

Lösung einblenden

f(x)= -3 cos( -x +1 )

f'(x)= 3 sin( -x +1 ) · ( -1 +0 )

= 3 sin( -x +1 ) · ( -1 )

= -3 sin( -x +1 )

Kettenregel ohne e-Fktn 2 (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= 3 x -5 und vereinfache:

Lösung einblenden

f(x)= 3 x -5

= 3 ( x -5 ) 1 2

=> f'(x) = 3 2 ( x -5 ) - 1 2 · ( 1 +0 )

f'(x)= 3 2 x -5 · ( 1 +0 )

= 3 2 x -5 · ( 1 )

= 3 2 x -5

Kettenregel ohne e-Fktn (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= -3 sin( -3 x 2 -5 ) und vereinfache:

Lösung einblenden

f(x)= -3 sin( -3 x 2 -5 )

f'(x)= -3 cos( -3 x 2 -5 ) · ( -6x +0 )

= -3 cos( -3 x 2 -5 ) · ( -6x )

= 18 cos( -3 x 2 -5 ) x

= 18 x · cos( -3 x 2 -5 )

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(-1).

Lösung einblenden

Wir können der Zeichnung rechts f(-1) = 3 entnehmen.

Also gilt h(-1) = g(f(-1)) = g(3)

g(3) können wir auch wieder am (blauen) Graph ablesen:
h(-1) = g(f(-1)) = g(3) = -1.

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = -1 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = -1 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(0|-1), der auf dem Graph von g liegt, also gilt:
-1 = g(0)
Wegen -1 = h(x)= g(f(x))= g(0) gilt also f(x) = 0.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =0 sind.

Diese erkennen wir bei Q1(1|0) und Q2(-1|0), also bei
x1 = 1 und x2 = -1

Verkettung von f und f' (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(-1)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(-1) = 0 entnehmen.

Wir suchen also f(f '(-1)) = f(0).

f(0) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(-1)) = f(0) = -2 .

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(-1).

Lösung einblenden

Wir können der Zeichnung rechts f(-1) = 1 entnehmen.

Also gilt h(-1) = g(f(-1)) = g(1)

g(1) können wir auch wieder am (blauen) Graph ablesen:
h(-1) = g(f(-1)) = g(1) = 1.

nur Produktregel ohne e-Fktn

Beispiel:

Berechne die Ableitung von f mit f(x)= x 2 · sin( x ) und vereinfache:

Lösung einblenden

f(x)= x 2 · sin( x )

f'(x)= 2x · sin( x ) + x 2 · cos( x )

= 2 x · sin( x ) + x 2 · cos( x )

Ketten- und Produktregel (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= x 2 · sin( x -1 ) und vereinfache:

Lösung einblenden

f(x)= x 2 · sin( x -1 )

f'(x)= 2x · sin( x -1 ) + x 2 · cos( x -1 )

= 2 x · sin( x -1 ) + x 2 · cos( x -1 )

Ketten- und Produktregel (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= 2 x 2 -4 und vereinfache:

Lösung einblenden

f(x)= 2 x 2 -4

= 2 ( x 2 -4 ) 1 2

=> f'(x) = ( x 2 -4 ) - 1 2 · ( 2x +0 )

f'(x)= 1 x 2 -4 · ( 2x +0 )

= 1 x 2 -4 · ( 2x )

= 2 x x 2 -4

Kettenregel graphisch

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=f(g(x)).
Bestimme h(1) und h '(1).

Lösung einblenden

Berechnung von h(1) = f(g(1))

Wir können der Zeichnung rechts g(1) = 0 entnehmen.

Also gilt h(1) = f(g(1)) = g(0)

g(0) können wir auch wieder am (blauen) Graph ablesen:
h(1) = f(g(1)) = f(0) = 1.

Berechnung von h '(1)

Um h '(1) zu berechnen, müssen wir zuerst die Kettenregel anwenden

h '(1) = f '(g(1)) ⋅ g'(1)

Wir haben ja bereits oben der Zeichnung g(1) = 0 entnommen.

f '(g(1)) = f '(0) erhalten wir, indem wir die Tangentensteigung an den Graph von f an der Stelle x = 0 ablesen (siehe grüne Tangente):

f '(g(1)) = f' (0) ≈ -0.5

Damit fehlt nur g'(1), was sich ja einfach als Steigung der blauen Geraden ablesen lässt (weil die Steigung bei dieser Geraden an jeder Stelle gleich ist).

g' (1) = m = 0.5

Somit erhalten wir:

h '(1) = = f '(g(1)) ⋅ g'(1) = f' (0) ⋅ g'(1) ≈ -0.5 ⋅ 0.5 ≈ -0.25.

Anzahl Nullstellen bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= 3( x -4 ) und der Graph einer Funktion g (in der Abbildung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?

Lösung einblenden

Zuerst bestimmen wir die Nullstellen der Funktion f:

3( x -4 ) = 0
3x -12 = 0 | +12
3x = 12 |:3
x = 4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das bedeutet, dass f(4)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch gerade die x-Werte sein, für die g(x) = 4 gilt, denn dann gilt ja f(g(x)) = f( 4) = 0.

Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = 4 besitzt.

Man erkennt - notfalls durch Einzeichnen einer Geraden y = 4, dass dies gerade 1 Schnittpunkts sind.

Das heißt, dass dieser 1 x-Wert dieses Schnittpunkts alle Lösungen von f(g(x)) = f( 4) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 -2x -15
und der Graph einer Funktion g (in der Abbildung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x -2 )⋅g(x) + ( x 2 -2x -15 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir sofort, dass bei x = 2 sowohl eine Nullstelle als auch eine waagrechte Tangente vorliegt,
es gilt also: g(2) = g'(2) = 0.

Somit ist bei x = 2 in beiden Summanden der Produktregel eine Null als Faktor,
es gilt also h'(2) = f'(2)⋅g(2) + f(2)⋅g'(2) = f'(2)⋅0 + f(2)⋅0 = 0.

Damit hat h an der Stelle x = 2 eine waagrechte Tangente.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 -2x -24
und der Graph einer Funktion g (in der Abbildung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x -2 )⋅g(x) + ( x 2 -2x -24 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir sofort, dass bei x = -2 sowohl eine Nullstelle als auch eine waagrechte Tangente vorliegt,
es gilt also: g(-2) = g'(-2) = 0.

Somit ist bei x = -2 in beiden Summanden der Produktregel eine Null als Faktor,
es gilt also h'(-2) = f'(-2)⋅g(-2) + f(-2)⋅g'(-2) = f'(-2)⋅0 + f(-2)⋅0 = 0.

Damit hat h an der Stelle x = -2 eine waagrechte Tangente.