nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Kettenregel ohne e-Fktn (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= - ( x -4 ) 2 und vereinfache:

Lösung einblenden

f(x)= - ( x -4 ) 2

f'(x)= -2( x -4 ) · ( 1 +0 )

= -2( x -4 ) · ( 1 )

= -2( x -4 )

Kettenregel ohne e-Fktn 2 (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= - 1 4 2x +2 und vereinfache:

Lösung einblenden

f(x)= - 1 4 2x +2

= - 1 4 ( 2x +2 ) 1 2

=> f'(x) = - 1 8 ( 2x +2 ) - 1 2 · ( 2 +0 )

f'(x)= - 1 8 2x +2 · ( 2 +0 )

= - 1 8 2x +2 · ( 2 )

= - 1 4 2x +2

Kettenregel ohne e-Fktn (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= ( 2 x 3 +1 ) 3 und vereinfache:

Lösung einblenden

f(x)= ( 2 x 3 +1 ) 3

f'(x)= 3 ( 2 x 3 +1 ) 2 · ( 6 x 2 +0 )

= 3 ( 2 x 3 +1 ) 2 · ( 6 x 2 )

= 18 ( 2 x 3 +1 ) 2 x 2

= 18 ( ( 2 x 3 +1 ) x ) 2

= 18 ( x ( 2 x 3 +1 ) ) 2

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(2).

Lösung einblenden

Wir können der Zeichnung rechts f(2) = -3 entnehmen.

Also gilt h(2) = g(f(2)) = g(-3)

g(-3) können wir auch wieder am (blauen) Graph ablesen:
h(2) = g(f(2)) = g(-3) = 4.

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = 3 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = 3 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(2|3), der auf dem Graph von g liegt, also gilt:
3 = g(2)
Wegen 3 = h(x)= g(f(x))= g(2) gilt also f(x) = 2.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =2 sind.

Diese erkennen wir bei Q1(-1|2) und Q2(3|2), also bei
x1 = -1 und x2 = 3

Verkettung von f und f' (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(1)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(1) = 0 entnehmen.

Wir suchen also f(f '(1)) = f(0).

f(0) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(1)) = f(0) = 2 .

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(1).

Lösung einblenden

Wir können der Zeichnung rechts f(1) = -3 entnehmen.

Also gilt h(1) = g(f(1)) = g(-3)

g(-3) können wir auch wieder am (blauen) Graph ablesen:
h(1) = g(f(1)) = g(-3) = -1.

nur Produktregel ohne e-Fktn

Beispiel:

Berechne die Ableitung von f mit f(x)= ( 3 x 4 +4 x 2 ) · cos( x ) und vereinfache:

Lösung einblenden

f(x)= ( 3 x 4 +4 x 2 ) · cos( x )

f'(x)= ( 12 x 3 +8x ) · cos( x ) + ( 3 x 4 +4 x 2 ) · ( - sin( x ) )

= ( 12 x 3 +8x ) · cos( x ) - ( 3 x 4 +4 x 2 ) · sin( x )

Ketten- und Produktregel (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= ( x 2 +5 ) · -3x -4 und vereinfache:

Lösung einblenden

f(x)= ( x 2 +5 ) · -3x -4

= ( x 2 +5 ) · ( -3x -4 ) 1 2

=> f'(x) = ( 2x +0 ) · ( -3x -4 ) 1 2 + ( x 2 +5 ) · 1 2 ( -3x -4 ) - 1 2 · ( -3 +0 )

f'(x)= ( 2x +0 ) · -3x -4 + ( x 2 +5 ) · 1 2 -3x -4 · ( -3 +0 )

= 2x · -3x -4 + ( x 2 +5 ) · 1 2 -3x -4 · ( -3 )

= 2 x -3x -4 + ( x 2 +5 ) · ( - 3 2 -3x -4 )

= 2 x -3x -4 - 3 2 x 2 +5 -3x -4

Ketten- und Produktregel (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= x · sin( x 3 ) und vereinfache:

Lösung einblenden

f(x)= x · sin( x 3 )

= x 1 2 · sin( x 3 )

=> f'(x) = 1 2 x - 1 2 · sin( x 3 ) + x 1 2 · cos( x 3 ) · 3 x 2

f'(x)= 1 2 x · sin( x 3 ) + x · cos( x 3 ) · 3 x 2

= 1 2 sin( x 3 ) x + x · 3 cos( x 3 ) x 2

= 1 2 sin( x 3 ) x +3 x cos( x 3 ) x 2

= 1 2 sin( x 3 ) x +3 ( x ) 5 · cos( x 3 )

Kettenregel graphisch

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=f(g(x)).
Bestimme h(-1) und h '(-1).

Lösung einblenden

Berechnung von h(-1) = f(g(-1))

Wir können der Zeichnung rechts g(-1) = 2 entnehmen.

Also gilt h(-1) = f(g(-1)) = g(2)

g(2) können wir auch wieder am (blauen) Graph ablesen:
h(-1) = f(g(-1)) = f(2) = -1.

Berechnung von h '(-1)

Um h '(-1) zu berechnen, müssen wir zuerst die Kettenregel anwenden

h '(-1) = f '(g(-1)) ⋅ g'(-1)

Wir haben ja bereits oben der Zeichnung g(-1) = 2 entnommen.

f '(g(-1)) = f '(2) erhalten wir, indem wir die Tangentensteigung an den Graph von f an der Stelle x = 2 ablesen (siehe grüne Tangente):

f '(g(-1)) = f' (2) ≈ -2

Damit fehlt nur g'(-1), was sich ja einfach als Steigung der blauen Geraden ablesen lässt (weil die Steigung bei dieser Geraden an jeder Stelle gleich ist).

g' (-1) = m = -2

Somit erhalten wir:

h '(-1) = = f '(g(-1)) ⋅ g'(-1) = f' (2) ⋅ g'(-1) ≈ -2 ⋅ -2 ≈ 4.

Anzahl Nullstellen bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= 2( x +3 ) und der Graph einer Funktion g (in der Abbildung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?

Lösung einblenden

Zuerst bestimmen wir die Nullstellen der Funktion f:

2( x +3 ) = 0
2x +6 = 0 | -6
2x = -6 |:2
x = -3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das bedeutet, dass f(-3)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch gerade die x-Werte sein, für die g(x) = -3 gilt, denn dann gilt ja f(g(x)) = f( -3) = 0.

Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = -3 besitzt.

Man erkennt - notfalls durch Einzeichnen einer Geraden y = -3, dass dies gerade 4 Schnittpunkte sind.

Das heißt, dass diese 4 x-Werte dieser Schnittpunkte alle Lösungen von f(g(x)) = f( -3) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 3 +4x +5
und der Graph einer Funktion g (in der Abbildung rechts).

Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Kettenregel wissen wir, dass für die Ableitung von h(x)=f(g(x)) gilt:
h'(x) = f'(g(x))⋅g'(x).

Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = -4 und bei x = 4 sind.
Der Extrempunkt des Graphs liegt bei x = 0, (also gilt g '(0) = 0).

Damit ist ja bereits ein Faktor des Kettenregelprodukts =0. Wenn wir also x = 0 in h'(x) einsetzen, erhalten wir:
h'(0) = f'(g(0))⋅g'(0) = f'(g(0))⋅0 = 0.

Damit hat h an der Stelle x = 0 eine waagrechte Tangente.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 -9
und der Graph einer Funktion g (in der Abbildung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x )⋅g(x) + ( x 2 -9 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = -2 und bei x = 2 sind.
Der Extrempunkt des Graphs liegt bei x = 0, (also gilt g '(0) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 -9 = 0 | +9
x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

Für die Ableitung von f mit f(x)= x 2 -9 gilt: f'(x)= 2x . Diese setzen wir = 0:

2x = 0 |:2
x = 0

Wir haben also sowohl bei f als auch bei g eine eine Extremstelle bei x = 0, wodurch mit f'(0)=0 und g'(0)=0 in beiden Summanden der Produktregel eine Null als Faktor vorhanden ist.
es gilt also h'(0) = f'(0)⋅g(0) + f(0)⋅g'(0) = 0⋅g(0) + f(0)⋅0 = 0.

Damit hat h an der Stelle x = 0 eine waagrechte Tangente.