nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Kettenregel ohne e-Fktn (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= sin( -x -5 ) und vereinfache:

Lösung einblenden

f(x)= sin( -x -5 )

f'(x)= cos( -x -5 ) · ( -1 +0 )

= cos( -x -5 ) · ( -1 )

= - cos( -x -5 )

Kettenregel ohne e-Fktn 2 (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= 1 2 ( -3x +2 ) 2 und vereinfache:

Lösung einblenden

f(x)= 1 2 ( -3x +2 ) 2

= 1 2 ( -3x +2 ) -2

=> f'(x) = - ( -3x +2 ) -3 · ( -3 +0 )

f'(x)= - 1 ( -3x +2 ) 3 · ( -3 +0 )

= - 1 ( -3x +2 ) 3 · ( -3 )

= 3 ( -3x +2 ) 3

Kettenregel ohne e-Fktn (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= 2x +4 und vereinfache:

Lösung einblenden

f(x)= 2x +4

= ( 2x +4 ) 1 2

=> f'(x) = 1 2 ( 2x +4 ) - 1 2 · ( 2 +0 )

f'(x)= 1 2 2x +4 · ( 2 +0 )

= 1 2 2x +4 · ( 2 )

= 1 2x +4

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(3).

Lösung einblenden

Wir können der Zeichnung rechts f(3) = 0 entnehmen.

Also gilt h(3) = g(f(3)) = g(0)

g(0) können wir auch wieder am (blauen) Graph ablesen:
h(3) = g(f(3)) = g(0) = 1.

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = -1 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = -1 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(3|-1), der auf dem Graph von g liegt, also gilt:
-1 = g(3)
Wegen -1 = h(x)= g(f(x))= g(3) gilt also f(x) = 3.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =3 sind.

Diese erkennen wir bei Q1(-2|3) und Q2(2|3), also bei
x1 = -2 und x2 = 2

Verkettung von f und f' (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(-2)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(-2) = -1 entnehmen.

Wir suchen also f(f '(-2)) = f(-1).

f(-1) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(-2)) = f(-1) = 0,5 .

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = 4 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = 4 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(-3|4), der auf dem Graph von g liegt, also gilt:
4 = g(-3)
Wegen 4 = h(x)= g(f(x))= g(-3) gilt also f(x) = -3.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =-3 sind.

Diese erkennen wir bei Q1(0|-3) und Q2(2|-3), also bei
x1 = 0 und x2 = 2

nur Produktregel ohne e-Fktn

Beispiel:

Berechne die Ableitung von f mit f(x)= sin( x ) · ( - x 2 -1 ) und vereinfache:

Lösung einblenden

f(x)= sin( x ) · ( - x 2 -1 )

f'(x)= cos( x ) · ( - x 2 -1 ) + sin( x ) · ( -2x +0 )

= cos( x ) ( - x 2 -1 ) + sin( x ) · ( -2x )

= cos( x ) ( - x 2 -1 )-2 sin( x ) x

Ketten- und Produktregel (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= x 2 · sin( -5x -5 ) und vereinfache:

Lösung einblenden

f(x)= x 2 · sin( -5x -5 )

f'(x)= 2x · sin( -5x -5 ) + x 2 · cos( -5x -5 ) · ( -5 +0 )

= 2 x · sin( -5x -5 ) + x 2 · cos( -5x -5 ) · ( -5 )

= 2 x · sin( -5x -5 ) + x 2 · ( -5 cos( -5x -5 ) )

= 2 x · sin( -5x -5 ) -5 x 2 · cos( -5x -5 )

Ketten- und Produktregel (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= ( x 2 -6 ) · sin( x 2 ) und vereinfache:

Lösung einblenden

f(x)= ( x 2 -6 ) · sin( x 2 )

f'(x)= ( 2x +0 ) · sin( x 2 ) + ( x 2 -6 ) · cos( x 2 ) · 2x

= 2x · sin( x 2 ) + ( x 2 -6 ) · 2 cos( x 2 ) x

= 2 x · sin( x 2 ) +2 ( x 2 -6 ) cos( x 2 ) x

Kettenregel graphisch

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=f(g(x)).
Bestimme h(-2) und h '(-2).

Lösung einblenden

Berechnung von h(-2) = f(g(-2))

Wir können der Zeichnung rechts g(-2) = 3 entnehmen.

Also gilt h(-2) = f(g(-2)) = g(3)

g(3) können wir auch wieder am (blauen) Graph ablesen:
h(-2) = f(g(-2)) = f(3) = 0.

Berechnung von h '(-2)

Um h '(-2) zu berechnen, müssen wir zuerst die Kettenregel anwenden

h '(-2) = f '(g(-2)) ⋅ g'(-2)

Wir haben ja bereits oben der Zeichnung g(-2) = 3 entnommen.

f '(g(-2)) = f '(3) erhalten wir, indem wir die Tangentensteigung an den Graph von f an der Stelle x = 3 ablesen (siehe grüne Tangente):

f '(g(-2)) = f' (3) ≈ -1

Damit fehlt nur g'(-2), was sich ja einfach als Steigung der blauen Geraden ablesen lässt (weil die Steigung bei dieser Geraden an jeder Stelle gleich ist).

g' (-2) = m = -1

Somit erhalten wir:

h '(-2) = = f '(g(-2)) ⋅ g'(-2) = f' (3) ⋅ g'(-2) ≈ -1 ⋅ -1 ≈ 1.

Anzahl Nullstellen bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= 3( x -4 ) und der Graph einer Funktion g (in der Abbildung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?

Lösung einblenden

Zuerst bestimmen wir die Nullstellen der Funktion f:

3( x -4 ) = 0
3x -12 = 0 | +12
3x = 12 |:3
x = 4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das bedeutet, dass f(4)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch gerade die x-Werte sein, für die g(x) = 4 gilt, denn dann gilt ja f(g(x)) = f( 4) = 0.

Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = 4 besitzt.

Man erkennt - notfalls durch Einzeichnen einer Geraden y = 4, dass dies gerade 2 Schnittpunkte sind.

Das heißt, dass diese 2 x-Werte dieser Schnittpunkte alle Lösungen von f(g(x)) = f( 4) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 +2x -8
und der Graph einer Funktion g (in der Abbildung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x +2 )⋅g(x) + ( x 2 +2x -8 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir sofort, dass bei x = -1 sowohl eine Nullstelle als auch eine waagrechte Tangente vorliegt,
es gilt also: g(-1) = g'(-1) = 0.

Somit ist bei x = -1 in beiden Summanden der Produktregel eine Null als Faktor,
es gilt also h'(-1) = f'(-1)⋅g(-1) + f(-1)⋅g'(-1) = f'(-1)⋅0 + f(-1)⋅0 = 0.

Damit hat h an der Stelle x = -1 eine waagrechte Tangente.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 -16
und der Graph einer Funktion g (in der Abbildung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x )⋅g(x) + ( x 2 -16 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = -3 und bei x = 3 sind.
Der Extrempunkt des Graphs liegt bei x = 0, (also gilt g '(0) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 -16 = 0 | +16
x 2 = 16 | 2
x1 = - 16 = -4
x2 = 16 = 4

Für die Ableitung von f mit f(x)= x 2 -16 gilt: f'(x)= 2x . Diese setzen wir = 0:

2x = 0 |:2
x = 0

Wir haben also sowohl bei f als auch bei g eine eine Extremstelle bei x = 0, wodurch mit f'(0)=0 und g'(0)=0 in beiden Summanden der Produktregel eine Null als Faktor vorhanden ist.
es gilt also h'(0) = f'(0)⋅g(0) + f(0)⋅g'(0) = 0⋅g(0) + f(0)⋅0 = 0.

Damit hat h an der Stelle x = 0 eine waagrechte Tangente.