nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Kettenregel ohne e-Fktn (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= -2 ( 2x +2 ) 3 und vereinfache:

Lösung einblenden

f(x)= -2 ( 2x +2 ) 3

f'(x)= -6 ( 2x +2 ) 2 · ( 2 +0 )

= -6 ( 2x +2 ) 2 · ( 2 )

= -12 ( 2x +2 ) 2

Kettenregel ohne e-Fktn 2 (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= 3 -x +3 und vereinfache:

Lösung einblenden

f(x)= 3 -x +3

= 3 ( -x +3 ) 1 2

=> f'(x) = 3 2 ( -x +3 ) - 1 2 · ( -1 +0 )

f'(x)= 3 2 -x +3 · ( -1 +0 )

= 3 2 -x +3 · ( -1 )

= - 3 2 -x +3

Kettenregel ohne e-Fktn (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= 3 x -3 und vereinfache:

Lösung einblenden

f(x)= 3 x -3

= 3 ( x -3 ) 1 2

=> f'(x) = 3 2 ( x -3 ) - 1 2 · ( 1 +0 )

f'(x)= 3 2 x -3 · ( 1 +0 )

= 3 2 x -3 · ( 1 )

= 3 2 x -3

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(1).

Lösung einblenden

Wir können der Zeichnung rechts f(1) = -1 entnehmen.

Also gilt h(1) = g(f(1)) = g(-1)

g(-1) können wir auch wieder am (blauen) Graph ablesen:
h(1) = g(f(1)) = g(-1) = 4.

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = -3 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = -3 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(-1|-3), der auf dem Graph von g liegt, also gilt:
-3 = g(-1)
Wegen -3 = h(x)= g(f(x))= g(-1) gilt also f(x) = -1.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =-1 sind.

Diese erkennen wir bei Q1(1|-1) und Q2(-1|-1), also bei
x1 = 1 und x2 = -1

Verkettung von f und f' (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(1)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(1) = 0 entnehmen.

Wir suchen also f(f '(1)) = f(0).

f(0) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(1)) = f(0) = -3 .

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(1).

Lösung einblenden

Wir können der Zeichnung rechts f(1) = -3 entnehmen.

Also gilt h(1) = g(f(1)) = g(-3)

g(-3) können wir auch wieder am (blauen) Graph ablesen:
h(1) = g(f(1)) = g(-3) = -2.

nur Produktregel ohne e-Fktn

Beispiel:

Berechne die Ableitung von f mit f(x)= x 3 · sin( x ) und vereinfache:

Lösung einblenden

f(x)= x 3 · sin( x )

f'(x)= 3 x 2 · sin( x ) + x 3 · cos( x )

= 3 x 2 · sin( x ) + x 3 · cos( x )

Ketten- und Produktregel (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= x 2 · -4x -1 und vereinfache:

Lösung einblenden

f(x)= x 2 · -4x -1

= x 2 · ( -4x -1 ) 1 2

=> f'(x) = 2x · ( -4x -1 ) 1 2 + x 2 · 1 2 ( -4x -1 ) - 1 2 · ( -4 +0 )

f'(x)= 2x · -4x -1 + x 2 · 1 2 -4x -1 · ( -4 +0 )

= 2 x -4x -1 + x 2 · 1 2 -4x -1 · ( -4 )

= 2 x -4x -1 + x 2 · ( - 2 -4x -1 )

= 2 x -4x -1 -2 x 2 -4x -1

Ketten- und Produktregel (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= ( x 2 +7 ) · sin( 3x ) und vereinfache:

Lösung einblenden

f(x)= ( x 2 +7 ) · sin( 3x )

f'(x)= ( 2x +0 ) · sin( 3x ) + ( x 2 +7 ) · cos( 3x ) · 3

= 2x · sin( 3x ) + ( x 2 +7 ) · 3 cos( 3x )

= 2 x · sin( 3x ) +3 ( x 2 +7 ) · cos( 3x )

Kettenregel graphisch

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=f(g(x)).
Bestimme h(2) und h '(2).

Lösung einblenden

Berechnung von h(2) = f(g(2))

Wir können der Zeichnung rechts g(2) = -1 entnehmen.

Also gilt h(2) = f(g(2)) = g(-1)

g(-1) können wir auch wieder am (blauen) Graph ablesen:
h(2) = f(g(2)) = f(-1) = 0.

Berechnung von h '(2)

Um h '(2) zu berechnen, müssen wir zuerst die Kettenregel anwenden

h '(2) = f '(g(2)) ⋅ g'(2)

Wir haben ja bereits oben der Zeichnung g(2) = -1 entnommen.

f '(g(2)) = f '(-1) erhalten wir, indem wir die Tangentensteigung an den Graph von f an der Stelle x = -1 ablesen (siehe grüne Tangente):

f '(g(2)) = f' (-1) ≈ 2

Damit fehlt nur g'(2), was sich ja einfach als Steigung der blauen Geraden ablesen lässt (weil die Steigung bei dieser Geraden an jeder Stelle gleich ist).

g' (2) = m = 0.5

Somit erhalten wir:

h '(2) = = f '(g(2)) ⋅ g'(2) = f' (-1) ⋅ g'(2) ≈ 2 ⋅ 0.5 ≈ 1.

Anzahl Nullstellen bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= ( x -1 ) 2 und der Graph einer Funktion g (in der Abbildung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?

Lösung einblenden

Zuerst bestimmen wir die Nullstellen der Funktion f:

( x -1 ) 2 = 0 | 2
x -1 = 0
x -1 = 0 | +1
x = 1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das bedeutet, dass f(1)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch gerade die x-Werte sein, für die g(x) = 1 gilt, denn dann gilt ja f(g(x)) = f( 1) = 0.

Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = 1 besitzt.

Man erkennt - notfalls durch Einzeichnen einer Geraden y = 1, dass dies gerade 2 Schnittpunkte sind.

Das heißt, dass diese 2 x-Werte dieser Schnittpunkte alle Lösungen von f(g(x)) = f( 1) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 -9
und der Graph einer Funktion g (in der Abbildung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x )⋅g(x) + ( x 2 -9 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell die Nullstellen von g bei x = -5, bei x = 3 und bei x = 0.
(also gilt g(-5) = g(-5) = g(-5) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 -9 = 0 | +9
x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

Wir haben also sowohl bei f als auch bei g eine eine Nullstelle bei x = 3, wodurch in beiden Summanden der Produktregel eine Null als Faktor vorhanden ist.
es gilt also h'(3) = f'(3)⋅g(3) + f(3)⋅g'(3) = f'(3)⋅0 + 0⋅g'(3) = 0.

Damit hat h an der Stelle x = 3 eine waagrechte Tangente.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 -2x -24
und der Graph einer Funktion g (in der Abbildung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x -2 )⋅g(x) + ( x 2 -2x -24 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir sofort, dass bei x = -1 sowohl eine Nullstelle als auch eine waagrechte Tangente vorliegt,
es gilt also: g(-1) = g'(-1) = 0.

Somit ist bei x = -1 in beiden Summanden der Produktregel eine Null als Faktor,
es gilt also h'(-1) = f'(-1)⋅g(-1) + f(-1)⋅g'(-1) = f'(-1)⋅0 + f(-1)⋅0 = 0.

Damit hat h an der Stelle x = -1 eine waagrechte Tangente.