Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Kettenregel ohne e-Fktn (BF)
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Kettenregel ohne e-Fktn 2 (BF)
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
=
=> f'(x) =
=
=
Kettenregel ohne e-Fktn (LF)
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
=
=
=
Verkettung vorwärts
Beispiel:
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(-1).
Wir können der Zeichnung rechts f(-1) = 0 entnehmen.
Also gilt h(-1) = g(f(-1)) = g(0)
g(0) können wir auch wieder am (blauen) Graph ablesen:
h(-1) = g(f(-1)) = g(0) = -2.
Verkettung rückwärts
Beispiel:
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = -3 gilt.
Wenn wir auf der y-Achse bei y = -3 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit
P(-1|-3), der auf dem Graph von g liegt, also gilt:
-3 = g(-1)
Wegen -3 = h(x)= g(f(x))= g(-1) gilt also f(x) = -1.
Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =-1 sind.
Diese erkennen wir bei Q1(0|-1) und Q2(2|-1), also bei
x1 = 0 und x2 = 2
Verkettung von f und f' (ohne F)
Beispiel:
Bestimme f(f '(0)).
Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(0) = entnehmen.
Wir suchen also f(f '(0)) = f().
f() können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):
f(f '(0)) = f() = .
Verkettung vorwärts
Beispiel:
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(2).
Wir können der Zeichnung rechts f(2) = 1 entnehmen.
Also gilt h(2) = g(f(2)) = g(1)
g(1) können wir auch wieder am (blauen) Graph ablesen:
h(2) = g(f(2)) = g(1) = 2.
nur Produktregel ohne e-Fktn
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ketten- und Produktregel (BF)
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ketten- und Produktregel (LF)
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Anzahl Nullstellen bei Verkettung
Beispiel:
Gegeben ist eine ganzrationale Funktion f mit und der Graph einer Funktion g (in der Abbildung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.
Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?
Zuerst bestimmen wir die Nullstellen der Funktion f:
= | | | ||
|
= |
|
= | |
|
|
|
= |
|
Das bedeutet, dass f(-3)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch
gerade die x-Werte sein, für die g(x) = -3 gilt, denn dann gilt ja f(g(x)) = f( -3) = 0.
Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = -3 besitzt.
Man erkennt - notfalls durch Einzeichnen einer Geraden y = -3, dass dies gerade 2 Schnittpunkte sind.
Das heißt, dass diese 2 x-Werte dieser Schnittpunkte alle Lösungen von f(g(x)) = f( -3) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.
waagr. Tang. bei Produkt/Verkettung
Beispiel:
Gegeben ist eine ganzrationale Funktion f mit
und der Graph einer Funktion g (in der Abbildung rechts).
Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).
Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.
Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass
h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = (
gilt.
Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.
Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:
Am Graph von g erkennen wir sofort, dass bei x = 1 sowohl eine Nullstelle als auch eine waagrechte
Tangente vorliegt,
es gilt also: g(1) = g'(1) = 0.
Somit ist bei x = 1 in beiden Summanden der Produktregel eine Null als Faktor,
es gilt also h'(1) =
f'(1)⋅g(1) + f(1)⋅g'(1) = f'(1)⋅0 + f(1)⋅0 = 0.
Damit hat h an der Stelle x = 1 eine waagrechte Tangente.
Anzahl Nullstellen bei Verkettung
Beispiel:
Gegeben ist eine ganzrationale Funktion f mit
Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?
Zuerst bestimmen wir die Nullstellen der Funktion f:
|
= | ||
|
= | |
|
|
|
= |
|
|: |
|
= |
|
Das bedeutet, dass f(-1)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch
gerade die x-Werte sein, für die g(x) = -1 gilt, denn dann gilt ja f(g(x)) = f( -1) = 0.
Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = -1 besitzt.
Man erkennt - notfalls durch Einzeichnen einer Geraden y = -1, dass dies gerade 3 Schnittpunkte sind.
Das heißt, dass diese 3 x-Werte dieser Schnittpunkte alle Lösungen von f(g(x)) = f( -1) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.