- Klasse 5-6
- Klasse 7-8
- Klasse 9-10
- Kursstufe
- COSH
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Integralanwendungen BF
Beispiel:
Die Bewegungsgeschwindigkeit eines Körpers lässt sich nährungsweise durch die Funktion f mit f(x)= (in m/s, x in Sekunden) beschreiben. Nach s hat er bereits 7 m zurückgelegt. Wie weit ist er nach Sekunden?
=
=
=
=
=
=
=
=
=
≈ 65,333
Integralanwendungen
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach 1 Minuten sind 11 Liter im Tank. Wieviel Liter sind nach 2 Minuten darin?
=
=
=
≈ 3,793
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 0 so, dass =
=
=
=
Diese Integralfunktion soll ja den Wert annehmen, deswegen setzen wir sie gleich :
= | | | ||
= | |||
= | |: | ||
= | |ln(⋅) | ||
= |
= | | | ||
= | |:() | ||
= |
Maximaler Bestand rückwärts
Beispiel:
Der maximale Bestand (Höhe des Fahrstuhls) wird zu dem Zeitpunkt erreicht, an dem die Änderungsrate vom Positiven ins Negative wechselt, also wenn die Zunahme in eine Abnahme übergeht.
Wir suchen also eine Nullstelle von f mit Vorzeichenwechsel + nach -.
Wir wissen, dass bei der Sinus-Funktion die fallende Nullstelle nach einer halben Periode ist.
Die Periode von f ist p =
=
8. Somit ist die fallende Nullstelle nach einer halben Periode bei t = 4.
Da beim Sinus die Teilflächen über und unter der x-Achse gleich groß sind, wird dieser maximale Bestand zwar noch zu anderen Zeitpunkten erreicht, aber nie übertroffen.
Wir wissen nun, dass zum Zeitpunkt t = 4 der Bestand (Höhe des Fahrstuhls) maximal ist.
Über die Fläche unter der Kurve können wir den gesamten Zuwachs bis zu diesem Zeitpunkt berechnen:
=
=
=
=
=
≈ 5,093
Der Zuwachs von Beginn bis zum Zeitpunkts des maximalen Bestands beträgt somit 5,093 m
Wenn der maximale Bestand (Höhe des Fahrstuhls) aber 50 m ist müssen ja zu Beginn bereits 50 m - 5,093 m ≈ 44,907 m vorhanden gewesen sein.
Der Anfangs-Höhe des Fahrstuhls betrug demnach B0 = 44,907 m.
Mittelwerte
Beispiel:
Die Menge eines Wirkstoffs im Blut eines Patienten kann zur Zeit x (in min) näherungsweise durch die Funktion f mit f(x)= (in mg) beschrieben werden. Berechne die mittlere Wirkstoffmenge in mg zwischen Minute 3 und Minute 5.
Wir berechnen den Mittelwert mit der üblichen Formel:
=
=
=
=
≈ 0,764
uneigentliche Integrale
Beispiel:
Der Graph der Funktion f mit f(x)=
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
=
=
=
=
=
=
Für u → ∞ gilt: A(u) =
Für den Flächeninhalt (immer positiv) gilt also I = 0.042
minimaler + maximaler Bestand (2 Kurven)
Beispiel:
- Nach wie vielen Sekunden ist der Vorsprung von Radfahrer1 gegenüber Radfahrer2 am kleinsten?
- 4 Sekunden nach Beobachtungsbeginn ist Radfahrer1 ca. 33,7 Meter vor Radfahrer2. Bestimme den Vorsprung von Radfahrer1 auf Radfahrer2 bei Beobachtungsbeginn.
- Wie viele Meter ist der Radfahrer1 in den ersten 4 Sekunden gefahren?
Man erkennt schnell, dass von 0 bis 4 die Geschwindigkeit des 1. Radfahrers über der Geschwindigkeit des 2. Radfahrers liegt, so dass hier der Vorsprung des 1. Radfahrers zunimmt.
Von 4 bis 8 liegt dann die Geschwindigkeit des 2. Radfahrers über der Geschwindigkeit des 1. Radfahrers, so dass hier der Vorsprung des 1. Radfahrers abnimmt.
Von 8 bis 10 liegt dann wieder die Geschwindigkeit des 1. Radfahrers über der Geschwindigkeit des 2. Radfahrers, so dass hier der Vorsprung des 1. Radfahrers wieder zunimmt.
Die Werte der Zunahme (bzw. Abnahme) kann man an der Fläche zwischen den Kurven abzählen:
von 0 bis 4: ca. 6.7
Meter
von 4 bis 8: ca. -1.3 Meter
von 8 bis 10: ca. 1.3 Meter
- Zeitpunkt des kleinsten Bestands
Da zwischen 0 und 4 mehr Zuwachs abzulesen ist als die Abnahme zwischen 4 und 8, ist der Zeitpunkt mit dem geringsten Bestand gleich zu Beginn, also bei t = 0 s.
- Anfangsbestand
Die Änderung des Bestands kann man einfach durch die Flächen zwischen dem Kurven ablesen, wobei man hier natürlich die Vorzeichen übernehmen muss. Durch Abzählen der Kästchen der eingeschlossenen Flächen im Interval [0;4] kann man einen Zuwachs von ca. 6.7 erkennen.
Bei Beobachtungsbeginn muss somit der Vorsprung des 1. Radfahrers um 6.7 Meter niedriger als die 33.7 nach 4 s gewesen sein:
B0 = 33.7 - 6.7 = 27 Meter . - reiner Zuwachs nach 4 s
Da ja die blaue Kurve der Graph der Zunahme darstellt, müssen wir einfach die Fläche zwischen der blauen Kurve und der x-Achse im Intervall [0;4] ablesen. Diese ist ca. Z4 = 24 Meter .