Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Integralanwendungen BF
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach 0 Minuten sind 17 Liter im Tank. Wieviel Liter sind nach 2 Minuten darin?
=
=
=
≈ 5,188
Integralanwendungen
Beispiel:
Die Bewegungsgeschwindigkeit eines Körpers lässt sich nährungsweise durch die Funktion f mit f(x)= (in m/s, x in Sekunden) beschreiben. Nach 3s hat er bereits 13 m zurückgelegt. Wie weit ist er nach 5 Sekunden?
=
=
=
=
≈ 1,577
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 0 so, dass
=
=
=
Diese Integralfunktion soll ja den Wert
|
= |
|
|
|
|
= |
|
|
|
= | |: |
|
|
= | |ln(⋅) | |
|
= |
|
|
= |
|
|
|
|
= |
|
|:( |
|
= |
|
Maximaler Bestand rückwärts
Beispiel:
Der maximale Bestand (Höhe des Fahrstuhls) wird zu dem Zeitpunkt erreicht, an dem die Änderungsrate vom Positiven ins Negative wechselt, also wenn die Zunahme in eine Abnahme übergeht.
Wir suchen also eine Nullstelle von f mit Vorzeichenwechsel + nach -.
|
= | |
|
|
|
= | |ln(⋅) | |
|
= |
|
= | |
|
|
|
= |
|
|:( |
|
= |
|
Wir wissen nun, dass zum Zeitpunkt t = 6 der Bestand (Höhe des Fahrstuhls) maximal ist.
Über die Fläche unter der Kurve können wir den gesamten Zuwachs bis zu diesem Zeitpunkt berechnen:
=
=
=
=
=
≈ 5,601
Der Zuwachs von Beginn bis zum Zeitpunkts des maximalen Bestands beträgt somit 5,601 m
Wenn der maximale Bestand (Höhe des Fahrstuhls) aber 45 m ist müssen ja zu Beginn bereits 45 m - 5,601 m ≈ 39,399 m vorhanden gewesen sein.
Der Anfangs-Höhe des Fahrstuhls betrug demnach B0 = 39,399 m.
Mittelwerte
Beispiel:
Die Menge an Wasser in einem Wassertank zur Zeit x (in min) kann näherungsweise durch die Funktion f mit f(x)=
Wir berechnen den Mittelwert mit der üblichen Formel:
=
=
=
≈ 24,263
uneigentliche Integrale
Beispiel:
Der Graph der Funktion f mit f(x)=
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
=
=
=
=
=
=
Für u → ∞ gilt: A(u) =
Für den Flächeninhalt (immer positiv) gilt also I = 0.083
minimaler + maximaler Bestand (2 Kurven)
Beispiel:
- Nach wie vielen Minuten ist am meisten Wasser im Tank?
- Nach wie vielen Minuten ist am wenigsten Wasser im Tank?
- Wie viele Liter Wasser fließen in den ersten 4 Minuten in den Tank hinein?
Man erkennt schnell, dass von 0 bis 1 die Zuflussrate über der Abflussrate liegt, so dass hier das Wasservolumen zunimmt.
Von 1 bis 9 liegt dann die Abflussrate über der Zuflussrate, so dass hier das Wasservolumen abnimmt.
Von 9 bis 10 liegt dann wieder die Zuflussrate über der Abflussrate, so dass hier das Wasservolumen wieder zunimmt.
Die Werte der Zunahme (bzw. Abnahme) kann man an der Fläche zwischen den Kurven abzählen:
von 0 bis 1: ca. 0.5
Liter
von 1 bis 9: ca. -10.7 Liter
- Zeitpunkt des größten Bestands
Nachdem das Wasservolumen zwischen t = 0 und t = 1 zugenommen hat, ist die Abnahme zwischen t = 1 und t = 9 jedoch größer als der Zuwachs zwischen t = 9 und t = 10, so dass der Höchststand von t = 1 nicht wieder erreicht wird.
Somit wird das Wasservolumen bei t = 1 min maximal. - Zeitpunkt des kleinsten Bestands
Da zwischen 0 und 1 weniger Zuwachs abzulesen ist als die Abnahme zwischen 1 und 9, ist der Zeitpunkt mit dem geringsten Bestand wenn die Zuwachsrate wieder größer wird als die Abnahmerate, also bei t = 9 min.
- reiner Zuwachs nach 4 min
Da ja die blaue Kurve der Graph der Zunahme darstellt, müssen wir einfach die Fläche zwischen der blauen Kurve und der x-Achse im Intervall [0;4] ablesen. Diese ist ca. Z4 = 17.2 Liter .