Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Ort nach t Zeiteinheiten
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 4s ist es im Punkt B angelangt.
An welchem Ort befindet sich das Flugzeug nach 8s?
Das Bewegungsobjekt legt in 4s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 8 s befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Strecke nach t Zeiteinheiten
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 2min ist er im Punkt B angelangt.
Wie weit ist der Heißluftballon nach 7min geflogen?
Das Bewegungsobjekt legt in 2min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 7 min befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Das Bewegungsobjekt hat sich dann von A nach P bewegt, also um den Vektor =. Dessen Länge ist m.
Geschwindigkeit in km/h
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 2min ist er im Punkt B angelangt.
Gib die Geschwindigkeit des Heißluftballons in km/h an?
Das Bewegungsobjekt legt in 2min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Dieser Vektor hat die Länge =.
Die Geschwindigkeit ist also
v=110
= 6.6
Zeit zu gegebener Höhe gesucht
Beispiel:
Eine Rakete startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 3s ist es im Punkt B angelangt.
Wann hat die Rakete die Höhe von 1100m erreicht?
Das Bewegungsobjekt legt in 3s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g: dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 50m (Änderung in der x3-Koordinate). Um von 200 auf 1100m (also 900m) zu steigen (bzw. fallen), muss es also s = 18s lang steigen (bzw. sinken).
Geschwindigkeit rückwärts
Beispiel:
Eine Seilbahn fährt zum Zeitpunkt t=0 im Punkt A in der Bergstation los und fährt mit einer konstanten Geschwindigkeit von 32,4km/h in Richtung des Punktes B (alle Koordinatenangaben in Meter). Ihre Bewegungsbahn soll als geradlinig angenommen werden.
Wann kommt die Seilbahngondel im Punkt B an?
Zuerst rechnen wir die Geschwindigkeit von km/h in um: v=
= 9.
Die Länge des Vektors = ist m.
Bei einer Geschwindigkeit von 9. braucht er für diese Strecke
s = 4s.
Punkt B wird als nach 4s erreicht.
Höhe nach x Kilometern
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 4s ist es im Punkt B angelangt.
Welche Höhe hat das Flugzeug, wenn es 24,2 km zurückgelegt hat?
Das Bewegungsobjekt legt in 4 s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Geradengleichung
beschreibt also den Ortsvektor zu dem Punkt, an dem sich das Bewegungsobjekt nach t s befindet.
Dieser Richtungsvektor (der in 1 s zurückgelegt wird) hat die Länge =.
Die Geschwindigkeit ist also v=110
Für die Strecke von 24.2 km braucht es also s
= 220s
Nach dieser Zeit befindet es sich dann im Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Die Höhe in diesem Punkt ist einfach die x3-Koordinate, also 13240 (in m).
Abstand zweier Objekte
Beispiel:
Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch . (alle Koordinaten in km; t in Minuten seit Beobachtungsbeginn). Ein zweites Flugzeug F2 startet zum Zeitpunkt t=0 im Punkt A . Nach 5min ist es im Punkt B angelangt.
Wie weit sind die beiden Flugzeuge nach 2min von einander entfernt?
F2 legt in 5min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
F1 ist nach 2min an der Stelle P1 = ; F2 an der Stelle P2 = .
= =
d=|| = =
Der Abstand ist also ca. 7.07 km.
Gleiche Höhe bei 2 Objekten
Beispiel:
Die Position eines Heißluftballon F1 zum Zeitpunkt t ist gegeben durch
Wann sind die beiden Heißluftballone auf gleicher Höhe?
Der Heißluftballon F2 legt in 3h den Vektor
In 1h legt es also den Vektor
Um den Zeitpunkt zu finden, wann beide die gleiche Höhe haben, muss einfach ein t gefunden werden, bei dem die x3-Koordinate bei beiden Gleichungen gleich groß ist, also:
|
= |
|
|
|
|
= |
|
|: |
|
= |
|
nach 9 h sind also beide auf gleicher
Höhe:
Höhendifferenz der Flugbahnen
Beispiel:
Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch
Ein Beobachter steht direkt senkrecht unter dem scheinbaren Schnittpunkt der beiden Flugbahnen. Wie hoch ist an dieser Stelle der Höhenunterschied der beiden Flugbahnen tatsächlich?
Das Flugzeug F2 legt in 2min den Vektor
In 1min legt es also den Vektor
Den scheinbaren Schnittpunkt der beiden Bewegungsbahnen, den man von direkt darüber oder direkt darunter sehen könnte, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.
langsame Rechnung einblenden
t =
eingesetzt in Zeile (I):
s =
Das heißt also, dass das Flugzeug F1 nach 9min und das Flugzeug F2 nach 9min an diesem 'x1-x2-Schnittpunkt' ist.
das Flugzeug F1 ist also nach 9min bei
Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von
3.4 - 3.2 = 0.2 km
Abstand zweier Objekte
Beispiel:
Die Position einer Drohne zum Zeitpunkt t ist gegeben durch
Die Seilbahngondel legt in 3s den Vektor
In 1s legt es also den Vektor
Die Drohne ist nach 2s an der Stelle P1
d=|
Der Abstand ist also ca. 63.44 m.
Geschwindigkeit in km/h
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A
Gib die Geschwindigkeit des Heißluftballons in km/h an?
Das Bewegungsobjekt legt in 2min den Vektor
In 1min legt es also den Vektor
Die Geschwindigkeit ist also
v=90