Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Ort nach t Zeiteinheiten
Beispiel:
Eine Rakete startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 1s ist es im Punkt B angelangt.
Wo ist die Rakete nach 7s?
Das Bewegungsobjekt legt in 1s den Vektor = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 7 s befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Strecke nach t Zeiteinheiten
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 1min ist er im Punkt B angelangt.
Wie weit ist der Heißluftballon nach 7min geflogen?
Das Bewegungsobjekt legt in 1min den Vektor = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 7 min befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Das Bewegungsobjekt hat sich dann von A nach P bewegt, also um den Vektor =. Dessen Länge ist m.
Geschwindigkeit in km/h
Beispiel:
Eine Rakete startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 4s ist es im Punkt B angelangt.
Wie hoch ist die Geschwindigkeit der Rakete in km/h?
Das Bewegungsobjekt legt in 4s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Dieser Vektor hat die Länge =.
Die Geschwindigkeit ist also
v=150
= 540
Zeit zu gegebener Höhe gesucht
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 1min ist er im Punkt B angelangt.
Wann hat der Heißluftballon die Höhe von 140m erreicht?
Das Bewegungsobjekt legt in 1min den Vektor = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g: dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
In 1min steigt (bzw. sinkt) das Bewegungsobjekt um 10m (Änderung in der x3-Koordinate). Um von 20 auf 140m (also 120m) zu steigen (bzw. fallen), muss es also min = 12min lang steigen (bzw. sinken).
Geschwindigkeit rückwärts
Beispiel:
Eine Leuchtrakete befindet sich zum Zeitpunkt t=0 im Punkt A und fliegt mit einer konstanten Geschwindigkeit von 1980km/h in Richtung des Punktes B (alle Koordinatenangaben in Meter).
Wann kommt sie im Punkt B an?
Zuerst rechnen wir die Geschwindigkeit von km/h in um: v=
= 550.
Die Länge des Vektors = ist m.
Bei einer Geschwindigkeit von 550. braucht er für diese Strecke
s = 1s.
Punkt B wird als nach 1s erreicht.
Höhe nach x Kilometern
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Da der Wind extrem gleichmäßig ist, fliegt er mit konstanter Geschwindigkeit auf einer geradlinigen Bahn. Nach 4min ist er im Punkt B angelangt.
Welche Höhe hat der Heißluftballon, wenn er 9,24 km zurückgelegt hat?
Das Bewegungsobjekt legt in 4 min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Die Geradengleichung
beschreibt also den Ortsvektor zu dem Punkt, an dem sich das Bewegungsobjekt nach t min befindet.
Dieser Richtungsvektor (der in 1 min zurückgelegt wird) hat die Länge =.
Die Geschwindigkeit ist also v=66
Für die Strecke von 9.24 km braucht es also min
= 140min
Nach dieser Zeit befindet es sich dann im Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Die Höhe in diesem Punkt ist einfach die x3-Koordinate, also 1680 (in m).
Abstand zweier Objekte
Beispiel:
Die Position einer Drohne zum Zeitpunkt t ist gegeben durch . (alle Koordinaten in m; t in Sekunden seit Beobachtungsbeginn). Die Gondel einer Seilbahn startet zum Zeitpunkt t=0 im Punkt A . Nach 3s ist sie im Punkt B angelangt. Wie weit sind die Drohne und die Seilbahngondel nach 4s von einander entfernt?
Die Seilbahngondel legt in 3s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
Die Drohne ist nach 4s an der Stelle P1 = ; Die Seilbahngondel an der Stelle P2 = .
= =
d=|| = =
Der Abstand ist also ca. 63.19 m.
Gleiche Höhe bei 2 Objekten
Beispiel:
Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch
Wann sind die beiden Flugzeuge auf gleicher Höhe?
Das Flugzeug F2 legt in 3min den Vektor
In 1min legt es also den Vektor
Um den Zeitpunkt zu finden, wann beide die gleiche Höhe haben, muss einfach ein t gefunden werden, bei dem die x3-Koordinate bei beiden Gleichungen gleich groß ist, also:
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
nach 5 min sind also beide auf gleicher
Höhe:
Höhendifferenz der Flugbahnen
Beispiel:
Die Gondel einer Seilbahn startet zum Zeitpunkt t=0 im Punkt A
Es gibt einen Zeitpunkt, an dem die Drohne genau über der Seilbahn ist. Berechne den vertikalen Höhenunterschied zwischen Drohne und Seilbahn an dieser Stelle.
Die Seilbahngondel legt in 1s den Vektor
Den scheinbaren Schnittpunkt der beiden Bewegungsbahnen, den man von direkt darüber oder direkt darunter sehen könnte, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.
langsame Rechnung einblenden
t =
eingesetzt in Zeile (I):
s =
Das heißt also, dass die Drohne nach 2s und die Seilbahngondel nach 2s an diesem 'x1-x2-Schnittpunkt' ist.
die Drohne ist also nach 2s bei
Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von
2.2 - 1.4 = 0.8 m
Zeit zu gegebener Höhe gesucht
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A
Wann hat der Heißluftballon die Höhe von 130m erreicht?
Das Bewegungsobjekt legt in 1min den Vektor
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
In 1min steigt (bzw. sinkt) das Bewegungsobjekt um 10m (Änderung in der x3-Koordinate).
Um von 50 auf 130m (also 80m) zu steigen (bzw. fallen),
muss es also
Höhendifferenz der Flugbahnen
Beispiel:
Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch
Ein Beobachter steht direkt senkrecht unter dem scheinbaren Schnittpunkt der beiden Flugbahnen. Wie hoch ist an dieser Stelle der Höhenunterschied der beiden Flugbahnen tatsächlich?
Das Flugzeug F2 legt in 1min den Vektor
Den scheinbaren Schnittpunkt der beiden Bewegungsbahnen, den man von direkt darüber oder direkt darunter sehen könnte, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.
langsame Rechnung einblenden
t =
eingesetzt in Zeile (I):
s =
Das heißt also, dass das Flugzeug F1 nach 8min und das Flugzeug F2 nach 7min an diesem 'x1-x2-Schnittpunkt' ist.
das Flugzeug F1 ist also nach 8min bei
Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von
3.8 - 3.5 = 0.3 km
