Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Ort nach t Zeiteinheiten
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 3s ist es im Punkt B angelangt.
An welchem Ort befindet sich das Flugzeug nach 5s?
Das Bewegungsobjekt legt in 3s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 5 s befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Strecke nach t Zeiteinheiten
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 3s ist es im Punkt B angelangt.
Welche Strecke hat das Flugzeug nach 7s seit seinem Start zurückgelegt?
Das Bewegungsobjekt legt in 3s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 7 s befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Das Bewegungsobjekt hat sich dann von A nach P bewegt, also um den Vektor =. Dessen Länge ist m.
Geschwindigkeit in km/h
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 4min ist er im Punkt B angelangt.
Gib die Geschwindigkeit des Heißluftballons in km/h an?
Das Bewegungsobjekt legt in 4min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Dieser Vektor hat die Länge =.
Die Geschwindigkeit ist also
v=120
= 7.2
Zeit zu gegebener Höhe gesucht
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 4min ist er im Punkt B angelangt.
Wann hat der Heißluftballon die Höhe von 240m erreicht?
Das Bewegungsobjekt legt in 4min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g: dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
In 1min steigt (bzw. sinkt) das Bewegungsobjekt um 10m (Änderung in der x3-Koordinate). Um von 0 auf 240m (also 240m) zu steigen (bzw. fallen), muss es also min = 24min lang steigen (bzw. sinken).
Geschwindigkeit rückwärts
Beispiel:
Eine Seilbahn fährt zum Zeitpunkt t=0 im Punkt A in der Bergstation los und fährt mit einer konstanten Geschwindigkeit von 21,6km/h in Richtung des Punktes B (alle Koordinatenangaben in Meter). Ihre Bewegungsbahn soll als geradlinig angenommen werden.
Wann kommt die Seilbahngondel im Punkt B an?
Zuerst rechnen wir die Geschwindigkeit von km/h in um: v=
= 6.
Die Länge des Vektors = ist m.
Bei einer Geschwindigkeit von 6. braucht er für diese Strecke
s = 4s.
Punkt B wird als nach 4s erreicht.
Höhe nach x Kilometern
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 2s ist es im Punkt B angelangt.
Welche Höhe hat das Flugzeug, wenn es 3,6 km zurückgelegt hat?
Das Bewegungsobjekt legt in 2 s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Geradengleichung
beschreibt also den Ortsvektor zu dem Punkt, an dem sich das Bewegungsobjekt nach t s befindet.
Dieser Richtungsvektor (der in 1 s zurückgelegt wird) hat die Länge =.
Die Geschwindigkeit ist also v=60
Für die Strecke von 3.6 km braucht es also s
= 60s
Nach dieser Zeit befindet es sich dann im Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Die Höhe in diesem Punkt ist einfach die x3-Koordinate, also 1210 (in m).
Abstand zweier Objekte
Beispiel:
Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch . (alle Koordinaten in km; t in Minuten seit Beobachtungsbeginn). Ein zweites Flugzeug F2 startet zum Zeitpunkt t=0 im Punkt A . Nach 3min ist es im Punkt B angelangt.
Wie weit sind die beiden Flugzeuge nach 4min von einander entfernt?
F2 legt in 3min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
F1 ist nach 4min an der Stelle P1 = ; F2 an der Stelle P2 = .
= =
d=|| = =
Der Abstand ist also ca. 22.49 km.
Gleiche Höhe bei 2 Objekten
Beispiel:
Die Position eines Heißluftballon F1 zum Zeitpunkt t ist gegeben durch
Wann sind die beiden Heißluftballone auf gleicher Höhe?
Der Heißluftballon F2 legt in 5h den Vektor
In 1h legt es also den Vektor
Um den Zeitpunkt zu finden, wann beide die gleiche Höhe haben, muss einfach ein t gefunden werden, bei dem die x3-Koordinate bei beiden Gleichungen gleich groß ist, also:
|
= |
|
|
|
|
= |
|
|: |
|
= |
|
nach 5 h sind also beide auf gleicher
Höhe:
Höhendifferenz der Flugbahnen
Beispiel:
Die Gondel einer Seilbahn startet zum Zeitpunkt t=0 im Punkt A
Es gibt einen Zeitpunkt, an dem die Drohne genau über der Seilbahn ist. Berechne den vertikalen Höhenunterschied zwischen Drohne und Seilbahn an dieser Stelle.
Die Seilbahngondel legt in 4s den Vektor
In 1s legt es also den Vektor
Den scheinbaren Schnittpunkt der beiden Bewegungsbahnen, den man von direkt darüber oder direkt darunter sehen könnte, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.
langsame Rechnung einblenden
t =
eingesetzt in Zeile (I):
s =
Das heißt also, dass die Drohne nach 8s und die Seilbahngondel nach 7s an diesem 'x1-x2-Schnittpunkt' ist.
die Drohne ist also nach 8s bei
Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von
2.4 - 2.4 = 0 m
Strecke nach t Zeiteinheiten
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A
Welche Strecke hat das Flugzeug nach 4s seit seinem Start zurückgelegt?
Das Bewegungsobjekt legt in 3s den Vektor
In 1s legt es also den Vektor
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
Das Bewegungsobjekt hat sich dann von A
Abstand zweier Objekte
Beispiel:
Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch
Wie weit sind die beiden Flugzeuge nach 5min von einander entfernt?
F2 legt in 5min den Vektor
In 1min legt es also den Vektor
F1 ist nach 5min an der Stelle P1
d=|
Der Abstand ist also ca. 7.07 km.