Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Ort nach t Zeiteinheiten
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 3s ist es im Punkt B angelangt.
An welchem Ort befindet sich das Flugzeug nach 9s?
Das Bewegungsobjekt legt in 3s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 9 s befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Strecke nach t Zeiteinheiten
Beispiel:
Eine Rakete startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 3s ist es im Punkt B angelangt.
Wie weit ist die Rakete nach 7s geflogen?
Das Bewegungsobjekt legt in 3s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 7 s befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Das Bewegungsobjekt hat sich dann von A nach P bewegt, also um den Vektor =. Dessen Länge ist m.
Geschwindigkeit in km/h
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 3s ist es im Punkt B angelangt.
Wie groß ist die Geschwindigkeit des Flugzeugs in km/h?
Das Bewegungsobjekt legt in 3s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Dieser Vektor hat die Länge =.
Die Geschwindigkeit ist also
v=90
= 324
Zeit zu gegebener Höhe gesucht
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 3s ist es im Punkt B angelangt.
Wann hat das Flugzeug die Höhe von 670m erreicht?
Das Bewegungsobjekt legt in 3s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g: dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 20m (Änderung in der x3-Koordinate). Um von 10 auf 670m (also 660m) zu steigen (bzw. fallen), muss es also s = 33s lang steigen (bzw. sinken).
Geschwindigkeit rückwärts
Beispiel:
Eine Seilbahn fährt zum Zeitpunkt t=0 im Punkt A in der Bergstation los und fährt mit einer konstanten Geschwindigkeit von 39,6km/h in Richtung des Punktes B (alle Koordinatenangaben in Meter). Ihre Bewegungsbahn soll als geradlinig angenommen werden.
Wann kommt die Seilbahngondel im Punkt B an?
Zuerst rechnen wir die Geschwindigkeit von km/h in um: v=
= 11.
Die Länge des Vektors = ist m.
Bei einer Geschwindigkeit von 11. braucht er für diese Strecke
s = 8s.
Punkt B wird als nach 8s erreicht.
Höhe nach x Kilometern
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Da der Wind extrem gleichmäßig ist, fliegt er mit konstanter Geschwindigkeit auf einer geradlinigen Bahn. Nach 3min ist er im Punkt B angelangt.
Welche Höhe hat der Heißluftballon, wenn er 7,92 km zurückgelegt hat?
Das Bewegungsobjekt legt in 3 min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Die Geradengleichung
beschreibt also den Ortsvektor zu dem Punkt, an dem sich das Bewegungsobjekt nach t min befindet.
Dieser Richtungsvektor (der in 1 min zurückgelegt wird) hat die Länge =.
Die Geschwindigkeit ist also v=66
Für die Strecke von 7.92 km braucht es also min
= 120min
Nach dieser Zeit befindet es sich dann im Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Die Höhe in diesem Punkt ist einfach die x3-Koordinate, also 1440 (in m).
Abstand zweier Objekte
Beispiel:
Die Position einer Drohne zum Zeitpunkt t ist gegeben durch . (alle Koordinaten in m; t in Sekunden seit Beobachtungsbeginn). Die Gondel einer Seilbahn startet zum Zeitpunkt t=0 im Punkt A . Nach 1s ist sie im Punkt B angelangt. Wie weit sind die Drohne und die Seilbahngondel nach 1s von einander entfernt?
Die Seilbahngondel legt in 1s den Vektor = zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
Die Drohne ist nach 1s an der Stelle P1 = ; Die Seilbahngondel an der Stelle P2 = .
= =
d=|| = =
Der Abstand ist also ca. 143.84 m.
Gleiche Höhe bei 2 Objekten
Beispiel:
Die Position eines Heißluftballon F1 zum Zeitpunkt t ist gegeben durch
Wann sind die beiden Heißluftballone auf gleicher Höhe?
Der Heißluftballon F2 legt in 4h den Vektor
In 1h legt es also den Vektor
Um den Zeitpunkt zu finden, wann beide die gleiche Höhe haben, muss einfach ein t gefunden werden, bei dem die x3-Koordinate bei beiden Gleichungen gleich groß ist, also:
|
= |
|
|
|
|
= |
|
|:( |
|
= |
|
nach 3 h sind also beide auf gleicher
Höhe:
Höhendifferenz der Flugbahnen
Beispiel:
Die Position eines Heißluftballon F1 zum Zeitpunkt t ist gegeben durch
Die Partyheißluftballone sprühen einen pinken Farbstoff aus, so dass ihre Flugbahn noch einige Zeit später zu erkennen ist. Ein Beobachter steht direkt senkrecht unter dem scheinbaren Schnittpunkt der beiden Flugbahnen der Ballone. Wie hoch ist an dieser Stelle der Höhenunterschied der beiden Flugbahnen tatsächlich?
Der Heißluftballon F2 legt in 5h den Vektor
In 1h legt es also den Vektor
Den scheinbaren Schnittpunkt der beiden Bewegungsbahnen, den man von direkt darüber oder direkt darunter sehen könnte, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.
langsame Rechnung einblenden
t =
eingesetzt in Zeile (I):
s =
Das heißt also, dass der Heißluftballon F1 nach 7h und der Heißluftballon F2 nach 4h an diesem 'x1-x2-Schnittpunkt' ist.
der Heißluftballon F1 ist also nach 7h bei
Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von
2.2 - 1.6 = 0.6 km
Ort nach t Zeiteinheiten
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A
An welchem Ort befindet sich das Flugzeug nach 9s?
Das Bewegungsobjekt legt in 1s den Vektor
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
Höhendifferenz der Flugbahnen
Beispiel:
Die Position eines Heißluftballon F1 zum Zeitpunkt t ist gegeben durch
Die Partyheißluftballone sprühen einen pinken Farbstoff aus, so dass ihre Flugbahn noch einige Zeit später zu erkennen ist. Ein Beobachter steht direkt senkrecht unter dem scheinbaren Schnittpunkt der beiden Flugbahnen der Ballone. Wie hoch ist an dieser Stelle der Höhenunterschied der beiden Flugbahnen tatsächlich?
Der Heißluftballon F2 legt in 1h den Vektor
Den scheinbaren Schnittpunkt der beiden Bewegungsbahnen, den man von direkt darüber oder direkt darunter sehen könnte, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.
langsame Rechnung einblenden
t =
eingesetzt in Zeile (I):
s =
Das heißt also, dass der Heißluftballon F1 nach 8h und der Heißluftballon F2 nach 6h an diesem 'x1-x2-Schnittpunkt' ist.
der Heißluftballon F1 ist also nach 8h bei
Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von
3.2 - 2.4 = 0.8 km