Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Ort nach t Zeiteinheiten
Beispiel:
Eine Rakete startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 3s ist es im Punkt B angelangt.
Wo ist die Rakete nach 9s?
Das Bewegungsobjekt legt in 3s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 9 s befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Strecke nach t Zeiteinheiten
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 3min ist er im Punkt B angelangt.
Wie weit ist der Heißluftballon nach 12min geflogen?
Das Bewegungsobjekt legt in 3min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 12 min befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Das Bewegungsobjekt hat sich dann von A nach P bewegt, also um den Vektor =. Dessen Länge ist m.
Geschwindigkeit in km/h
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 2min ist er im Punkt B angelangt.
Gib die Geschwindigkeit des Heißluftballons in km/h an?
Das Bewegungsobjekt legt in 2min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Dieser Vektor hat die Länge =.
Die Geschwindigkeit ist also
v=90
= 5.4
Zeit zu gegebener Höhe gesucht
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 2min ist er im Punkt B angelangt.
Wann hat der Heißluftballon die Höhe von 260m erreicht?
Das Bewegungsobjekt legt in 2min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g: dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
In 1min steigt (bzw. sinkt) das Bewegungsobjekt um 10m (Änderung in der x3-Koordinate). Um von 40 auf 260m (also 220m) zu steigen (bzw. fallen), muss es also min = 22min lang steigen (bzw. sinken).
Geschwindigkeit rückwärts
Beispiel:
Eine Leuchtrakete befindet sich zum Zeitpunkt t=0 im Punkt A und fliegt mit einer konstanten Geschwindigkeit von 1080km/h in Richtung des Punktes B (alle Koordinatenangaben in Meter).
Wann kommt sie im Punkt B an?
Zuerst rechnen wir die Geschwindigkeit von km/h in um: v=
= 300.
Die Länge des Vektors = ist m.
Bei einer Geschwindigkeit von 300. braucht er für diese Strecke
s = 2s.
Punkt B wird als nach 2s erreicht.
Höhe nach x Kilometern
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Da der Wind extrem gleichmäßig ist, fliegt er mit konstanter Geschwindigkeit auf einer geradlinigen Bahn. Nach 3min ist er im Punkt B angelangt.
Welche Höhe hat der Heißluftballon, wenn er 5,76 km zurückgelegt hat?
Das Bewegungsobjekt legt in 3 min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Die Geradengleichung
beschreibt also den Ortsvektor zu dem Punkt, an dem sich das Bewegungsobjekt nach t min befindet.
Dieser Richtungsvektor (der in 1 min zurückgelegt wird) hat die Länge =.
Die Geschwindigkeit ist also v=36
Für die Strecke von 5.76 km braucht es also min
= 160min
Nach dieser Zeit befindet es sich dann im Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Die Höhe in diesem Punkt ist einfach die x3-Koordinate, also 1920 (in m).
Abstand zweier Objekte
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 4min ist er im Punkt B angelangt. Die Position einer Drohne zum Zeitpunkt t ist gegeben durch . (alle Koordinaten in m; t in Minuten seit Beobachtungsbeginn).
Wie weit sind der Heißluftballon und die Drohne nach 3min von einander entfernt?
Der Heißluftballon legt in 4min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
Die Drohne ist nach 3min an der Stelle P1 = ; Der Heißluftballon an der Stelle P2 = .
= =
d=|| = =
Der Abstand ist also ca. 242.5 m.
Gleiche Höhe bei 2 Objekten
Beispiel:
Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch
Wann sind die beiden Flugzeuge auf gleicher Höhe?
Das Flugzeug F2 legt in 5min den Vektor
In 1min legt es also den Vektor
Um den Zeitpunkt zu finden, wann beide die gleiche Höhe haben, muss einfach ein t gefunden werden, bei dem die x3-Koordinate bei beiden Gleichungen gleich groß ist, also:
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
nach 4 min sind also beide auf gleicher
Höhe:
Höhendifferenz der Flugbahnen
Beispiel:
Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch
Ein Beobachter steht direkt senkrecht unter dem scheinbaren Schnittpunkt der beiden Flugbahnen. Wie hoch ist an dieser Stelle der Höhenunterschied der beiden Flugbahnen tatsächlich?
Das Flugzeug F2 legt in 2min den Vektor
In 1min legt es also den Vektor
Den scheinbaren Schnittpunkt der beiden Bewegungsbahnen, den man von direkt darüber oder direkt darunter sehen könnte, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.
langsame Rechnung einblenden
t =
eingesetzt in Zeile (I):
s =
Das heißt also, dass das Flugzeug F1 nach 5min und das Flugzeug F2 nach 3min an diesem 'x1-x2-Schnittpunkt' ist.
das Flugzeug F1 ist also nach 5min bei
Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von
2.2 - 2 = 0.2 km
Zeit zu gegebener Höhe gesucht
Beispiel:
Eine Rakete startet zum Zeitpunkt t=0 im Punkt A
Wann hat die Rakete die Höhe von 10900m erreicht?
Das Bewegungsobjekt legt in 3s den Vektor
In 1s legt es also den Vektor
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 300m (Änderung in der x3-Koordinate).
Um von 100 auf 10900m (also 10800m) zu steigen (bzw. fallen),
muss es also
Ort nach t Zeiteinheiten
Beispiel:
Eine Rakete startet zum Zeitpunkt t=0 im Punkt A
Wo ist die Rakete nach 10s?
Das Bewegungsobjekt legt in 2s den Vektor
In 1s legt es also den Vektor
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
