Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Ort nach t Zeiteinheiten
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 3min ist er im Punkt B angelangt.
An welchem Ort befindet sich der Heißluftballon nach 9min?
Das Bewegungsobjekt legt in 3min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 9 min befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Strecke nach t Zeiteinheiten
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 4s ist es im Punkt B angelangt.
Welche Strecke hat das Flugzeug nach 6s seit seinem Start zurückgelegt?
Das Bewegungsobjekt legt in 4s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 6 s befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Das Bewegungsobjekt hat sich dann von A nach P bewegt, also um den Vektor =. Dessen Länge ist m.
Geschwindigkeit in km/h
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 4s ist es im Punkt B angelangt.
Wie groß ist die Geschwindigkeit des Flugzeugs in km/h?
Das Bewegungsobjekt legt in 4s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Dieser Vektor hat die Länge =.
Die Geschwindigkeit ist also
v=60
= 216
Zeit zu gegebener Höhe gesucht
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 3s ist es im Punkt B angelangt.
Wann hat das Flugzeug die Höhe von 1460m erreicht?
Das Bewegungsobjekt legt in 3s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g: dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 40m (Änderung in der x3-Koordinate). Um von 20 auf 1460m (also 1440m) zu steigen (bzw. fallen), muss es also s = 36s lang steigen (bzw. sinken).
Geschwindigkeit rückwärts
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A und fliegt mit einer Geschwindigkeit von 252km/h in Richtung des Punktes B (alle Koordinatenangaben in Meter).
Wann kommt es im Punkt B an?
Zuerst rechnen wir die Geschwindigkeit von km/h in um: v=
= 70.
Die Länge des Vektors = ist m.
Bei einer Geschwindigkeit von 70. braucht er für diese Strecke
s = 6s.
Punkt B wird als nach 6s erreicht.
Höhe nach x Kilometern
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Da der Wind extrem gleichmäßig ist, fliegt er mit konstanter Geschwindigkeit auf einer geradlinigen Bahn. Nach 4min ist er im Punkt B angelangt.
Welche Höhe hat der Heißluftballon, wenn er 10,8 km zurückgelegt hat?
Das Bewegungsobjekt legt in 4 min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Die Geradengleichung
beschreibt also den Ortsvektor zu dem Punkt, an dem sich das Bewegungsobjekt nach t min befindet.
Dieser Richtungsvektor (der in 1 min zurückgelegt wird) hat die Länge =.
Die Geschwindigkeit ist also v=54
Für die Strecke von 10.8 km braucht es also min
= 200min
Nach dieser Zeit befindet es sich dann im Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Die Höhe in diesem Punkt ist einfach die x3-Koordinate, also 4800 (in m).
Abstand zweier Objekte
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 1min ist er im Punkt B angelangt. Die Position einer Drohne zum Zeitpunkt t ist gegeben durch . (alle Koordinaten in m; t in Minuten seit Beobachtungsbeginn).
Wie weit sind der Heißluftballon und die Drohne nach 5min von einander entfernt?
Der Heißluftballon legt in 1min den Vektor = zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
Die Drohne ist nach 5min an der Stelle P1 = ; Der Heißluftballon an der Stelle P2 = .
= =
d=|| = =
Der Abstand ist also ca. 63.21 m.
Gleiche Höhe bei 2 Objekten
Beispiel:
Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch
Wann sind die beiden Flugzeuge auf gleicher Höhe?
Das Flugzeug F2 legt in 3min den Vektor
In 1min legt es also den Vektor
Um den Zeitpunkt zu finden, wann beide die gleiche Höhe haben, muss einfach ein t gefunden werden, bei dem die x3-Koordinate bei beiden Gleichungen gleich groß ist, also:
|
= |
|
|
|
|
= |
|
|: |
|
= |
|
nach 6 min sind also beide auf gleicher
Höhe:
Höhendifferenz der Flugbahnen
Beispiel:
Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch
Ein Beobachter steht direkt senkrecht unter dem scheinbaren Schnittpunkt der beiden Flugbahnen. Wie hoch ist an dieser Stelle der Höhenunterschied der beiden Flugbahnen tatsächlich?
Das Flugzeug F2 legt in 1min den Vektor
Den scheinbaren Schnittpunkt der beiden Bewegungsbahnen, den man von direkt darüber oder direkt darunter sehen könnte, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.
langsame Rechnung einblenden
t =
eingesetzt in Zeile (I):
s =
Das heißt also, dass das Flugzeug F1 nach 7min und das Flugzeug F2 nach 2min an diesem 'x1-x2-Schnittpunkt' ist.
das Flugzeug F1 ist also nach 7min bei
Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von
2.8 - 1.3 = 1.5 km
Abstand zweier Objekte
Beispiel:
Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch
Wie weit sind die beiden Flugzeuge nach 4min von einander entfernt?
F2 legt in 4min den Vektor
In 1min legt es also den Vektor
F1 ist nach 4min an der Stelle P1
d=|
Der Abstand ist also ca. 15.36 km.
Höhendifferenz der Flugbahnen
Beispiel:
Die Position eines Heißluftballon F1 zum Zeitpunkt t ist gegeben durch
Die Partyheißluftballone sprühen einen pinken Farbstoff aus, so dass ihre Flugbahn noch einige Zeit später zu erkennen ist. Ein Beobachter steht direkt senkrecht unter dem scheinbaren Schnittpunkt der beiden Flugbahnen der Ballone. Wie hoch ist an dieser Stelle der Höhenunterschied der beiden Flugbahnen tatsächlich?
Der Heißluftballon F2 legt in 4h den Vektor
In 1h legt es also den Vektor
Den scheinbaren Schnittpunkt der beiden Bewegungsbahnen, den man von direkt darüber oder direkt darunter sehen könnte, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.
langsame Rechnung einblenden
t =
eingesetzt in Zeile (I):
s =
Das heißt also, dass der Heißluftballon F1 nach 9h und der Heißluftballon F2 nach 3h an diesem 'x1-x2-Schnittpunkt' ist.
der Heißluftballon F1 ist also nach 9h bei
Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von
3.6 - 1.8 = 1.8 km