Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Karls hat für seine Geburtstagsparty 48 Flaschen Spezi bekommen.
Wie viele Flaschen würde jeder bekommen, wenn insgesamt 8 Personen auf der Party wären?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Gäste in der ersten Zeile auf 8 Gäste in der zweiten Zeile zu kommen, müssen wir mit 8 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 48 Spezi-Flaschen durch 8 teilen, um auf den Wert zu kommen, der den 8 Gäste entspricht:
|
⋅ 8
|
![]() |
|
![]() |
: 8
|
|
⋅ 8
|
![]() |
|
![]() |
: 8
|
Damit haben wir nun den gesuchten Wert, der den 8 Gäste entspricht: 6 Spezi-Flaschen
Dreisatz (antiproportional)
Beispiel:
Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit 5 CPU-Kernen 9 ms rechnen.
Wie lange bräuchte ein Computer mit 3 solchen CPU-Kernen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 3 sein, also der ggT(5,3) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 CPU-Kerne:
|
Um von 5 CPU-Kerne in der ersten Zeile auf 1 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 9 ms nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 CPU-Kerne links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 CPU-Kerne in der mittleren Zeile mit 3 multiplizieren, um auf die 3 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 45 ms in der mittleren Zeile durch 3 dividieren:
|
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 CPU-Kerne entspricht: 15 ms
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 9 Liter pro 100km | 500 km |
| ? | ? |
| 15 Liter pro 100km | ? |
Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 9 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 9 und von 15 sein, also der ggT(9,15) = 3.
Wir suchen deswegen erst den entsprechenden Wert für 3 Liter pro 100km:
|
Um von 9 Liter pro 100km in der ersten Zeile auf 3 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 500 km nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 3 Liter pro 100km links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 3 Liter pro 100km in der mittleren Zeile mit 5 multiplizieren, um auf die 15 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 5
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 1500 km in der mittleren Zeile durch 5 dividieren:
|
: 3
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 5
|
Damit haben wir nun den gesuchten Wert, der den 15 Liter pro 100km entspricht: 300 km
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Wenn Karla mit ihrem Handy jeden Tag immer 6 Minuten telefonieren würde, würden ihre Freiminuten noch genau 4 Tage halten.
Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 8 min telefonieren würde?
Wie lange kann sie täglich telefonieren, wenn die Freiminuten 6 Tage reichen sollen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 8 sein, also der ggT(6,8) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 Minuten pro Tag:
|
Um von 6 Minuten pro Tag in der ersten Zeile auf 2 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 Tage nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 Minuten pro Tag links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 2 Minuten pro Tag in der mittleren Zeile mit 4 multiplizieren, um auf die 8 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 4
|
Damit haben wir nun den gesuchten Wert, der den 8 Minuten pro Tag entspricht: 3 Tage
Für die andere Frage (Wie lange kann sie täglich telefonieren, wenn die Freiminuten 6 Tage reichen sollen?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "Tage"-Werte haben und nach einem "Minuten pro Tag"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die Tage in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 Tage teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 6 sein, also der ggT(4,6) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 Tage:
|
Um von 4 Tage in der ersten Zeile auf 2 Tage in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 Minuten pro Tag nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 2 Tage links entspricht:
|
: 2
|
![]() |
|
![]() |
⋅ 2
|
Jetzt müssen wir ja wieder die 2 Tage in der mittleren Zeile mit 3 multiplizieren, um auf die 6 Tage in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 3
|
Damit haben wir nun den gesuchten Wert, der den 6 Tage entspricht: 4 Minuten pro Tag
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 24 Fuhren den 2 Lastwagen entsprechen.
|
: 5
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 2
|
Der urpsrünglich vorgegebene Wert 24 Fuhren (für 2 Lastwagen) war also falsch, richtig wäre 25 Fuhren gewesen.
Jetzt überprüfen wir, ob die 10 Fuhren den 10 Lastwagen entsprechen.
|
: 1
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 1
: 2
|
Der urpsrünglich vorgegebene Wert 10 Fuhren (für 10 Lastwagen) war also falsch, richtig wäre 5 Fuhren gewesen.


