Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Karls hat für seine Geburtstagsparty 60 Flaschen Spezi bekommen.
Wie viele Flaschen würde jeder bekommen, wenn insgesamt 4 Personen auf der Party wären?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Gäste in der ersten Zeile auf 4 Gäste in der zweiten Zeile zu kommen, müssen wir mit 4 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 60 Spezi-Flaschen durch 4 teilen, um auf den Wert zu kommen, der den 4 Gäste entspricht:
|
⋅ 4
|
![]() |
|
![]() |
: 4
|
|
⋅ 4
|
![]() |
|
![]() |
: 4
|
Damit haben wir nun den gesuchten Wert, der den 4 Gäste entspricht: 15 Spezi-Flaschen
Dreisatz (antiproportional)
Beispiel:
Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 5€ für ein Los verlangen, müssten sie 100 Lose verkaufen um genügend Geld zusammen zu bekommen.
Wie viele Lose müssten sie bei einem Lospreis von 2 € verkaufen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 € Lospreis:
|
Um von 5 € Lospreis in der ersten Zeile auf 1 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 100 Lose nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 € Lospreis links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 € Lospreis in der mittleren Zeile mit 2 multiplizieren, um auf die 2 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 2
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 500 Lose in der mittleren Zeile durch 2 dividieren:
|
: 5
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 2
|
Damit haben wir nun den gesuchten Wert, der den 2 € Lospreis entspricht: 250 Lose
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 5 CPU-Kerne | 9 ms |
| ? | ? |
| 3 CPU-Kerne | ? |
Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 3 sein, also der ggT(5,3) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 CPU-Kerne:
|
Um von 5 CPU-Kerne in der ersten Zeile auf 1 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 9 ms nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 CPU-Kerne links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 CPU-Kerne in der mittleren Zeile mit 3 multiplizieren, um auf die 3 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 45 ms in der mittleren Zeile durch 3 dividieren:
|
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 CPU-Kerne entspricht: 15 ms
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 8€ für ein Los verlangen, müssten sie 50 Lose verkaufen um genügend Geld zusammen zu bekommen.
Wie viele Lose müssten sie bei einem Lospreis von 10 € verkaufen?
Wie hoch muss man den Preis ansetzen, wenn man erwartet, das sich 80 Lose verkaufen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 10 sein, also der ggT(8,10) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 € Lospreis:
|
Um von 8 € Lospreis in der ersten Zeile auf 2 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 50 Lose nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 € Lospreis links entspricht:
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 2 € Lospreis in der mittleren Zeile mit 5 multiplizieren, um auf die 10 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 4
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 5
|
Damit haben wir nun den gesuchten Wert, der den 10 € Lospreis entspricht: 40 Lose
Für die andere Frage (Wie hoch muss man den Preis ansetzen, wenn man erwartet, das sich 80 Lose verkaufen?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "Lose"-Werte haben und nach einem "€ Lospreis"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die Lose in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 50 Lose teilen müssen.) Diese Zahl sollte eine Teiler von 50 und von 80 sein, also der ggT(50,80) = 10.
Wir suchen deswegen erst den entsprechenden Wert für 10 Lose:
|
Um von 50 Lose in der ersten Zeile auf 10 Lose in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 € Lospreis nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 10 Lose links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 10 Lose in der mittleren Zeile mit 8 multiplizieren, um auf die 80 Lose in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 8
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 8
|
Damit haben wir nun den gesuchten Wert, der den 80 Lose entspricht: 5 € Lospreis
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 4 h den 10 Personen entsprechen.
|
: 3
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 5
|
Der urpsrünglich vorgegebene Wert 4 h (für 10 Personen) war also falsch, richtig wäre 3 h gewesen.
Jetzt überprüfen wir, ob die 10 h den 3 Personen entsprechen.
|
: 2
⋅ 1
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 1
|
Der urpsrünglich vorgegebene Wert 10 h (für 3 Personen) war also korrekt.


