nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 1€ für ein Los verlangen, müssten sie 400 Lose verkaufen um genügend Geld zusammen zu bekommen.

Wie viele Lose müssten sie bei einem Lospreis von 8 € verkaufen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 € Lospreis400 Lose
8 € Lospreis?

Um von 1 € Lospreis in der ersten Zeile auf 8 € Lospreis in der zweiten Zeile zu kommen, müssen wir mit 8 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 400 Lose durch 8 teilen, um auf den Wert zu kommen, der den 8 € Lospreis entspricht:

⋅ 8
1 € Lospreis400 Lose
8 € Lospreis?
: 8
⋅ 8
1 € Lospreis400 Lose
8 € Lospreis50 Lose
: 8

Damit haben wir nun den gesuchten Wert, der den 8 € Lospreis entspricht: 50 Lose

Dreisatz (antiproportional)

Beispiel:

Karls hat für seine Geburtstagsparty Spezi bekommen. Dabei reicht es für jeden genau 6 Flaschen, wenn insgesamt 5 Personen auf seiner Party sind.

Wie viele Flaschen würde jeder bekommen, wenn insgesamt 3 Personen auf der Party wären?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 Gäste6 Spezi-Flaschen
??
3 Gäste?

Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 3 sein, also der ggT(5,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Gäste:


5 Gäste6 Spezi-Flaschen
1 Gast?
3 Gäste?

Um von 5 Gäste in der ersten Zeile auf 1 Gäste in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 Spezi-Flaschen nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Gäste links entspricht:

: 5

5 Gäste6 Spezi-Flaschen
1 Gast?
3 Gäste?

⋅ 5
: 5

5 Gäste6 Spezi-Flaschen
1 Gast30 Spezi-Flaschen
3 Gäste?

⋅ 5

Jetzt müssen wir ja wieder die 1 Gäste in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 3

5 Gäste6 Spezi-Flaschen
1 Gast30 Spezi-Flaschen
3 Gäste?

⋅ 5
: 3

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 30 Spezi-Flaschen in der mittleren Zeile durch 3 dividieren:

: 5
⋅ 3

5 Gäste6 Spezi-Flaschen
1 Gast30 Spezi-Flaschen
3 Gäste10 Spezi-Flaschen

⋅ 5
: 3

Damit haben wir nun den gesuchten Wert, der den 3 Gäste entspricht: 10 Spezi-Flaschen

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

6 Helfer:innen60 € Lohn
??
4 Helfer:innen?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 4 sein, also der ggT(6,4) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 Helfer:innen:


6 Helfer:innen60 € Lohn
2 Helfer:innen?
4 Helfer:innen?

Um von 6 Helfer:innen in der ersten Zeile auf 2 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 60 € Lohn nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 Helfer:innen links entspricht:

: 3

6 Helfer:innen60 € Lohn
2 Helfer:innen?
4 Helfer:innen?

⋅ 3
: 3

6 Helfer:innen60 € Lohn
2 Helfer:innen180 € Lohn
4 Helfer:innen?

⋅ 3

Jetzt müssen wir ja wieder die 2 Helfer:innen in der mittleren Zeile mit 2 multiplizieren, um auf die 4 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 2

6 Helfer:innen60 € Lohn
2 Helfer:innen180 € Lohn
4 Helfer:innen?

⋅ 3
: 2

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 180 € Lohn in der mittleren Zeile durch 2 dividieren:

: 3
⋅ 2

6 Helfer:innen60 € Lohn
2 Helfer:innen180 € Lohn
4 Helfer:innen90 € Lohn

⋅ 3
: 2

Damit haben wir nun den gesuchten Wert, der den 4 Helfer:innen entspricht: 90 € Lohn

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 5€ für ein Los verlangen, müssten sie 100 Lose verkaufen um genügend Geld zusammen zu bekommen.

Wie viele Lose müssten sie bei einem Lospreis von 2 € verkaufen?
Wie hoch muss man den Preis ansetzen, wenn man erwartet, das sich 25 Lose verkaufen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 € Lospreis100 Lose
??
2 € Lospreis?

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 € Lospreis:


5 € Lospreis100 Lose
1 € Lospreis?
2 € Lospreis?

Um von 5 € Lospreis in der ersten Zeile auf 1 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 100 Lose nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 € Lospreis links entspricht:

: 5

5 € Lospreis100 Lose
1 € Lospreis500 Lose
2 € Lospreis?

⋅ 5

Jetzt müssen wir ja wieder die 1 € Lospreis in der mittleren Zeile mit 2 multiplizieren, um auf die 2 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 2

5 € Lospreis100 Lose
1 € Lospreis500 Lose
2 € Lospreis250 Lose

⋅ 5
: 2

Damit haben wir nun den gesuchten Wert, der den 2 € Lospreis entspricht: 250 Lose



Um von 100 Lose in der ersten Zeile auf 25 Lose in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 5 € Lospreis mit 4 multiplizieren, um auf den Wert zu kommen, der den 25 Lose entspricht:

: 4
100 Lose5 € Lospreis
25 Lose?
⋅ 4
: 4
100 Lose5 € Lospreis
25 Lose20 € Lospreis
⋅ 4

Damit haben wir nun den gesuchten Wert, der den 25 Lose entspricht: 20 € Lospreis

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 10 h den 5 Personen entsprechen.

: 6
⋅ 5

6 Personen10 h
1 Person60 h
5 Personen12 h

⋅ 6
: 5

Der urpsrünglich vorgegebene Wert 10 h (für 5 Personen) war also falsch, richtig wäre 12 h gewesen.


Jetzt überprüfen wir, ob die 18 h den 4 Personen entsprechen.

: 3
⋅ 2

6 Personen10 h
2 Personen30 h
4 Personen15 h

⋅ 3
: 2

Der urpsrünglich vorgegebene Wert 18 h (für 4 Personen) war also falsch, richtig wäre 15 h gewesen.