nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 1 Lastwagen müsste dafür 36 mal fahren.

Wie oft müssten 4 LKWs fahren?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Lastwagen36 Fuhren
4 Lastwagen?

Um von 1 Lastwagen in der ersten Zeile auf 4 Lastwagen in der zweiten Zeile zu kommen, müssen wir mit 4 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 36 Fuhren durch 4 teilen, um auf den Wert zu kommen, der den 4 Lastwagen entspricht:

⋅ 4
1 Lastwagen36 Fuhren
4 Lastwagen?
: 4
⋅ 4
1 Lastwagen36 Fuhren
4 Lastwagen9 Fuhren
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Lastwagen entspricht: 9 Fuhren

Dreisatz (antiproportional)

Beispiel:

Wenn Karla mit ihrem Handy jeden Tag immer 10 Minuten telefonieren würde, würden ihre Freiminuten noch genau 5 Tage halten.

Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 25 min telefonieren würde?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


10 Minuten pro Tag5 Tage
??
25 Minuten pro Tag?

Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 10 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 10 und von 25 sein, also der ggT(10,25) = 5.

Wir suchen deswegen erst den entsprechenden Wert für 5 Minuten pro Tag:


10 Minuten pro Tag5 Tage
5 Minuten pro Tag?
25 Minuten pro Tag?

Um von 10 Minuten pro Tag in der ersten Zeile auf 5 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Tage nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 5 Minuten pro Tag links entspricht:

: 2

10 Minuten pro Tag5 Tage
5 Minuten pro Tag?
25 Minuten pro Tag?

⋅ 2
: 2

10 Minuten pro Tag5 Tage
5 Minuten pro Tag10 Tage
25 Minuten pro Tag?

⋅ 2

Jetzt müssen wir ja wieder die 5 Minuten pro Tag in der mittleren Zeile mit 5 multiplizieren, um auf die 25 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 2
⋅ 5

10 Minuten pro Tag5 Tage
5 Minuten pro Tag10 Tage
25 Minuten pro Tag?

⋅ 2
: 5

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 10 Tage in der mittleren Zeile durch 5 dividieren:

: 2
⋅ 5

10 Minuten pro Tag5 Tage
5 Minuten pro Tag10 Tage
25 Minuten pro Tag2 Tage

⋅ 2
: 5

Damit haben wir nun den gesuchten Wert, der den 25 Minuten pro Tag entspricht: 2 Tage

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

8 Gäste7 Spezi-Flaschen
??
14 Gäste?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 14 sein, also der ggT(8,14) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 Gäste:


8 Gäste7 Spezi-Flaschen
2 Gäste?
14 Gäste?

Um von 8 Gäste in der ersten Zeile auf 2 Gäste in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 7 Spezi-Flaschen nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 Gäste links entspricht:

: 4

8 Gäste7 Spezi-Flaschen
2 Gäste?
14 Gäste?

⋅ 4
: 4

8 Gäste7 Spezi-Flaschen
2 Gäste28 Spezi-Flaschen
14 Gäste?

⋅ 4

Jetzt müssen wir ja wieder die 2 Gäste in der mittleren Zeile mit 7 multiplizieren, um auf die 14 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 7

8 Gäste7 Spezi-Flaschen
2 Gäste28 Spezi-Flaschen
14 Gäste?

⋅ 4
: 7

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 28 Spezi-Flaschen in der mittleren Zeile durch 7 dividieren:

: 4
⋅ 7

8 Gäste7 Spezi-Flaschen
2 Gäste28 Spezi-Flaschen
14 Gäste4 Spezi-Flaschen

⋅ 4
: 7

Damit haben wir nun den gesuchten Wert, der den 14 Gäste entspricht: 4 Spezi-Flaschen

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 5 Lastwagen müssten dafür 8 mal fahren.

Wie oft müssten 4 LKWs fahren?
Wie viele LKWs bräuchte man, damit es mit 5 Fuhren für jeden reicht?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 Lastwagen8 Fuhren
??
4 Lastwagen?

Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 4 sein, also der ggT(5,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Lastwagen:


5 Lastwagen8 Fuhren
1 Lastwagen?
4 Lastwagen?

Um von 5 Lastwagen in der ersten Zeile auf 1 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 Fuhren nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Lastwagen links entspricht:

: 5

5 Lastwagen8 Fuhren
1 Lastwagen40 Fuhren
4 Lastwagen?

⋅ 5

Jetzt müssen wir ja wieder die 1 Lastwagen in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 4

5 Lastwagen8 Fuhren
1 Lastwagen40 Fuhren
4 Lastwagen10 Fuhren

⋅ 5
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Lastwagen entspricht: 10 Fuhren



Für die andere Frage (Wie viele LKWs bräuchte man, damit es mit 5 Fuhren für jeden reicht?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "Fuhren"-Werte haben und nach einem "Lastwagen"-Wert gesucht wird:


8 Fuhren5 Lastwagen
??
5 Fuhren?

Wir suchen einen möglichst großen Zwischenwert für die Fuhren in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Fuhren teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 5 sein, also der ggT(8,5) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Fuhren:


8 Fuhren5 Lastwagen
1 Fuhre?
5 Fuhren?

Um von 8 Fuhren in der ersten Zeile auf 1 Fuhren in der zweiten Zeile zu kommen, müssen wir durch 8 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Lastwagen nicht durch 8 teilen, sondern mit 8 multiplizieren um auf den Wert zu kommen, der den 1 Fuhren links entspricht:

: 8

8 Fuhren5 Lastwagen
1 Fuhre40 Lastwagen
5 Fuhren?

⋅ 8

Jetzt müssen wir ja wieder die 1 Fuhren in der mittleren Zeile mit 5 multiplizieren, um auf die 5 Fuhren in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 8
⋅ 5

8 Fuhren5 Lastwagen
1 Fuhre40 Lastwagen
5 Fuhren8 Lastwagen

⋅ 8
: 5

Damit haben wir nun den gesuchten Wert, der den 5 Fuhren entspricht: 8 Lastwagen

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 398 km den 12 Liter pro 100km entsprechen.

: 2
⋅ 3

8 Liter pro 100km600 km
4 Liter pro 100km1200 km
12 Liter pro 100km400 km

⋅ 2
: 3

Der urpsrünglich vorgegebene Wert 398 km (für 12 Liter pro 100km) war also falsch, richtig wäre 400 km gewesen.


Jetzt überprüfen wir, ob die 1198 km den 4 Liter pro 100km entsprechen.

: 2
⋅ 1

8 Liter pro 100km600 km
4 Liter pro 100km1200 km
4 Liter pro 100km1200 km

⋅ 2
: 1

Der urpsrünglich vorgegebene Wert 1198 km (für 4 Liter pro 100km) war also falsch, richtig wäre 1200 km gewesen.