nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Wenn Karla mit ihrem Handy jeden Tag immer 1 Minute telefonieren würde, würden ihre Freiminuten noch genau 56 Tage halten.

Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 8 min telefonieren würde?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Minute pro Tag56 Tage
8 Minuten pro Tag?

Um von 1 Minuten pro Tag in der ersten Zeile auf 8 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir mit 8 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 56 Tage durch 8 teilen, um auf den Wert zu kommen, der den 8 Minuten pro Tag entspricht:

⋅ 8
1 Minute pro Tag56 Tage
8 Minuten pro Tag?
: 8
⋅ 8
1 Minute pro Tag56 Tage
8 Minuten pro Tag7 Tage
: 8

Damit haben wir nun den gesuchten Wert, der den 8 Minuten pro Tag entspricht: 7 Tage

Dreisatz (antiproportional)

Beispiel:

Wenn Frau Baumann so Auto fährt, dass sie 7 Liter pro 100km verbraucht, kommt sie mit einer Tankfüllung 800 km weit.

Wie weit würde sie mit einer Tankfüllung kommen, wenn sie mit einem "4 Liter/100km "-Schnitt fahren würde?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


7 Liter pro 100km800 km
??
4 Liter pro 100km?

Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 7 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 7 und von 4 sein, also der ggT(7,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Liter pro 100km:


7 Liter pro 100km800 km
1 Liter pro 100km?
4 Liter pro 100km?

Um von 7 Liter pro 100km in der ersten Zeile auf 1 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 7 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 800 km nicht durch 7 teilen, sondern mit 7 multiplizieren um auf den Wert zu kommen, der den 1 Liter pro 100km links entspricht:

: 7

7 Liter pro 100km800 km
1 Liter pro 100km?
4 Liter pro 100km?

⋅ 7
: 7

7 Liter pro 100km800 km
1 Liter pro 100km5600 km
4 Liter pro 100km?

⋅ 7

Jetzt müssen wir ja wieder die 1 Liter pro 100km in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 7
⋅ 4

7 Liter pro 100km800 km
1 Liter pro 100km5600 km
4 Liter pro 100km?

⋅ 7
: 4

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 5600 km in der mittleren Zeile durch 4 dividieren:

: 7
⋅ 4

7 Liter pro 100km800 km
1 Liter pro 100km5600 km
4 Liter pro 100km1400 km

⋅ 7
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Liter pro 100km entspricht: 1400 km

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

12 Personen4 h
??
16 Personen?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Personen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 12 Personen teilen müssen.) Diese Zahl sollte eine Teiler von 12 und von 16 sein, also der ggT(12,16) = 4.

Wir suchen deswegen erst den entsprechenden Wert für 4 Personen:


12 Personen4 h
4 Personen?
16 Personen?

Um von 12 Personen in der ersten Zeile auf 4 Personen in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 h nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 4 Personen links entspricht:

: 3

12 Personen4 h
4 Personen?
16 Personen?

⋅ 3
: 3

12 Personen4 h
4 Personen12 h
16 Personen?

⋅ 3

Jetzt müssen wir ja wieder die 4 Personen in der mittleren Zeile mit 4 multiplizieren, um auf die 16 Personen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 4

12 Personen4 h
4 Personen12 h
16 Personen?

⋅ 3
: 4

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 12 h in der mittleren Zeile durch 4 dividieren:

: 3
⋅ 4

12 Personen4 h
4 Personen12 h
16 Personen3 h

⋅ 3
: 4

Damit haben wir nun den gesuchten Wert, der den 16 Personen entspricht: 3 h

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Wenn Karla mit ihrem Handy jeden Tag immer 5 Minuten telefonieren würde, würden ihre Freiminuten noch genau 10 Tage halten.

Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 2 min telefonieren würde?
Wie lange kann sie täglich telefonieren, wenn die Freiminuten 5 Tage reichen sollen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 Minuten pro Tag10 Tage
??
2 Minuten pro Tag?

Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Minuten pro Tag:


5 Minuten pro Tag10 Tage
1 Minute pro Tag?
2 Minuten pro Tag?

Um von 5 Minuten pro Tag in der ersten Zeile auf 1 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 10 Tage nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Minuten pro Tag links entspricht:

: 5

5 Minuten pro Tag10 Tage
1 Minute pro Tag50 Tage
2 Minuten pro Tag?

⋅ 5

Jetzt müssen wir ja wieder die 1 Minuten pro Tag in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 2

5 Minuten pro Tag10 Tage
1 Minute pro Tag50 Tage
2 Minuten pro Tag25 Tage

⋅ 5
: 2

Damit haben wir nun den gesuchten Wert, der den 2 Minuten pro Tag entspricht: 25 Tage



Um von 10 Tage in der ersten Zeile auf 5 Tage in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 5 Minuten pro Tag mit 2 multiplizieren, um auf den Wert zu kommen, der den 5 Tage entspricht:

: 2
10 Tage5 Minuten pro Tag
5 Tage?
⋅ 2
: 2
10 Tage5 Minuten pro Tag
5 Tage10 Minuten pro Tag
⋅ 2

Damit haben wir nun den gesuchten Wert, der den 5 Tage entspricht: 10 Minuten pro Tag

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 1000 km den 4 Liter pro 100km entsprechen.

: 5
⋅ 4

5 Liter pro 100km800 km
1 Liter pro 100km4000 km
4 Liter pro 100km1000 km

⋅ 5
: 4

Der urpsrünglich vorgegebene Wert 1000 km(für 4 Liter pro 100km) war also korrekt.


Jetzt überprüfen wir, ob die 500 km den 8 Liter pro 100km entsprechen.

: 5
⋅ 8

5 Liter pro 100km800 km
1 Liter pro 100km4000 km
8 Liter pro 100km500 km

⋅ 5
: 8

Der urpsrünglich vorgegebene Wert 500 km (für 8 Liter pro 100km) war also korrekt.