nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 1 Lastwagen müsste dafür 40 mal fahren.

Wie oft müssten 8 LKWs fahren?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Lastwagen40 Fuhren
8 Lastwagen?

Um von 1 Lastwagen in der ersten Zeile auf 8 Lastwagen in der zweiten Zeile zu kommen, müssen wir mit 8 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 40 Fuhren durch 8 teilen, um auf den Wert zu kommen, der den 8 Lastwagen entspricht:

⋅ 8
1 Lastwagen40 Fuhren
8 Lastwagen?
: 8
⋅ 8
1 Lastwagen40 Fuhren
8 Lastwagen5 Fuhren
: 8

Damit haben wir nun den gesuchten Wert, der den 8 Lastwagen entspricht: 5 Fuhren

Dreisatz (antiproportional)

Beispiel:

Ein Hausmeister hat ein extra Budget für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld). Wenn er 7 Helfer:innen einstellt, reicht es für jeden 80 € Lohn.

Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 4 Helfer:innen hätte?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


7 Helfer:innen80 € Lohn
??
4 Helfer:innen?

Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 7 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 7 und von 4 sein, also der ggT(7,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Helfer:innen:


7 Helfer:innen80 € Lohn
1 Helfer:in?
4 Helfer:innen?

Um von 7 Helfer:innen in der ersten Zeile auf 1 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 7 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 80 € Lohn nicht durch 7 teilen, sondern mit 7 multiplizieren um auf den Wert zu kommen, der den 1 Helfer:innen links entspricht:

: 7

7 Helfer:innen80 € Lohn
1 Helfer:in?
4 Helfer:innen?

⋅ 7
: 7

7 Helfer:innen80 € Lohn
1 Helfer:in560 € Lohn
4 Helfer:innen?

⋅ 7

Jetzt müssen wir ja wieder die 1 Helfer:innen in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 7
⋅ 4

7 Helfer:innen80 € Lohn
1 Helfer:in560 € Lohn
4 Helfer:innen?

⋅ 7
: 4

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 560 € Lohn in der mittleren Zeile durch 4 dividieren:

: 7
⋅ 4

7 Helfer:innen80 € Lohn
1 Helfer:in560 € Lohn
4 Helfer:innen140 € Lohn

⋅ 7
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Helfer:innen entspricht: 140 € Lohn

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

8 Gäste7 Spezi-Flaschen
??
14 Gäste?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 14 sein, also der ggT(8,14) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 Gäste:


8 Gäste7 Spezi-Flaschen
2 Gäste?
14 Gäste?

Um von 8 Gäste in der ersten Zeile auf 2 Gäste in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 7 Spezi-Flaschen nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 Gäste links entspricht:

: 4

8 Gäste7 Spezi-Flaschen
2 Gäste?
14 Gäste?

⋅ 4
: 4

8 Gäste7 Spezi-Flaschen
2 Gäste28 Spezi-Flaschen
14 Gäste?

⋅ 4

Jetzt müssen wir ja wieder die 2 Gäste in der mittleren Zeile mit 7 multiplizieren, um auf die 14 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 7

8 Gäste7 Spezi-Flaschen
2 Gäste28 Spezi-Flaschen
14 Gäste?

⋅ 4
: 7

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 28 Spezi-Flaschen in der mittleren Zeile durch 7 dividieren:

: 4
⋅ 7

8 Gäste7 Spezi-Flaschen
2 Gäste28 Spezi-Flaschen
14 Gäste4 Spezi-Flaschen

⋅ 4
: 7

Damit haben wir nun den gesuchten Wert, der den 14 Gäste entspricht: 4 Spezi-Flaschen

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit 4 CPU-Kernen 6 ms rechnen.

Wie lange bräuchte ein Computer mit 3 solchen CPU-Kernen?
Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 4 ms rechnen könnte?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


4 CPU-Kerne6 ms
??
3 CPU-Kerne?

Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 CPU-Kerne:


4 CPU-Kerne6 ms
1 CPU-Kern?
3 CPU-Kerne?

Um von 4 CPU-Kerne in der ersten Zeile auf 1 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 ms nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 CPU-Kerne links entspricht:

: 4

4 CPU-Kerne6 ms
1 CPU-Kern24 ms
3 CPU-Kerne?

⋅ 4

Jetzt müssen wir ja wieder die 1 CPU-Kerne in der mittleren Zeile mit 3 multiplizieren, um auf die 3 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 3

4 CPU-Kerne6 ms
1 CPU-Kern24 ms
3 CPU-Kerne8 ms

⋅ 4
: 3

Damit haben wir nun den gesuchten Wert, der den 3 CPU-Kerne entspricht: 8 ms



Für die andere Frage (Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 4 ms rechnen könnte?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "ms"-Werte haben und nach einem "CPU-Kerne"-Wert gesucht wird:


6 ms4 CPU-Kerne
??
4 ms?

Wir suchen einen möglichst großen Zwischenwert für die ms in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 ms teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 4 sein, also der ggT(6,4) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 ms:


6 ms4 CPU-Kerne
2 ms?
4 ms?

Um von 6 ms in der ersten Zeile auf 2 ms in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 CPU-Kerne nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 ms links entspricht:

: 3

6 ms4 CPU-Kerne
2 ms12 CPU-Kerne
4 ms?

⋅ 3

Jetzt müssen wir ja wieder die 2 ms in der mittleren Zeile mit 2 multiplizieren, um auf die 4 ms in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 2

6 ms4 CPU-Kerne
2 ms12 CPU-Kerne
4 ms6 CPU-Kerne

⋅ 3
: 2

Damit haben wir nun den gesuchten Wert, der den 4 ms entspricht: 6 CPU-Kerne

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 8 h den 3 Personen entsprechen.

: 4
⋅ 3

4 Personen6 h
1 Person24 h
3 Personen8 h

⋅ 4
: 3

Der urpsrünglich vorgegebene Wert 8 h(für 3 Personen) war also korrekt.


Jetzt überprüfen wir, ob die 6 h den 6 Personen entsprechen.

: 2
⋅ 3

4 Personen6 h
2 Personen12 h
6 Personen4 h

⋅ 2
: 3

Der urpsrünglich vorgegebene Wert 6 h (für 6 Personen) war also falsch, richtig wäre 4 h gewesen.