nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 1€ für ein Los verlangen, müssten sie 450 Lose verkaufen um genügend Geld zusammen zu bekommen.

Wie viele Lose müssten sie bei einem Lospreis von 5 € verkaufen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 € Lospreis450 Lose
5 € Lospreis?

Um von 1 € Lospreis in der ersten Zeile auf 5 € Lospreis in der zweiten Zeile zu kommen, müssen wir mit 5 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 450 Lose durch 5 teilen, um auf den Wert zu kommen, der den 5 € Lospreis entspricht:

⋅ 5
1 € Lospreis450 Lose
5 € Lospreis?
: 5
⋅ 5
1 € Lospreis450 Lose
5 € Lospreis90 Lose
: 5

Damit haben wir nun den gesuchten Wert, der den 5 € Lospreis entspricht: 90 Lose

Dreisatz (antiproportional)

Beispiel:

Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit 4 CPU-Kernen 6 ms rechnen.

Wie lange bräuchte ein Computer mit 3 solchen CPU-Kernen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


4 CPU-Kerne6 ms
??
3 CPU-Kerne?

Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 CPU-Kerne:


4 CPU-Kerne6 ms
1 CPU-Kern?
3 CPU-Kerne?

Um von 4 CPU-Kerne in der ersten Zeile auf 1 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 ms nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 CPU-Kerne links entspricht:

: 4

4 CPU-Kerne6 ms
1 CPU-Kern?
3 CPU-Kerne?

⋅ 4
: 4

4 CPU-Kerne6 ms
1 CPU-Kern24 ms
3 CPU-Kerne?

⋅ 4

Jetzt müssen wir ja wieder die 1 CPU-Kerne in der mittleren Zeile mit 3 multiplizieren, um auf die 3 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 3

4 CPU-Kerne6 ms
1 CPU-Kern24 ms
3 CPU-Kerne?

⋅ 4
: 3

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 24 ms in der mittleren Zeile durch 3 dividieren:

: 4
⋅ 3

4 CPU-Kerne6 ms
1 CPU-Kern24 ms
3 CPU-Kerne8 ms

⋅ 4
: 3

Damit haben wir nun den gesuchten Wert, der den 3 CPU-Kerne entspricht: 8 ms

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

10 Minuten pro Tag6 Tage
??
12 Minuten pro Tag?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 10 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 10 und von 12 sein, also der ggT(10,12) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 Minuten pro Tag:


10 Minuten pro Tag6 Tage
2 Minuten pro Tag?
12 Minuten pro Tag?

Um von 10 Minuten pro Tag in der ersten Zeile auf 2 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 Tage nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 2 Minuten pro Tag links entspricht:

: 5

10 Minuten pro Tag6 Tage
2 Minuten pro Tag?
12 Minuten pro Tag?

⋅ 5
: 5

10 Minuten pro Tag6 Tage
2 Minuten pro Tag30 Tage
12 Minuten pro Tag?

⋅ 5

Jetzt müssen wir ja wieder die 2 Minuten pro Tag in der mittleren Zeile mit 6 multiplizieren, um auf die 12 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 6

10 Minuten pro Tag6 Tage
2 Minuten pro Tag30 Tage
12 Minuten pro Tag?

⋅ 5
: 6

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 30 Tage in der mittleren Zeile durch 6 dividieren:

: 5
⋅ 6

10 Minuten pro Tag6 Tage
2 Minuten pro Tag30 Tage
12 Minuten pro Tag5 Tage

⋅ 5
: 6

Damit haben wir nun den gesuchten Wert, der den 12 Minuten pro Tag entspricht: 5 Tage

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Wenn Karla mit ihrem Handy jeden Tag immer 7 Minuten telefonieren würde, würden ihre Freiminuten noch genau 8 Tage halten.

Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 4 min telefonieren würde?
Wie lange kann sie täglich telefonieren, wenn die Freiminuten 7 Tage reichen sollen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


7 Minuten pro Tag8 Tage
??
4 Minuten pro Tag?

Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 7 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 7 und von 4 sein, also der ggT(7,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Minuten pro Tag:


7 Minuten pro Tag8 Tage
1 Minute pro Tag?
4 Minuten pro Tag?

Um von 7 Minuten pro Tag in der ersten Zeile auf 1 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 7 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 Tage nicht durch 7 teilen, sondern mit 7 multiplizieren um auf den Wert zu kommen, der den 1 Minuten pro Tag links entspricht:

: 7

7 Minuten pro Tag8 Tage
1 Minute pro Tag56 Tage
4 Minuten pro Tag?

⋅ 7

Jetzt müssen wir ja wieder die 1 Minuten pro Tag in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 7
⋅ 4

7 Minuten pro Tag8 Tage
1 Minute pro Tag56 Tage
4 Minuten pro Tag14 Tage

⋅ 7
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Minuten pro Tag entspricht: 14 Tage



Für die andere Frage (Wie lange kann sie täglich telefonieren, wenn die Freiminuten 7 Tage reichen sollen?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "Tage"-Werte haben und nach einem "Minuten pro Tag"-Wert gesucht wird:


8 Tage7 Minuten pro Tag
??
7 Tage?

Wir suchen einen möglichst großen Zwischenwert für die Tage in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Tage teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 7 sein, also der ggT(8,7) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Tage:


8 Tage7 Minuten pro Tag
1 Tag?
7 Tage?

Um von 8 Tage in der ersten Zeile auf 1 Tage in der zweiten Zeile zu kommen, müssen wir durch 8 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 7 Minuten pro Tag nicht durch 8 teilen, sondern mit 8 multiplizieren um auf den Wert zu kommen, der den 1 Tage links entspricht:

: 8

8 Tage7 Minuten pro Tag
1 Tag56 Minuten pro Tag
7 Tage?

⋅ 8

Jetzt müssen wir ja wieder die 1 Tage in der mittleren Zeile mit 7 multiplizieren, um auf die 7 Tage in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 8
⋅ 7

8 Tage7 Minuten pro Tag
1 Tag56 Minuten pro Tag
7 Tage8 Minuten pro Tag

⋅ 8
: 7

Damit haben wir nun den gesuchten Wert, der den 7 Tage entspricht: 8 Minuten pro Tag

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 3 Spezi-Flaschen den 15 Gäste entsprechen.

: 3
⋅ 5

9 Gäste5 Spezi-Flaschen
3 Gäste15 Spezi-Flaschen
15 Gäste3 Spezi-Flaschen

⋅ 3
: 5

Der urpsrünglich vorgegebene Wert 3 Spezi-Flaschen(für 15 Gäste) war also korrekt.


Jetzt überprüfen wir, ob die 9 Spezi-Flaschen den 5 Gäste entsprechen.

: 9
⋅ 5

9 Gäste5 Spezi-Flaschen
1 Gäste45 Spezi-Flaschen
5 Gäste9 Spezi-Flaschen

⋅ 9
: 5

Der urpsrünglich vorgegebene Wert 9 Spezi-Flaschen (für 5 Gäste) war also korrekt.