nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Karls hat für seine Geburtstagsparty 48 Flaschen Spezi bekommen.

Wie viele Flaschen würde jeder bekommen, wenn insgesamt 8 Personen auf der Party wären?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Gast48 Spezi-Flaschen
8 Gäste?

Um von 1 Gäste in der ersten Zeile auf 8 Gäste in der zweiten Zeile zu kommen, müssen wir mit 8 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 48 Spezi-Flaschen durch 8 teilen, um auf den Wert zu kommen, der den 8 Gäste entspricht:

⋅ 8
1 Gast48 Spezi-Flaschen
8 Gäste?
: 8
⋅ 8
1 Gast48 Spezi-Flaschen
8 Gäste6 Spezi-Flaschen
: 8

Damit haben wir nun den gesuchten Wert, der den 8 Gäste entspricht: 6 Spezi-Flaschen

Dreisatz (antiproportional)

Beispiel:

Ein Hausmeister hat ein extra Budget für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld). Wenn er 7 Helfer:innen einstellt, reicht es für jeden 80 € Lohn.

Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 4 Helfer:innen hätte?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


7 Helfer:innen80 € Lohn
??
4 Helfer:innen?

Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 7 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 7 und von 4 sein, also der ggT(7,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Helfer:innen:


7 Helfer:innen80 € Lohn
1 Helfer:in?
4 Helfer:innen?

Um von 7 Helfer:innen in der ersten Zeile auf 1 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 7 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 80 € Lohn nicht durch 7 teilen, sondern mit 7 multiplizieren um auf den Wert zu kommen, der den 1 Helfer:innen links entspricht:

: 7

7 Helfer:innen80 € Lohn
1 Helfer:in?
4 Helfer:innen?

⋅ 7
: 7

7 Helfer:innen80 € Lohn
1 Helfer:in560 € Lohn
4 Helfer:innen?

⋅ 7

Jetzt müssen wir ja wieder die 1 Helfer:innen in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 7
⋅ 4

7 Helfer:innen80 € Lohn
1 Helfer:in560 € Lohn
4 Helfer:innen?

⋅ 7
: 4

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 560 € Lohn in der mittleren Zeile durch 4 dividieren:

: 7
⋅ 4

7 Helfer:innen80 € Lohn
1 Helfer:in560 € Lohn
4 Helfer:innen140 € Lohn

⋅ 7
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Helfer:innen entspricht: 140 € Lohn

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

3 Personen10 h
??
2 Personen?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Personen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 3 Personen teilen müssen.) Diese Zahl sollte eine Teiler von 3 und von 2 sein, also der ggT(3,2) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Personen:


3 Personen10 h
1 Person?
2 Personen?

Um von 3 Personen in der ersten Zeile auf 1 Personen in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 10 h nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 1 Personen links entspricht:

: 3

3 Personen10 h
1 Person?
2 Personen?

⋅ 3
: 3

3 Personen10 h
1 Person30 h
2 Personen?

⋅ 3

Jetzt müssen wir ja wieder die 1 Personen in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Personen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 2

3 Personen10 h
1 Person30 h
2 Personen?

⋅ 3
: 2

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 30 h in der mittleren Zeile durch 2 dividieren:

: 3
⋅ 2

3 Personen10 h
1 Person30 h
2 Personen15 h

⋅ 3
: 2

Damit haben wir nun den gesuchten Wert, der den 2 Personen entspricht: 15 h

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit 4 CPU-Kernen 6 ms rechnen.

Wie lange bräuchte ein Computer mit 3 solchen CPU-Kernen?
Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 4 ms rechnen könnte?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


4 CPU-Kerne6 ms
??
3 CPU-Kerne?

Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 CPU-Kerne:


4 CPU-Kerne6 ms
1 CPU-Kern?
3 CPU-Kerne?

Um von 4 CPU-Kerne in der ersten Zeile auf 1 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 ms nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 CPU-Kerne links entspricht:

: 4

4 CPU-Kerne6 ms
1 CPU-Kern24 ms
3 CPU-Kerne?

⋅ 4

Jetzt müssen wir ja wieder die 1 CPU-Kerne in der mittleren Zeile mit 3 multiplizieren, um auf die 3 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 3

4 CPU-Kerne6 ms
1 CPU-Kern24 ms
3 CPU-Kerne8 ms

⋅ 4
: 3

Damit haben wir nun den gesuchten Wert, der den 3 CPU-Kerne entspricht: 8 ms



Für die andere Frage (Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 4 ms rechnen könnte?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "ms"-Werte haben und nach einem "CPU-Kerne"-Wert gesucht wird:


6 ms4 CPU-Kerne
??
4 ms?

Wir suchen einen möglichst großen Zwischenwert für die ms in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 ms teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 4 sein, also der ggT(6,4) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 ms:


6 ms4 CPU-Kerne
2 ms?
4 ms?

Um von 6 ms in der ersten Zeile auf 2 ms in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 CPU-Kerne nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 ms links entspricht:

: 3

6 ms4 CPU-Kerne
2 ms12 CPU-Kerne
4 ms?

⋅ 3

Jetzt müssen wir ja wieder die 2 ms in der mittleren Zeile mit 2 multiplizieren, um auf die 4 ms in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 2

6 ms4 CPU-Kerne
2 ms12 CPU-Kerne
4 ms6 CPU-Kerne

⋅ 3
: 2

Damit haben wir nun den gesuchten Wert, der den 4 ms entspricht: 6 CPU-Kerne

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 157 € Lohn den 3 Helfer:innen entsprechen.

: 4
⋅ 3

4 Helfer:innen120 € Lohn
1 Helfer:in480 € Lohn
3 Helfer:innen160 € Lohn

⋅ 4
: 3

Der urpsrünglich vorgegebene Wert 157 € Lohn (für 3 Helfer:innen) war also falsch, richtig wäre 160 € Lohn gewesen.


Jetzt überprüfen wir, ob die 14 € Lohn den 30 Helfer:innen entsprechen.

: 2
⋅ 15

4 Helfer:innen120 € Lohn
2 Helfer:innen240 € Lohn
30 Helfer:innen16 € Lohn

⋅ 2
: 15

Der urpsrünglich vorgegebene Wert 14 € Lohn (für 30 Helfer:innen) war also falsch, richtig wäre 16 € Lohn gewesen.