nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 1 Lastwagen müsste dafür 56 mal fahren.

Wie oft müssten 8 LKWs fahren?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Lastwagen56 Fuhren
8 Lastwagen?

Um von 1 Lastwagen in der ersten Zeile auf 8 Lastwagen in der zweiten Zeile zu kommen, müssen wir mit 8 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 56 Fuhren durch 8 teilen, um auf den Wert zu kommen, der den 8 Lastwagen entspricht:

⋅ 8
1 Lastwagen56 Fuhren
8 Lastwagen?
: 8
⋅ 8
1 Lastwagen56 Fuhren
8 Lastwagen7 Fuhren
: 8

Damit haben wir nun den gesuchten Wert, der den 8 Lastwagen entspricht: 7 Fuhren

Dreisatz (antiproportional)

Beispiel:

Wenn Frau Baumann so Auto fährt, dass sie 5 Liter pro 100km verbraucht, kommt sie mit einer Tankfüllung 800 km weit.

Wie weit würde sie mit einer Tankfüllung kommen, wenn sie mit einem "4 Liter/100km "-Schnitt fahren würde?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 Liter pro 100km800 km
??
4 Liter pro 100km?

Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 4 sein, also der ggT(5,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Liter pro 100km:


5 Liter pro 100km800 km
1 Liter pro 100km?
4 Liter pro 100km?

Um von 5 Liter pro 100km in der ersten Zeile auf 1 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 800 km nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Liter pro 100km links entspricht:

: 5

5 Liter pro 100km800 km
1 Liter pro 100km?
4 Liter pro 100km?

⋅ 5
: 5

5 Liter pro 100km800 km
1 Liter pro 100km4000 km
4 Liter pro 100km?

⋅ 5

Jetzt müssen wir ja wieder die 1 Liter pro 100km in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 4

5 Liter pro 100km800 km
1 Liter pro 100km4000 km
4 Liter pro 100km?

⋅ 5
: 4

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 4000 km in der mittleren Zeile durch 4 dividieren:

: 5
⋅ 4

5 Liter pro 100km800 km
1 Liter pro 100km4000 km
4 Liter pro 100km1000 km

⋅ 5
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Liter pro 100km entspricht: 1000 km

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

5 Minuten pro Tag6 Tage
??
3 Minuten pro Tag?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 3 sein, also der ggT(5,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Minuten pro Tag:


5 Minuten pro Tag6 Tage
1 Minute pro Tag?
3 Minuten pro Tag?

Um von 5 Minuten pro Tag in der ersten Zeile auf 1 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 Tage nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Minuten pro Tag links entspricht:

: 5

5 Minuten pro Tag6 Tage
1 Minute pro Tag?
3 Minuten pro Tag?

⋅ 5
: 5

5 Minuten pro Tag6 Tage
1 Minute pro Tag30 Tage
3 Minuten pro Tag?

⋅ 5

Jetzt müssen wir ja wieder die 1 Minuten pro Tag in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 3

5 Minuten pro Tag6 Tage
1 Minute pro Tag30 Tage
3 Minuten pro Tag?

⋅ 5
: 3

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 30 Tage in der mittleren Zeile durch 3 dividieren:

: 5
⋅ 3

5 Minuten pro Tag6 Tage
1 Minute pro Tag30 Tage
3 Minuten pro Tag10 Tage

⋅ 5
: 3

Damit haben wir nun den gesuchten Wert, der den 3 Minuten pro Tag entspricht: 10 Tage

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 8 Lastwagen müssten dafür 6 mal fahren.

Wie oft müssten 12 LKWs fahren?
Wie viele LKWs bräuchte man, damit es mit 8 Fuhren für jeden reicht?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


8 Lastwagen6 Fuhren
??
12 Lastwagen?

Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 12 sein, also der ggT(8,12) = 4.

Wir suchen deswegen erst den entsprechenden Wert für 4 Lastwagen:


8 Lastwagen6 Fuhren
4 Lastwagen?
12 Lastwagen?

Um von 8 Lastwagen in der ersten Zeile auf 4 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 Fuhren nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 4 Lastwagen links entspricht:

: 2

8 Lastwagen6 Fuhren
4 Lastwagen12 Fuhren
12 Lastwagen?

⋅ 2

Jetzt müssen wir ja wieder die 4 Lastwagen in der mittleren Zeile mit 3 multiplizieren, um auf die 12 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 2
⋅ 3

8 Lastwagen6 Fuhren
4 Lastwagen12 Fuhren
12 Lastwagen4 Fuhren

⋅ 2
: 3

Damit haben wir nun den gesuchten Wert, der den 12 Lastwagen entspricht: 4 Fuhren



Für die andere Frage (Wie viele LKWs bräuchte man, damit es mit 8 Fuhren für jeden reicht?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "Fuhren"-Werte haben und nach einem "Lastwagen"-Wert gesucht wird:


6 Fuhren8 Lastwagen
??
8 Fuhren?

Wir suchen einen möglichst großen Zwischenwert für die Fuhren in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 Fuhren teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 8 sein, also der ggT(6,8) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 Fuhren:


6 Fuhren8 Lastwagen
2 Fuhren?
8 Fuhren?

Um von 6 Fuhren in der ersten Zeile auf 2 Fuhren in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 Lastwagen nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 Fuhren links entspricht:

: 3

6 Fuhren8 Lastwagen
2 Fuhren24 Lastwagen
8 Fuhren?

⋅ 3

Jetzt müssen wir ja wieder die 2 Fuhren in der mittleren Zeile mit 4 multiplizieren, um auf die 8 Fuhren in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 4

6 Fuhren8 Lastwagen
2 Fuhren24 Lastwagen
8 Fuhren6 Lastwagen

⋅ 3
: 4

Damit haben wir nun den gesuchten Wert, der den 8 Fuhren entspricht: 6 Lastwagen

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 40 Lose den 14 € Lospreis entsprechen.

: 4
⋅ 7

8 € Lospreis70 Lose
2 € Lospreis280 Lose
14 € Lospreis40 Lose

⋅ 4
: 7

Der urpsrünglich vorgegebene Wert 40 Lose(für 14 € Lospreis) war also korrekt.


Jetzt überprüfen wir, ob die 40 Lose den 14 € Lospreis entsprechen.

: 4
⋅ 7

8 € Lospreis70 Lose
2 € Lospreis280 Lose
14 € Lospreis40 Lose

⋅ 4
: 7

Der urpsrünglich vorgegebene Wert 40 Lose (für 14 € Lospreis) war also korrekt.