nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit einem CPU-Kern 36 ms rechnen.

Wie lange bräuchte ein Computer mit 3 solchen CPU-Kernen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 CPU-Kern36 ms
3 CPU-Kerne?

Um von 1 CPU-Kerne in der ersten Zeile auf 3 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir mit 3 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 36 ms durch 3 teilen, um auf den Wert zu kommen, der den 3 CPU-Kerne entspricht:

⋅ 3
1 CPU-Kern36 ms
3 CPU-Kerne?
: 3
⋅ 3
1 CPU-Kern36 ms
3 CPU-Kerne12 ms
: 3

Damit haben wir nun den gesuchten Wert, der den 3 CPU-Kerne entspricht: 12 ms

Dreisatz (antiproportional)

Beispiel:

Ein Hausmeister hat ein extra Budget für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld). Wenn er 8 Helfer:innen einstellt, reicht es für jeden 50 € Lohn.

Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 10 Helfer:innen hätte?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


8 Helfer:innen50 € Lohn
??
10 Helfer:innen?

Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 10 sein, also der ggT(8,10) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 Helfer:innen:


8 Helfer:innen50 € Lohn
2 Helfer:innen?
10 Helfer:innen?

Um von 8 Helfer:innen in der ersten Zeile auf 2 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 50 € Lohn nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 Helfer:innen links entspricht:

: 4

8 Helfer:innen50 € Lohn
2 Helfer:innen?
10 Helfer:innen?

⋅ 4
: 4

8 Helfer:innen50 € Lohn
2 Helfer:innen200 € Lohn
10 Helfer:innen?

⋅ 4

Jetzt müssen wir ja wieder die 2 Helfer:innen in der mittleren Zeile mit 5 multiplizieren, um auf die 10 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 5

8 Helfer:innen50 € Lohn
2 Helfer:innen200 € Lohn
10 Helfer:innen?

⋅ 4
: 5

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 200 € Lohn in der mittleren Zeile durch 5 dividieren:

: 4
⋅ 5

8 Helfer:innen50 € Lohn
2 Helfer:innen200 € Lohn
10 Helfer:innen40 € Lohn

⋅ 4
: 5

Damit haben wir nun den gesuchten Wert, der den 10 Helfer:innen entspricht: 40 € Lohn

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

4 € Lospreis60 Lose
??
3 € Lospreis?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 € Lospreis:


4 € Lospreis60 Lose
1 € Lospreis?
3 € Lospreis?

Um von 4 € Lospreis in der ersten Zeile auf 1 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 60 Lose nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 € Lospreis links entspricht:

: 4

4 € Lospreis60 Lose
1 € Lospreis?
3 € Lospreis?

⋅ 4
: 4

4 € Lospreis60 Lose
1 € Lospreis240 Lose
3 € Lospreis?

⋅ 4

Jetzt müssen wir ja wieder die 1 € Lospreis in der mittleren Zeile mit 3 multiplizieren, um auf die 3 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 3

4 € Lospreis60 Lose
1 € Lospreis240 Lose
3 € Lospreis?

⋅ 4
: 3

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 240 Lose in der mittleren Zeile durch 3 dividieren:

: 4
⋅ 3

4 € Lospreis60 Lose
1 € Lospreis240 Lose
3 € Lospreis80 Lose

⋅ 4
: 3

Damit haben wir nun den gesuchten Wert, der den 3 € Lospreis entspricht: 80 Lose

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 5 Lastwagen müssten dafür 10 mal fahren.

Wie oft müssten 2 LKWs fahren?
Wie viele LKWs bräuchte man, damit es mit 5 Fuhren für jeden reicht?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 Lastwagen10 Fuhren
??
2 Lastwagen?

Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Lastwagen:


5 Lastwagen10 Fuhren
1 Lastwagen?
2 Lastwagen?

Um von 5 Lastwagen in der ersten Zeile auf 1 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 10 Fuhren nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Lastwagen links entspricht:

: 5

5 Lastwagen10 Fuhren
1 Lastwagen50 Fuhren
2 Lastwagen?

⋅ 5

Jetzt müssen wir ja wieder die 1 Lastwagen in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 2

5 Lastwagen10 Fuhren
1 Lastwagen50 Fuhren
2 Lastwagen25 Fuhren

⋅ 5
: 2

Damit haben wir nun den gesuchten Wert, der den 2 Lastwagen entspricht: 25 Fuhren



Um von 10 Fuhren in der ersten Zeile auf 5 Fuhren in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 5 Lastwagen mit 2 multiplizieren, um auf den Wert zu kommen, der den 5 Fuhren entspricht:

: 2
10 Fuhren5 Lastwagen
5 Fuhren?
⋅ 2
: 2
10 Fuhren5 Lastwagen
5 Fuhren10 Lastwagen
⋅ 2

Damit haben wir nun den gesuchten Wert, der den 5 Fuhren entspricht: 10 Lastwagen

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 16 h den 4 Personen entsprechen.

: 7
⋅ 4

7 Personen8 h
1 Person56 h
4 Personen14 h

⋅ 7
: 4

Der urpsrünglich vorgegebene Wert 16 h (für 4 Personen) war also falsch, richtig wäre 14 h gewesen.


Jetzt überprüfen wir, ob die 11 h den 8 Personen entsprechen.

: 7
⋅ 8

7 Personen8 h
1 Personen56 h
8 Personen7 h

⋅ 7
: 8

Der urpsrünglich vorgegebene Wert 11 h (für 8 Personen) war also falsch, richtig wäre 7 h gewesen.