Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 1 Lastwagen müsste dafür 60 mal fahren.
Wie oft müssten 3 LKWs fahren?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Lastwagen in der ersten Zeile auf 3 Lastwagen in der zweiten Zeile zu kommen, müssen wir mit 3 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 60 Fuhren durch 3 teilen, um auf den Wert zu kommen, der den 3 Lastwagen entspricht:
|
⋅ 3
|
![]() |
|
![]() |
: 3
|
|
⋅ 3
|
![]() |
|
![]() |
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 Lastwagen entspricht: 20 Fuhren
Dreisatz (antiproportional)
Beispiel:
Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 6 Lastwagen müssten dafür 4 mal fahren.
Wie oft müssten 8 LKWs fahren?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 8 sein, also der ggT(6,8) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 Lastwagen:
|
Um von 6 Lastwagen in der ersten Zeile auf 2 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 Fuhren nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 Lastwagen links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 2 Lastwagen in der mittleren Zeile mit 4 multiplizieren, um auf die 8 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 4
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 12 Fuhren in der mittleren Zeile durch 4 dividieren:
|
: 3
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 4
|
Damit haben wir nun den gesuchten Wert, der den 8 Lastwagen entspricht: 3 Fuhren
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 9 CPU-Kerne | 5 ms |
| ? | ? |
| 15 CPU-Kerne | ? |
Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 9 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 9 und von 15 sein, also der ggT(9,15) = 3.
Wir suchen deswegen erst den entsprechenden Wert für 3 CPU-Kerne:
|
Um von 9 CPU-Kerne in der ersten Zeile auf 3 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 ms nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 3 CPU-Kerne links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 3 CPU-Kerne in der mittleren Zeile mit 5 multiplizieren, um auf die 15 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 5
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 15 ms in der mittleren Zeile durch 5 dividieren:
|
: 3
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 5
|
Damit haben wir nun den gesuchten Wert, der den 15 CPU-Kerne entspricht: 3 ms
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Wenn Frau Baumann so Auto fährt, dass sie 4 Liter pro 100km verbraucht, kommt sie mit einer Tankfüllung 600 km weit.
Wie weit würde sie mit einer Tankfüllung kommen, wenn sie mit einem "3 Liter/100km "-Schnitt fahren würde?
Mit welchem "Liter pro 100km"-Schnitt muss sie fahren, dass sie mit einer Tankfüllung 400 km weit kommt?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Liter pro 100km:
|
Um von 4 Liter pro 100km in der ersten Zeile auf 1 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 600 km nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 Liter pro 100km links entspricht:
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 1 Liter pro 100km in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 4
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 Liter pro 100km entspricht: 800 km
Für die andere Frage (Mit welchem "Liter pro 100km"-Schnitt muss sie fahren, dass sie mit einer Tankfüllung 400 km weit kommt?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "km"-Werte haben und nach einem "Liter pro 100km"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 600 km teilen müssen.) Diese Zahl sollte eine Teiler von 600 und von 400 sein, also der ggT(600,400) = 200.
Wir suchen deswegen erst den entsprechenden Wert für 200 km:
|
Um von 600 km in der ersten Zeile auf 200 km in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 Liter pro 100km nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 200 km links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 200 km in der mittleren Zeile mit 2 multiplizieren, um auf die 400 km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Damit haben wir nun den gesuchten Wert, der den 400 km entspricht: 6 Liter pro 100km
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 14 h den 4 Personen entsprechen.
|
: 5
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 4
|
Der urpsrünglich vorgegebene Wert 14 h (für 4 Personen) war also falsch, richtig wäre 10 h gewesen.
Jetzt überprüfen wir, ob die 5 h den 8 Personen entsprechen.
|
: 5
⋅ 8
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 8
|
Der urpsrünglich vorgegebene Wert 5 h (für 8 Personen) war also korrekt.


