nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit einem CPU-Kern 24 ms rechnen.

Wie lange bräuchte ein Computer mit 4 solchen CPU-Kernen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 CPU-Kern24 ms
4 CPU-Kerne?

Um von 1 CPU-Kerne in der ersten Zeile auf 4 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir mit 4 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 24 ms durch 4 teilen, um auf den Wert zu kommen, der den 4 CPU-Kerne entspricht:

⋅ 4
1 CPU-Kern24 ms
4 CPU-Kerne?
: 4
⋅ 4
1 CPU-Kern24 ms
4 CPU-Kerne6 ms
: 4

Damit haben wir nun den gesuchten Wert, der den 4 CPU-Kerne entspricht: 6 ms

Dreisatz (antiproportional)

Beispiel:

Wenn Karla mit ihrem Handy jeden Tag immer 10 Minuten telefonieren würde, würden ihre Freiminuten noch genau 5 Tage halten.

Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 25 min telefonieren würde?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


10 Minuten pro Tag5 Tage
??
25 Minuten pro Tag?

Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 10 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 10 und von 25 sein, also der ggT(10,25) = 5.

Wir suchen deswegen erst den entsprechenden Wert für 5 Minuten pro Tag:


10 Minuten pro Tag5 Tage
5 Minuten pro Tag?
25 Minuten pro Tag?

Um von 10 Minuten pro Tag in der ersten Zeile auf 5 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Tage nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 5 Minuten pro Tag links entspricht:

: 2

10 Minuten pro Tag5 Tage
5 Minuten pro Tag?
25 Minuten pro Tag?

⋅ 2
: 2

10 Minuten pro Tag5 Tage
5 Minuten pro Tag10 Tage
25 Minuten pro Tag?

⋅ 2

Jetzt müssen wir ja wieder die 5 Minuten pro Tag in der mittleren Zeile mit 5 multiplizieren, um auf die 25 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 2
⋅ 5

10 Minuten pro Tag5 Tage
5 Minuten pro Tag10 Tage
25 Minuten pro Tag?

⋅ 2
: 5

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 10 Tage in der mittleren Zeile durch 5 dividieren:

: 2
⋅ 5

10 Minuten pro Tag5 Tage
5 Minuten pro Tag10 Tage
25 Minuten pro Tag2 Tage

⋅ 2
: 5

Damit haben wir nun den gesuchten Wert, der den 25 Minuten pro Tag entspricht: 2 Tage

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

5 Gäste10 Spezi-Flaschen
??
2 Gäste?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Gäste:


5 Gäste10 Spezi-Flaschen
1 Gast?
2 Gäste?

Um von 5 Gäste in der ersten Zeile auf 1 Gäste in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 10 Spezi-Flaschen nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Gäste links entspricht:

: 5

5 Gäste10 Spezi-Flaschen
1 Gast?
2 Gäste?

⋅ 5
: 5

5 Gäste10 Spezi-Flaschen
1 Gast50 Spezi-Flaschen
2 Gäste?

⋅ 5

Jetzt müssen wir ja wieder die 1 Gäste in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 2

5 Gäste10 Spezi-Flaschen
1 Gast50 Spezi-Flaschen
2 Gäste?

⋅ 5
: 2

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 50 Spezi-Flaschen in der mittleren Zeile durch 2 dividieren:

: 5
⋅ 2

5 Gäste10 Spezi-Flaschen
1 Gast50 Spezi-Flaschen
2 Gäste25 Spezi-Flaschen

⋅ 5
: 2

Damit haben wir nun den gesuchten Wert, der den 2 Gäste entspricht: 25 Spezi-Flaschen

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Wenn Karla mit ihrem Handy jeden Tag immer 4 Minuten telefonieren würde, würden ihre Freiminuten noch genau 6 Tage halten.

Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 3 min telefonieren würde?
Wie lange kann sie täglich telefonieren, wenn die Freiminuten 4 Tage reichen sollen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


4 Minuten pro Tag6 Tage
??
3 Minuten pro Tag?

Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Minuten pro Tag:


4 Minuten pro Tag6 Tage
1 Minute pro Tag?
3 Minuten pro Tag?

Um von 4 Minuten pro Tag in der ersten Zeile auf 1 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 Tage nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 Minuten pro Tag links entspricht:

: 4

4 Minuten pro Tag6 Tage
1 Minute pro Tag24 Tage
3 Minuten pro Tag?

⋅ 4

Jetzt müssen wir ja wieder die 1 Minuten pro Tag in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 3

4 Minuten pro Tag6 Tage
1 Minute pro Tag24 Tage
3 Minuten pro Tag8 Tage

⋅ 4
: 3

Damit haben wir nun den gesuchten Wert, der den 3 Minuten pro Tag entspricht: 8 Tage



Für die andere Frage (Wie lange kann sie täglich telefonieren, wenn die Freiminuten 4 Tage reichen sollen?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "Tage"-Werte haben und nach einem "Minuten pro Tag"-Wert gesucht wird:


6 Tage4 Minuten pro Tag
??
4 Tage?

Wir suchen einen möglichst großen Zwischenwert für die Tage in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 Tage teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 4 sein, also der ggT(6,4) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 Tage:


6 Tage4 Minuten pro Tag
2 Tage?
4 Tage?

Um von 6 Tage in der ersten Zeile auf 2 Tage in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 Minuten pro Tag nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 Tage links entspricht:

: 3

6 Tage4 Minuten pro Tag
2 Tage12 Minuten pro Tag
4 Tage?

⋅ 3

Jetzt müssen wir ja wieder die 2 Tage in der mittleren Zeile mit 2 multiplizieren, um auf die 4 Tage in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 2

6 Tage4 Minuten pro Tag
2 Tage12 Minuten pro Tag
4 Tage6 Minuten pro Tag

⋅ 3
: 2

Damit haben wir nun den gesuchten Wert, der den 4 Tage entspricht: 6 Minuten pro Tag

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 13 ms den 4 CPU-Kerne entsprechen.

: 3
⋅ 2

6 CPU-Kerne8 ms
2 CPU-Kerne24 ms
4 CPU-Kerne12 ms

⋅ 3
: 2

Der urpsrünglich vorgegebene Wert 13 ms (für 4 CPU-Kerne) war also falsch, richtig wäre 12 ms gewesen.


Jetzt überprüfen wir, ob die 8 ms den 8 CPU-Kerne entsprechen.

: 3
⋅ 4

6 CPU-Kerne8 ms
2 CPU-Kerne24 ms
8 CPU-Kerne6 ms

⋅ 3
: 4

Der urpsrünglich vorgegebene Wert 8 ms (für 8 CPU-Kerne) war also falsch, richtig wäre 6 ms gewesen.