Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 1€ für ein Los verlangen, müssten sie 240 Lose verkaufen um genügend Geld zusammen zu bekommen.
Wie viele Lose müssten sie bei einem Lospreis von 4 € verkaufen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 € Lospreis in der ersten Zeile auf 4 € Lospreis in der zweiten Zeile zu kommen, müssen wir mit 4 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 240 Lose durch 4 teilen, um auf den Wert zu kommen, der den 4 € Lospreis entspricht:
⋅ 4
|
![]() |
|
![]() |
: 4
|
⋅ 4
|
![]() |
|
![]() |
: 4
|
Damit haben wir nun den gesuchten Wert, der den 4 € Lospreis entspricht: 60 Lose
Dreisatz (antiproportional)
Beispiel:
Wenn Frau Baumann so Auto fährt, dass sie 5 Liter pro 100km verbraucht, kommt sie mit einer Tankfüllung 1000 km weit.
Wie weit würde sie mit einer Tankfüllung kommen, wenn sie mit einem "2 Liter/100km "-Schnitt fahren würde?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Liter pro 100km:
|
Um von 5 Liter pro 100km in der ersten Zeile auf 1 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 1000 km nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Liter pro 100km links entspricht:
: 5
|
![]() |
|
![]() |
⋅ 5
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 Liter pro 100km in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 5
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 2
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 5000 km in der mittleren Zeile durch 2 dividieren:
: 5
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 2
|
Damit haben wir nun den gesuchten Wert, der den 2 Liter pro 100km entspricht: 2500 km
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
5 Gäste | 6 Spezi-Flaschen |
? | ? |
3 Gäste | ? |
Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 3 sein, also der ggT(5,3) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Gäste:
|
Um von 5 Gäste in der ersten Zeile auf 1 Gäste in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 Spezi-Flaschen nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Gäste links entspricht:
: 5
|
![]() |
|
![]() |
⋅ 5
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 Gäste in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 30 Spezi-Flaschen in der mittleren Zeile durch 3 dividieren:
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 Gäste entspricht: 10 Spezi-Flaschen
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Karls hat für seine Geburtstagsparty Spezi bekommen. Dabei reicht es für jeden genau 5 Flaschen, wenn insgesamt 8 Personen auf seiner Party sind.
Wie viele Flaschen würde jeder bekommen, wenn insgesamt 10 Personen auf der Party wären?
Wie viele Personen können auf die Party, damit es für jeden zu 8 Flaschen reicht?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 10 sein, also der ggT(8,10) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 Gäste:
|
Um von 8 Gäste in der ersten Zeile auf 2 Gäste in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Spezi-Flaschen nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 Gäste links entspricht:
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 2 Gäste in der mittleren Zeile mit 5 multiplizieren, um auf die 10 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 4
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 5
|
Damit haben wir nun den gesuchten Wert, der den 10 Gäste entspricht: 4 Spezi-Flaschen
Für die andere Frage (Wie viele Personen können auf die Party, damit es für jeden zu 8 Flaschen reicht?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "Spezi-Flaschen"-Werte haben und nach einem "Gäste"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die Spezi-Flaschen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Spezi-Flaschen teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 8 sein, also der ggT(5,8) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Spezi-Flaschen:
|
Um von 5 Spezi-Flaschen in der ersten Zeile auf 1 Spezi-Flaschen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 Gäste nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Spezi-Flaschen links entspricht:
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 Spezi-Flaschen in der mittleren Zeile mit 8 multiplizieren, um auf die 8 Spezi-Flaschen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 5
⋅ 8
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 8
|
Damit haben wir nun den gesuchten Wert, der den 8 Spezi-Flaschen entspricht: 5 Gäste
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte.
Wir überprüfen zuerst, ob die 39 Lose den 14 € Lospreis entsprechen.
: 4
⋅ 7
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 7
|
Der Wert 39 Lose war also falsch, richtig wäre 40 Lose gewesen.
Jetzt überprüfen wir, ob die 10 Lose den 56 € Lospreis entsprechen.
: 1
⋅ 7
|
![]() ![]() |
|
![]() ![]() |
⋅ 1
: 7
|
Der Wert 10 Lose war also korrekt.