nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Wenn eine Person das Schulhaus putzt, braucht sie dafür 60 h.

Wie lange bräuchten 4 Personen hierfür?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Person60 h
4 Personen?

Um von 1 Personen in der ersten Zeile auf 4 Personen in der zweiten Zeile zu kommen, müssen wir mit 4 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 60 h durch 4 teilen, um auf den Wert zu kommen, der den 4 Personen entspricht:

⋅ 4
1 Person60 h
4 Personen?
: 4
⋅ 4
1 Person60 h
4 Personen15 h
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Personen entspricht: 15 h

Dreisatz (antiproportional)

Beispiel:

Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 10€ für ein Los verlangen, müssten sie 60 Lose verkaufen um genügend Geld zusammen zu bekommen.

Wie viele Lose müssten sie bei einem Lospreis von 12 € verkaufen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


10 € Lospreis60 Lose
??
12 € Lospreis?

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 10 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 10 und von 12 sein, also der ggT(10,12) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 € Lospreis:


10 € Lospreis60 Lose
2 € Lospreis?
12 € Lospreis?

Um von 10 € Lospreis in der ersten Zeile auf 2 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 60 Lose nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 2 € Lospreis links entspricht:

: 5

10 € Lospreis60 Lose
2 € Lospreis?
12 € Lospreis?

⋅ 5
: 5

10 € Lospreis60 Lose
2 € Lospreis300 Lose
12 € Lospreis?

⋅ 5

Jetzt müssen wir ja wieder die 2 € Lospreis in der mittleren Zeile mit 6 multiplizieren, um auf die 12 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 6

10 € Lospreis60 Lose
2 € Lospreis300 Lose
12 € Lospreis?

⋅ 5
: 6

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 300 Lose in der mittleren Zeile durch 6 dividieren:

: 5
⋅ 6

10 € Lospreis60 Lose
2 € Lospreis300 Lose
12 € Lospreis50 Lose

⋅ 5
: 6

Damit haben wir nun den gesuchten Wert, der den 12 € Lospreis entspricht: 50 Lose

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

5 Lastwagen9 Fuhren
??
3 Lastwagen?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 3 sein, also der ggT(5,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Lastwagen:


5 Lastwagen9 Fuhren
1 Lastwagen?
3 Lastwagen?

Um von 5 Lastwagen in der ersten Zeile auf 1 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 9 Fuhren nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Lastwagen links entspricht:

: 5

5 Lastwagen9 Fuhren
1 Lastwagen?
3 Lastwagen?

⋅ 5
: 5

5 Lastwagen9 Fuhren
1 Lastwagen45 Fuhren
3 Lastwagen?

⋅ 5

Jetzt müssen wir ja wieder die 1 Lastwagen in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 3

5 Lastwagen9 Fuhren
1 Lastwagen45 Fuhren
3 Lastwagen?

⋅ 5
: 3

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 45 Fuhren in der mittleren Zeile durch 3 dividieren:

: 5
⋅ 3

5 Lastwagen9 Fuhren
1 Lastwagen45 Fuhren
3 Lastwagen15 Fuhren

⋅ 5
: 3

Damit haben wir nun den gesuchten Wert, der den 3 Lastwagen entspricht: 15 Fuhren

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Wenn 7 Personen das Schulhaus putzen, brauchen sie dafür 8 h.

Wie lange bräuchten 4 Personen hierfür?
Wie viele Personen bräuchte man, damit jeder 7 h putzen müsste?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


7 Personen8 h
??
4 Personen?

Wir suchen einen möglichst großen Zwischenwert für die Personen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 7 Personen teilen müssen.) Diese Zahl sollte eine Teiler von 7 und von 4 sein, also der ggT(7,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Personen:


7 Personen8 h
1 Person?
4 Personen?

Um von 7 Personen in der ersten Zeile auf 1 Personen in der zweiten Zeile zu kommen, müssen wir durch 7 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 h nicht durch 7 teilen, sondern mit 7 multiplizieren um auf den Wert zu kommen, der den 1 Personen links entspricht:

: 7

7 Personen8 h
1 Person56 h
4 Personen?

⋅ 7

Jetzt müssen wir ja wieder die 1 Personen in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Personen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 7
⋅ 4

7 Personen8 h
1 Person56 h
4 Personen14 h

⋅ 7
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Personen entspricht: 14 h



Für die andere Frage (Wie viele Personen bräuchte man, damit jeder 7 h putzen müsste?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "h"-Werte haben und nach einem "Personen"-Wert gesucht wird:


8 h7 Personen
??
7 h?

Wir suchen einen möglichst großen Zwischenwert für die h in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 h teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 7 sein, also der ggT(8,7) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 h:


8 h7 Personen
1 h?
7 h?

Um von 8 h in der ersten Zeile auf 1 h in der zweiten Zeile zu kommen, müssen wir durch 8 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 7 Personen nicht durch 8 teilen, sondern mit 8 multiplizieren um auf den Wert zu kommen, der den 1 h links entspricht:

: 8

8 h7 Personen
1 h56 Personen
7 h?

⋅ 8

Jetzt müssen wir ja wieder die 1 h in der mittleren Zeile mit 7 multiplizieren, um auf die 7 h in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 8
⋅ 7

8 h7 Personen
1 h56 Personen
7 h8 Personen

⋅ 8
: 7

Damit haben wir nun den gesuchten Wert, der den 7 h entspricht: 8 Personen

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 6 ms den 3 CPU-Kerne entsprechen.

: 4
⋅ 3

4 CPU-Kerne6 ms
1 CPU-Kern24 ms
3 CPU-Kerne8 ms

⋅ 4
: 3

Der urpsrünglich vorgegebene Wert 6 ms (für 3 CPU-Kerne) war also falsch, richtig wäre 8 ms gewesen.


Jetzt überprüfen wir, ob die 2 ms den 6 CPU-Kerne entsprechen.

: 2
⋅ 3

4 CPU-Kerne6 ms
2 CPU-Kerne12 ms
6 CPU-Kerne4 ms

⋅ 2
: 3

Der urpsrünglich vorgegebene Wert 2 ms (für 6 CPU-Kerne) war also falsch, richtig wäre 4 ms gewesen.