nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit einem CPU-Kern 30 ms rechnen.

Wie lange bräuchte ein Computer mit 3 solchen CPU-Kernen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 CPU-Kern30 ms
3 CPU-Kerne?

Um von 1 CPU-Kerne in der ersten Zeile auf 3 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir mit 3 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 30 ms durch 3 teilen, um auf den Wert zu kommen, der den 3 CPU-Kerne entspricht:

⋅ 3
1 CPU-Kern30 ms
3 CPU-Kerne?
: 3
⋅ 3
1 CPU-Kern30 ms
3 CPU-Kerne10 ms
: 3

Damit haben wir nun den gesuchten Wert, der den 3 CPU-Kerne entspricht: 10 ms

Dreisatz (antiproportional)

Beispiel:

Ein Hausmeister hat ein extra Budget für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld). Wenn er 5 Helfer:innen einstellt, reicht es für jeden 60 € Lohn.

Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 3 Helfer:innen hätte?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 Helfer:innen60 € Lohn
??
3 Helfer:innen?

Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 3 sein, also der ggT(5,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Helfer:innen:


5 Helfer:innen60 € Lohn
1 Helfer:in?
3 Helfer:innen?

Um von 5 Helfer:innen in der ersten Zeile auf 1 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 60 € Lohn nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Helfer:innen links entspricht:

: 5

5 Helfer:innen60 € Lohn
1 Helfer:in?
3 Helfer:innen?

⋅ 5
: 5

5 Helfer:innen60 € Lohn
1 Helfer:in300 € Lohn
3 Helfer:innen?

⋅ 5

Jetzt müssen wir ja wieder die 1 Helfer:innen in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 3

5 Helfer:innen60 € Lohn
1 Helfer:in300 € Lohn
3 Helfer:innen?

⋅ 5
: 3

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 300 € Lohn in der mittleren Zeile durch 3 dividieren:

: 5
⋅ 3

5 Helfer:innen60 € Lohn
1 Helfer:in300 € Lohn
3 Helfer:innen100 € Lohn

⋅ 5
: 3

Damit haben wir nun den gesuchten Wert, der den 3 Helfer:innen entspricht: 100 € Lohn

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

3 Personen12 h
??
2 Personen?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Personen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 3 Personen teilen müssen.) Diese Zahl sollte eine Teiler von 3 und von 2 sein, also der ggT(3,2) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Personen:


3 Personen12 h
1 Person?
2 Personen?

Um von 3 Personen in der ersten Zeile auf 1 Personen in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 12 h nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 1 Personen links entspricht:

: 3

3 Personen12 h
1 Person?
2 Personen?

⋅ 3
: 3

3 Personen12 h
1 Person36 h
2 Personen?

⋅ 3

Jetzt müssen wir ja wieder die 1 Personen in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Personen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 2

3 Personen12 h
1 Person36 h
2 Personen?

⋅ 3
: 2

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 36 h in der mittleren Zeile durch 2 dividieren:

: 3
⋅ 2

3 Personen12 h
1 Person36 h
2 Personen18 h

⋅ 3
: 2

Damit haben wir nun den gesuchten Wert, der den 2 Personen entspricht: 18 h

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit 12 CPU-Kernen 3 ms rechnen.

Wie lange bräuchte ein Computer mit 18 solchen CPU-Kernen?
Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 9 ms rechnen könnte?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


12 CPU-Kerne3 ms
??
18 CPU-Kerne?

Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 12 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 12 und von 18 sein, also der ggT(12,18) = 6.

Wir suchen deswegen erst den entsprechenden Wert für 6 CPU-Kerne:


12 CPU-Kerne3 ms
6 CPU-Kerne?
18 CPU-Kerne?

Um von 12 CPU-Kerne in der ersten Zeile auf 6 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 3 ms nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 6 CPU-Kerne links entspricht:

: 2

12 CPU-Kerne3 ms
6 CPU-Kerne6 ms
18 CPU-Kerne?

⋅ 2

Jetzt müssen wir ja wieder die 6 CPU-Kerne in der mittleren Zeile mit 3 multiplizieren, um auf die 18 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 2
⋅ 3

12 CPU-Kerne3 ms
6 CPU-Kerne6 ms
18 CPU-Kerne2 ms

⋅ 2
: 3

Damit haben wir nun den gesuchten Wert, der den 18 CPU-Kerne entspricht: 2 ms



Um von 3 ms in der ersten Zeile auf 9 ms in der zweiten Zeile zu kommen, müssen wir mit 3 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 12 CPU-Kerne durch 3 teilen, um auf den Wert zu kommen, der den 9 ms entspricht:

⋅ 3
3 ms12 CPU-Kerne
9 ms?
: 3
⋅ 3
3 ms12 CPU-Kerne
9 ms4 CPU-Kerne
: 3

Damit haben wir nun den gesuchten Wert, der den 9 ms entspricht: 4 CPU-Kerne

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 2 ms den 25 CPU-Kerne entsprechen.

: 2
⋅ 5

10 CPU-Kerne5 ms
5 CPU-Kerne10 ms
25 CPU-Kerne2 ms

⋅ 2
: 5

Der urpsrünglich vorgegebene Wert 2 ms(für 25 CPU-Kerne) war also korrekt.


Jetzt überprüfen wir, ob die 9 ms den 5 CPU-Kerne entsprechen.

: 2
⋅ 1

10 CPU-Kerne5 ms
5 CPU-Kerne10 ms
5 CPU-Kerne10 ms

⋅ 2
: 1

Der urpsrünglich vorgegebene Wert 9 ms (für 5 CPU-Kerne) war also falsch, richtig wäre 10 ms gewesen.