nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Wenn eine Person das Schulhaus putzt, braucht sie dafür 60 h.

Wie lange bräuchten 3 Personen hierfür?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Person60 h
3 Personen?

Um von 1 Personen in der ersten Zeile auf 3 Personen in der zweiten Zeile zu kommen, müssen wir mit 3 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 60 h durch 3 teilen, um auf den Wert zu kommen, der den 3 Personen entspricht:

⋅ 3
1 Person60 h
3 Personen?
: 3
⋅ 3
1 Person60 h
3 Personen20 h
: 3

Damit haben wir nun den gesuchten Wert, der den 3 Personen entspricht: 20 h

Dreisatz (antiproportional)

Beispiel:

Wenn Frau Baumann so Auto fährt, dass sie 9 Liter pro 100km verbraucht, kommt sie mit einer Tankfüllung 500 km weit.

Wie weit würde sie mit einer Tankfüllung kommen, wenn sie mit einem "15 Liter/100km "-Schnitt fahren würde?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


9 Liter pro 100km500 km
??
15 Liter pro 100km?

Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 9 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 9 und von 15 sein, also der ggT(9,15) = 3.

Wir suchen deswegen erst den entsprechenden Wert für 3 Liter pro 100km:


9 Liter pro 100km500 km
3 Liter pro 100km?
15 Liter pro 100km?

Um von 9 Liter pro 100km in der ersten Zeile auf 3 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 500 km nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 3 Liter pro 100km links entspricht:

: 3

9 Liter pro 100km500 km
3 Liter pro 100km?
15 Liter pro 100km?

⋅ 3
: 3

9 Liter pro 100km500 km
3 Liter pro 100km1500 km
15 Liter pro 100km?

⋅ 3

Jetzt müssen wir ja wieder die 3 Liter pro 100km in der mittleren Zeile mit 5 multiplizieren, um auf die 15 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 5

9 Liter pro 100km500 km
3 Liter pro 100km1500 km
15 Liter pro 100km?

⋅ 3
: 5

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 1500 km in der mittleren Zeile durch 5 dividieren:

: 3
⋅ 5

9 Liter pro 100km500 km
3 Liter pro 100km1500 km
15 Liter pro 100km300 km

⋅ 3
: 5

Damit haben wir nun den gesuchten Wert, der den 15 Liter pro 100km entspricht: 300 km

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

4 € Lospreis60 Lose
??
3 € Lospreis?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 € Lospreis:


4 € Lospreis60 Lose
1 € Lospreis?
3 € Lospreis?

Um von 4 € Lospreis in der ersten Zeile auf 1 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 60 Lose nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 € Lospreis links entspricht:

: 4

4 € Lospreis60 Lose
1 € Lospreis?
3 € Lospreis?

⋅ 4
: 4

4 € Lospreis60 Lose
1 € Lospreis240 Lose
3 € Lospreis?

⋅ 4

Jetzt müssen wir ja wieder die 1 € Lospreis in der mittleren Zeile mit 3 multiplizieren, um auf die 3 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 3

4 € Lospreis60 Lose
1 € Lospreis240 Lose
3 € Lospreis?

⋅ 4
: 3

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 240 Lose in der mittleren Zeile durch 3 dividieren:

: 4
⋅ 3

4 € Lospreis60 Lose
1 € Lospreis240 Lose
3 € Lospreis80 Lose

⋅ 4
: 3

Damit haben wir nun den gesuchten Wert, der den 3 € Lospreis entspricht: 80 Lose

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Ein Hausmeister hat ein extra Budget für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld). Wenn er 9 Helfer:innen einstellt, reicht es für jeden 40 € Lohn.

Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 12 Helfer:innen hätte?
Wie viele Helfer:innen könnte man mit einem Lohn von 9 € bezahlen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


9 Helfer:innen40 € Lohn
??
12 Helfer:innen?

Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 9 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 9 und von 12 sein, also der ggT(9,12) = 3.

Wir suchen deswegen erst den entsprechenden Wert für 3 Helfer:innen:


9 Helfer:innen40 € Lohn
3 Helfer:innen?
12 Helfer:innen?

Um von 9 Helfer:innen in der ersten Zeile auf 3 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 40 € Lohn nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 3 Helfer:innen links entspricht:

: 3

9 Helfer:innen40 € Lohn
3 Helfer:innen120 € Lohn
12 Helfer:innen?

⋅ 3

Jetzt müssen wir ja wieder die 3 Helfer:innen in der mittleren Zeile mit 4 multiplizieren, um auf die 12 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 4

9 Helfer:innen40 € Lohn
3 Helfer:innen120 € Lohn
12 Helfer:innen30 € Lohn

⋅ 3
: 4

Damit haben wir nun den gesuchten Wert, der den 12 Helfer:innen entspricht: 30 € Lohn



Für die andere Frage (Wie viele Helfer:innen könnte man mit einem Lohn von 9 € bezahlen?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "€ Lohn"-Werte haben und nach einem "Helfer:innen"-Wert gesucht wird:


40 € Lohn9 Helfer:innen
??
9 € Lohn?

Wir suchen einen möglichst großen Zwischenwert für die € Lohn in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 40 € Lohn teilen müssen.) Diese Zahl sollte eine Teiler von 40 und von 9 sein, also der ggT(40,9) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 € Lohn:


40 € Lohn9 Helfer:innen
1 € Lohn?
9 € Lohn?

Um von 40 € Lohn in der ersten Zeile auf 1 € Lohn in der zweiten Zeile zu kommen, müssen wir durch 40 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 9 Helfer:innen nicht durch 40 teilen, sondern mit 40 multiplizieren um auf den Wert zu kommen, der den 1 € Lohn links entspricht:

: 40

40 € Lohn9 Helfer:innen
1 € Lohn360 Helfer:innen
9 € Lohn?

⋅ 40

Jetzt müssen wir ja wieder die 1 € Lohn in der mittleren Zeile mit 9 multiplizieren, um auf die 9 € Lohn in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 40
⋅ 9

40 € Lohn9 Helfer:innen
1 € Lohn360 Helfer:innen
9 € Lohn40 Helfer:innen

⋅ 40
: 9

Damit haben wir nun den gesuchten Wert, der den 9 € Lohn entspricht: 40 Helfer:innen

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 4 h den 12 Personen entsprechen.

: 3
⋅ 4

9 Personen4 h
3 Personen12 h
12 Personen3 h

⋅ 3
: 4

Der urpsrünglich vorgegebene Wert 4 h (für 12 Personen) war also falsch, richtig wäre 3 h gewesen.


Jetzt überprüfen wir, ob die 9 h den 3 Personen entsprechen.

: 3
⋅ 1

9 Personen4 h
3 Personen12 h
3 Personen12 h

⋅ 3
: 1

Der urpsrünglich vorgegebene Wert 9 h (für 3 Personen) war also falsch, richtig wäre 12 h gewesen.