Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 1 Lastwagen müsste dafür 45 mal fahren.
Wie oft müssten 9 LKWs fahren?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Lastwagen in der ersten Zeile auf 9 Lastwagen in der zweiten Zeile zu kommen, müssen wir mit 9 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 45 Fuhren durch 9 teilen, um auf den Wert zu kommen, der den 9 Lastwagen entspricht:
⋅ 9
|
![]() |
|
![]() |
: 9
|
⋅ 9
|
![]() |
|
![]() |
: 9
|
Damit haben wir nun den gesuchten Wert, der den 9 Lastwagen entspricht: 5 Fuhren
Dreisatz (antiproportional)
Beispiel:
Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit 6 CPU-Kernen 4 ms rechnen.
Wie lange bräuchte ein Computer mit 8 solchen CPU-Kernen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 8 sein, also der ggT(6,8) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 CPU-Kerne:
|
Um von 6 CPU-Kerne in der ersten Zeile auf 2 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 ms nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 CPU-Kerne links entspricht:
: 3
|
![]() |
|
![]() |
⋅ 3
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 2 CPU-Kerne in der mittleren Zeile mit 4 multiplizieren, um auf die 8 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 3
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 4
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 12 ms in der mittleren Zeile durch 4 dividieren:
: 3
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 4
|
Damit haben wir nun den gesuchten Wert, der den 8 CPU-Kerne entspricht: 3 ms
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
12 CPU-Kerne | 5 ms |
? | ? |
15 CPU-Kerne | ? |
Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 12 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 12 und von 15 sein, also der ggT(12,15) = 3.
Wir suchen deswegen erst den entsprechenden Wert für 3 CPU-Kerne:
|
Um von 12 CPU-Kerne in der ersten Zeile auf 3 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 ms nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 3 CPU-Kerne links entspricht:
: 4
|
![]() |
|
![]() |
⋅ 4
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 3 CPU-Kerne in der mittleren Zeile mit 5 multiplizieren, um auf die 15 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 4
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 5
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 20 ms in der mittleren Zeile durch 5 dividieren:
: 4
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 5
|
Damit haben wir nun den gesuchten Wert, der den 15 CPU-Kerne entspricht: 4 ms
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 12€ für ein Los verlangen, müssten sie 40 Lose verkaufen um genügend Geld zusammen zu bekommen.
Wie viele Lose müssten sie bei einem Lospreis von 16 € verkaufen?
Wie hoch muss man den Preis ansetzen, wenn man erwartet, das sich 5 Lose verkaufen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 12 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 12 und von 16 sein, also der ggT(12,16) = 4.
Wir suchen deswegen erst den entsprechenden Wert für 4 € Lospreis:
|
Um von 12 € Lospreis in der ersten Zeile auf 4 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 40 Lose nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 4 € Lospreis links entspricht:
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 4 € Lospreis in der mittleren Zeile mit 4 multiplizieren, um auf die 16 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 3
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 4
|
Damit haben wir nun den gesuchten Wert, der den 16 € Lospreis entspricht: 30 Lose
Um von 40 Lose in der ersten Zeile auf 5 Lose in der zweiten Zeile zu kommen, müssen wir durch 8 teilen. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 12 € Lospreis mit 8 multiplizieren, um auf den Wert zu kommen, der den 5 Lose entspricht:
: 8
|
![]() |
|
![]() |
⋅ 8
|
: 8
|
![]() |
|
![]() |
⋅ 8
|
Damit haben wir nun den gesuchten Wert, der den 5 Lose entspricht: 96 € Lospreis
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte.
Wir überprüfen zuerst, ob die -1 Spezi-Flaschen den 18 Gäste entsprechen.
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 3
|
Der urpsrünglich vorgegebene Wert -1 Spezi-Flaschen (für 18 Gäste) war also falsch, richtig wäre 2 Spezi-Flaschen gewesen.
Jetzt überprüfen wir, ob die 4 Spezi-Flaschen den 9 Gäste entsprechen.
: 4
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 3
|
Der urpsrünglich vorgegebene Wert 4 Spezi-Flaschen (für 9 Gäste) war also korrekt.