nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Ein Hausmeister hat ein extra Budget von 450 € für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld).

Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 5 Helfer:innen hätte?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Helfer:in450 € Lohn
5 Helfer:innen?

Um von 1 Helfer:innen in der ersten Zeile auf 5 Helfer:innen in der zweiten Zeile zu kommen, müssen wir mit 5 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 450 € Lohn durch 5 teilen, um auf den Wert zu kommen, der den 5 Helfer:innen entspricht:

⋅ 5
1 Helfer:in450 € Lohn
5 Helfer:innen?
: 5
⋅ 5
1 Helfer:in450 € Lohn
5 Helfer:innen90 € Lohn
: 5

Damit haben wir nun den gesuchten Wert, der den 5 Helfer:innen entspricht: 90 € Lohn

Dreisatz (antiproportional)

Beispiel:

Karls hat für seine Geburtstagsparty Spezi bekommen. Dabei reicht es für jeden genau 10 Flaschen, wenn insgesamt 5 Personen auf seiner Party sind.

Wie viele Flaschen würde jeder bekommen, wenn insgesamt 2 Personen auf der Party wären?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 Gäste10 Spezi-Flaschen
??
2 Gäste?

Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Gäste:


5 Gäste10 Spezi-Flaschen
1 Gast?
2 Gäste?

Um von 5 Gäste in der ersten Zeile auf 1 Gäste in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 10 Spezi-Flaschen nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Gäste links entspricht:

: 5

5 Gäste10 Spezi-Flaschen
1 Gast?
2 Gäste?

⋅ 5
: 5

5 Gäste10 Spezi-Flaschen
1 Gast50 Spezi-Flaschen
2 Gäste?

⋅ 5

Jetzt müssen wir ja wieder die 1 Gäste in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 2

5 Gäste10 Spezi-Flaschen
1 Gast50 Spezi-Flaschen
2 Gäste?

⋅ 5
: 2

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 50 Spezi-Flaschen in der mittleren Zeile durch 2 dividieren:

: 5
⋅ 2

5 Gäste10 Spezi-Flaschen
1 Gast50 Spezi-Flaschen
2 Gäste25 Spezi-Flaschen

⋅ 5
: 2

Damit haben wir nun den gesuchten Wert, der den 2 Gäste entspricht: 25 Spezi-Flaschen

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

6 Personen8 h
??
4 Personen?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Personen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 Personen teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 4 sein, also der ggT(6,4) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 Personen:


6 Personen8 h
2 Personen?
4 Personen?

Um von 6 Personen in der ersten Zeile auf 2 Personen in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 h nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 Personen links entspricht:

: 3

6 Personen8 h
2 Personen?
4 Personen?

⋅ 3
: 3

6 Personen8 h
2 Personen24 h
4 Personen?

⋅ 3

Jetzt müssen wir ja wieder die 2 Personen in der mittleren Zeile mit 2 multiplizieren, um auf die 4 Personen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 2

6 Personen8 h
2 Personen24 h
4 Personen?

⋅ 3
: 2

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 24 h in der mittleren Zeile durch 2 dividieren:

: 3
⋅ 2

6 Personen8 h
2 Personen24 h
4 Personen12 h

⋅ 3
: 2

Damit haben wir nun den gesuchten Wert, der den 4 Personen entspricht: 12 h

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 4€ für ein Los verlangen, müssten sie 150 Lose verkaufen um genügend Geld zusammen zu bekommen.

Wie viele Lose müssten sie bei einem Lospreis von 3 € verkaufen?
Wie hoch muss man den Preis ansetzen, wenn man erwartet, das sich 100 Lose verkaufen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


4 € Lospreis150 Lose
??
3 € Lospreis?

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 € Lospreis:


4 € Lospreis150 Lose
1 € Lospreis?
3 € Lospreis?

Um von 4 € Lospreis in der ersten Zeile auf 1 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 150 Lose nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 € Lospreis links entspricht:

: 4

4 € Lospreis150 Lose
1 € Lospreis600 Lose
3 € Lospreis?

⋅ 4

Jetzt müssen wir ja wieder die 1 € Lospreis in der mittleren Zeile mit 3 multiplizieren, um auf die 3 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 3

4 € Lospreis150 Lose
1 € Lospreis600 Lose
3 € Lospreis200 Lose

⋅ 4
: 3

Damit haben wir nun den gesuchten Wert, der den 3 € Lospreis entspricht: 200 Lose



Für die andere Frage (Wie hoch muss man den Preis ansetzen, wenn man erwartet, das sich 100 Lose verkaufen?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "Lose"-Werte haben und nach einem "€ Lospreis"-Wert gesucht wird:


150 Lose4 € Lospreis
??
100 Lose?

Wir suchen einen möglichst großen Zwischenwert für die Lose in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 150 Lose teilen müssen.) Diese Zahl sollte eine Teiler von 150 und von 100 sein, also der ggT(150,100) = 50.

Wir suchen deswegen erst den entsprechenden Wert für 50 Lose:


150 Lose4 € Lospreis
50 Lose?
100 Lose?

Um von 150 Lose in der ersten Zeile auf 50 Lose in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 € Lospreis nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 50 Lose links entspricht:

: 3

150 Lose4 € Lospreis
50 Lose12 € Lospreis
100 Lose?

⋅ 3

Jetzt müssen wir ja wieder die 50 Lose in der mittleren Zeile mit 2 multiplizieren, um auf die 100 Lose in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 2

150 Lose4 € Lospreis
50 Lose12 € Lospreis
100 Lose6 € Lospreis

⋅ 3
: 2

Damit haben wir nun den gesuchten Wert, der den 100 Lose entspricht: 6 € Lospreis

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 3 ms den 15 CPU-Kerne entsprechen.

: 3
⋅ 5

9 CPU-Kerne5 ms
3 CPU-Kerne15 ms
15 CPU-Kerne3 ms

⋅ 3
: 5

Der urpsrünglich vorgegebene Wert 3 ms(für 15 CPU-Kerne) war also korrekt.


Jetzt überprüfen wir, ob die 6 ms den 5 CPU-Kerne entsprechen.

: 9
⋅ 5

9 CPU-Kerne5 ms
1 CPU-Kerne45 ms
5 CPU-Kerne9 ms

⋅ 9
: 5

Der urpsrünglich vorgegebene Wert 6 ms (für 5 CPU-Kerne) war also falsch, richtig wäre 9 ms gewesen.