nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Wenn eine Person das Schulhaus putzt, braucht sie dafür 56 h.

Wie lange bräuchten 8 Personen hierfür?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Person56 h
8 Personen?

Um von 1 Personen in der ersten Zeile auf 8 Personen in der zweiten Zeile zu kommen, müssen wir mit 8 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 56 h durch 8 teilen, um auf den Wert zu kommen, der den 8 Personen entspricht:

⋅ 8
1 Person56 h
8 Personen?
: 8
⋅ 8
1 Person56 h
8 Personen7 h
: 8

Damit haben wir nun den gesuchten Wert, der den 8 Personen entspricht: 7 h

Dreisatz (antiproportional)

Beispiel:

Wenn Frau Baumann so Auto fährt, dass sie 9 Liter pro 100km verbraucht, kommt sie mit einer Tankfüllung 500 km weit.

Wie weit würde sie mit einer Tankfüllung kommen, wenn sie mit einem "15 Liter/100km "-Schnitt fahren würde?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


9 Liter pro 100km500 km
??
15 Liter pro 100km?

Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 9 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 9 und von 15 sein, also der ggT(9,15) = 3.

Wir suchen deswegen erst den entsprechenden Wert für 3 Liter pro 100km:


9 Liter pro 100km500 km
3 Liter pro 100km?
15 Liter pro 100km?

Um von 9 Liter pro 100km in der ersten Zeile auf 3 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 500 km nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 3 Liter pro 100km links entspricht:

: 3

9 Liter pro 100km500 km
3 Liter pro 100km?
15 Liter pro 100km?

⋅ 3
: 3

9 Liter pro 100km500 km
3 Liter pro 100km1500 km
15 Liter pro 100km?

⋅ 3

Jetzt müssen wir ja wieder die 3 Liter pro 100km in der mittleren Zeile mit 5 multiplizieren, um auf die 15 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 5

9 Liter pro 100km500 km
3 Liter pro 100km1500 km
15 Liter pro 100km?

⋅ 3
: 5

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 1500 km in der mittleren Zeile durch 5 dividieren:

: 3
⋅ 5

9 Liter pro 100km500 km
3 Liter pro 100km1500 km
15 Liter pro 100km300 km

⋅ 3
: 5

Damit haben wir nun den gesuchten Wert, der den 15 Liter pro 100km entspricht: 300 km

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

8 € Lospreis50 Lose
??
10 € Lospreis?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 10 sein, also der ggT(8,10) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 € Lospreis:


8 € Lospreis50 Lose
2 € Lospreis?
10 € Lospreis?

Um von 8 € Lospreis in der ersten Zeile auf 2 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 50 Lose nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 € Lospreis links entspricht:

: 4

8 € Lospreis50 Lose
2 € Lospreis?
10 € Lospreis?

⋅ 4
: 4

8 € Lospreis50 Lose
2 € Lospreis200 Lose
10 € Lospreis?

⋅ 4

Jetzt müssen wir ja wieder die 2 € Lospreis in der mittleren Zeile mit 5 multiplizieren, um auf die 10 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 5

8 € Lospreis50 Lose
2 € Lospreis200 Lose
10 € Lospreis?

⋅ 4
: 5

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 200 Lose in der mittleren Zeile durch 5 dividieren:

: 4
⋅ 5

8 € Lospreis50 Lose
2 € Lospreis200 Lose
10 € Lospreis40 Lose

⋅ 4
: 5

Damit haben wir nun den gesuchten Wert, der den 10 € Lospreis entspricht: 40 Lose

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Ein Hausmeister hat ein extra Budget für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld). Wenn er 10 Helfer:innen einstellt, reicht es für jeden 50 € Lohn.

Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 25 Helfer:innen hätte?
Wie viele Helfer:innen könnte man mit einem Lohn von 4 € bezahlen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


10 Helfer:innen50 € Lohn
??
25 Helfer:innen?

Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 10 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 10 und von 25 sein, also der ggT(10,25) = 5.

Wir suchen deswegen erst den entsprechenden Wert für 5 Helfer:innen:


10 Helfer:innen50 € Lohn
5 Helfer:innen?
25 Helfer:innen?

Um von 10 Helfer:innen in der ersten Zeile auf 5 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 50 € Lohn nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 5 Helfer:innen links entspricht:

: 2

10 Helfer:innen50 € Lohn
5 Helfer:innen100 € Lohn
25 Helfer:innen?

⋅ 2

Jetzt müssen wir ja wieder die 5 Helfer:innen in der mittleren Zeile mit 5 multiplizieren, um auf die 25 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 2
⋅ 5

10 Helfer:innen50 € Lohn
5 Helfer:innen100 € Lohn
25 Helfer:innen20 € Lohn

⋅ 2
: 5

Damit haben wir nun den gesuchten Wert, der den 25 Helfer:innen entspricht: 20 € Lohn



Für die andere Frage (Wie viele Helfer:innen könnte man mit einem Lohn von 4 € bezahlen?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "€ Lohn"-Werte haben und nach einem "Helfer:innen"-Wert gesucht wird:


50 € Lohn10 Helfer:innen
??
4 € Lohn?

Wir suchen einen möglichst großen Zwischenwert für die € Lohn in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 50 € Lohn teilen müssen.) Diese Zahl sollte eine Teiler von 50 und von 4 sein, also der ggT(50,4) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 € Lohn:


50 € Lohn10 Helfer:innen
2 € Lohn?
4 € Lohn?

Um von 50 € Lohn in der ersten Zeile auf 2 € Lohn in der zweiten Zeile zu kommen, müssen wir durch 25 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 10 Helfer:innen nicht durch 25 teilen, sondern mit 25 multiplizieren um auf den Wert zu kommen, der den 2 € Lohn links entspricht:

: 25

50 € Lohn10 Helfer:innen
2 € Lohn250 Helfer:innen
4 € Lohn?

⋅ 25

Jetzt müssen wir ja wieder die 2 € Lohn in der mittleren Zeile mit 2 multiplizieren, um auf die 4 € Lohn in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 25
⋅ 2

50 € Lohn10 Helfer:innen
2 € Lohn250 Helfer:innen
4 € Lohn125 Helfer:innen

⋅ 25
: 2

Damit haben wir nun den gesuchten Wert, der den 4 € Lohn entspricht: 125 Helfer:innen

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 2 h den 14 Personen entsprechen.

: 4
⋅ 7

8 Personen7 h
2 Personen28 h
14 Personen4 h

⋅ 4
: 7

Der urpsrünglich vorgegebene Wert 2 h (für 14 Personen) war also falsch, richtig wäre 4 h gewesen.


Jetzt überprüfen wir, ob die 6 h den 7 Personen entsprechen.

: 8
⋅ 7

8 Personen7 h
1 Personen56 h
7 Personen8 h

⋅ 8
: 7

Der urpsrünglich vorgegebene Wert 6 h (für 7 Personen) war also falsch, richtig wäre 8 h gewesen.