Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Wenn eine Person das Schulhaus putzt, braucht sie dafür 40 h.
Wie lange bräuchten 8 Personen hierfür?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Personen in der ersten Zeile auf 8 Personen in der zweiten Zeile zu kommen, müssen wir mit 8 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 40 h durch 8 teilen, um auf den Wert zu kommen, der den 8 Personen entspricht:
|
⋅ 8
|
![]() |
|
![]() |
: 8
|
|
⋅ 8
|
![]() |
|
![]() |
: 8
|
Damit haben wir nun den gesuchten Wert, der den 8 Personen entspricht: 5 h
Dreisatz (antiproportional)
Beispiel:
Wenn 4 Personen das Schulhaus putzen, brauchen sie dafür 6 h.
Wie lange bräuchten 3 Personen hierfür?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Personen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 Personen teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Personen:
|
Um von 4 Personen in der ersten Zeile auf 1 Personen in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 h nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 Personen links entspricht:
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 1 Personen in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Personen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 4
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 3
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 24 h in der mittleren Zeile durch 3 dividieren:
|
: 4
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 Personen entspricht: 8 h
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 5 Minuten pro Tag | 8 Tage |
| ? | ? |
| 4 Minuten pro Tag | ? |
Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 4 sein, also der ggT(5,4) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Minuten pro Tag:
|
Um von 5 Minuten pro Tag in der ersten Zeile auf 1 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 Tage nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Minuten pro Tag links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 Minuten pro Tag in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 4
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 40 Tage in der mittleren Zeile durch 4 dividieren:
|
: 5
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 4
|
Damit haben wir nun den gesuchten Wert, der den 4 Minuten pro Tag entspricht: 10 Tage
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 7 Lastwagen müssten dafür 8 mal fahren.
Wie oft müssten 4 LKWs fahren?
Wie viele LKWs bräuchte man, damit es mit 7 Fuhren für jeden reicht?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 7 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 7 und von 4 sein, also der ggT(7,4) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Lastwagen:
|
Um von 7 Lastwagen in der ersten Zeile auf 1 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 7 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 Fuhren nicht durch 7 teilen, sondern mit 7 multiplizieren um auf den Wert zu kommen, der den 1 Lastwagen links entspricht:
|
: 7
|
![]() |
|
![]() |
⋅ 7
|
Jetzt müssen wir ja wieder die 1 Lastwagen in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 7
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 7
: 4
|
Damit haben wir nun den gesuchten Wert, der den 4 Lastwagen entspricht: 14 Fuhren
Für die andere Frage (Wie viele LKWs bräuchte man, damit es mit 7 Fuhren für jeden reicht?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "Fuhren"-Werte haben und nach einem "Lastwagen"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die Fuhren in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Fuhren teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 7 sein, also der ggT(8,7) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Fuhren:
|
Um von 8 Fuhren in der ersten Zeile auf 1 Fuhren in der zweiten Zeile zu kommen, müssen wir durch 8 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 7 Lastwagen nicht durch 8 teilen, sondern mit 8 multiplizieren um auf den Wert zu kommen, der den 1 Fuhren links entspricht:
|
: 8
|
![]() |
|
![]() |
⋅ 8
|
Jetzt müssen wir ja wieder die 1 Fuhren in der mittleren Zeile mit 7 multiplizieren, um auf die 7 Fuhren in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 8
⋅ 7
|
![]() ![]() |
|
![]() ![]() |
⋅ 8
: 7
|
Damit haben wir nun den gesuchten Wert, der den 7 Fuhren entspricht: 8 Lastwagen
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 12 Tage den 4 Minuten pro Tag entsprechen.
|
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Der urpsrünglich vorgegebene Wert 12 Tage(für 4 Minuten pro Tag) war also korrekt.
Jetzt überprüfen wir, ob die 4 Tage den 8 Minuten pro Tag entsprechen.
|
: 3
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 4
|
Der urpsrünglich vorgegebene Wert 4 Tage (für 8 Minuten pro Tag) war also falsch, richtig wäre 6 Tage gewesen.


