nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Ein Hausmeister hat ein extra Budget von 450 € für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld).

Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 5 Helfer:innen hätte?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Helfer:in450 € Lohn
5 Helfer:innen?

Um von 1 Helfer:innen in der ersten Zeile auf 5 Helfer:innen in der zweiten Zeile zu kommen, müssen wir mit 5 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 450 € Lohn durch 5 teilen, um auf den Wert zu kommen, der den 5 Helfer:innen entspricht:

⋅ 5
1 Helfer:in450 € Lohn
5 Helfer:innen?
: 5
⋅ 5
1 Helfer:in450 € Lohn
5 Helfer:innen90 € Lohn
: 5

Damit haben wir nun den gesuchten Wert, der den 5 Helfer:innen entspricht: 90 € Lohn

Dreisatz (antiproportional)

Beispiel:

Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 8€ für ein Los verlangen, müssten sie 60 Lose verkaufen um genügend Geld zusammen zu bekommen.

Wie viele Lose müssten sie bei einem Lospreis von 12 € verkaufen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


8 € Lospreis60 Lose
??
12 € Lospreis?

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 12 sein, also der ggT(8,12) = 4.

Wir suchen deswegen erst den entsprechenden Wert für 4 € Lospreis:


8 € Lospreis60 Lose
4 € Lospreis?
12 € Lospreis?

Um von 8 € Lospreis in der ersten Zeile auf 4 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 60 Lose nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 4 € Lospreis links entspricht:

: 2

8 € Lospreis60 Lose
4 € Lospreis?
12 € Lospreis?

⋅ 2
: 2

8 € Lospreis60 Lose
4 € Lospreis120 Lose
12 € Lospreis?

⋅ 2

Jetzt müssen wir ja wieder die 4 € Lospreis in der mittleren Zeile mit 3 multiplizieren, um auf die 12 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 2
⋅ 3

8 € Lospreis60 Lose
4 € Lospreis120 Lose
12 € Lospreis?

⋅ 2
: 3

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 120 Lose in der mittleren Zeile durch 3 dividieren:

: 2
⋅ 3

8 € Lospreis60 Lose
4 € Lospreis120 Lose
12 € Lospreis40 Lose

⋅ 2
: 3

Damit haben wir nun den gesuchten Wert, der den 12 € Lospreis entspricht: 40 Lose

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

5 CPU-Kerne12 ms
??
4 CPU-Kerne?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 4 sein, also der ggT(5,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 CPU-Kerne:


5 CPU-Kerne12 ms
1 CPU-Kern?
4 CPU-Kerne?

Um von 5 CPU-Kerne in der ersten Zeile auf 1 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 12 ms nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 CPU-Kerne links entspricht:

: 5

5 CPU-Kerne12 ms
1 CPU-Kern?
4 CPU-Kerne?

⋅ 5
: 5

5 CPU-Kerne12 ms
1 CPU-Kern60 ms
4 CPU-Kerne?

⋅ 5

Jetzt müssen wir ja wieder die 1 CPU-Kerne in der mittleren Zeile mit 4 multiplizieren, um auf die 4 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 4

5 CPU-Kerne12 ms
1 CPU-Kern60 ms
4 CPU-Kerne?

⋅ 5
: 4

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 60 ms in der mittleren Zeile durch 4 dividieren:

: 5
⋅ 4

5 CPU-Kerne12 ms
1 CPU-Kern60 ms
4 CPU-Kerne15 ms

⋅ 5
: 4

Damit haben wir nun den gesuchten Wert, der den 4 CPU-Kerne entspricht: 15 ms

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 4€ für ein Los verlangen, müssten sie 120 Lose verkaufen um genügend Geld zusammen zu bekommen.

Wie viele Lose müssten sie bei einem Lospreis von 3 € verkaufen?
Wie hoch muss man den Preis ansetzen, wenn man erwartet, das sich 6 Lose verkaufen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


4 € Lospreis120 Lose
??
3 € Lospreis?

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 € Lospreis:


4 € Lospreis120 Lose
1 € Lospreis?
3 € Lospreis?

Um von 4 € Lospreis in der ersten Zeile auf 1 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 120 Lose nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 € Lospreis links entspricht:

: 4

4 € Lospreis120 Lose
1 € Lospreis480 Lose
3 € Lospreis?

⋅ 4

Jetzt müssen wir ja wieder die 1 € Lospreis in der mittleren Zeile mit 3 multiplizieren, um auf die 3 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 3

4 € Lospreis120 Lose
1 € Lospreis480 Lose
3 € Lospreis160 Lose

⋅ 4
: 3

Damit haben wir nun den gesuchten Wert, der den 3 € Lospreis entspricht: 160 Lose



Um von 120 Lose in der ersten Zeile auf 6 Lose in der zweiten Zeile zu kommen, müssen wir durch 20 teilen. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 4 € Lospreis mit 20 multiplizieren, um auf den Wert zu kommen, der den 6 Lose entspricht:

: 20
120 Lose4 € Lospreis
6 Lose?
⋅ 20
: 20
120 Lose4 € Lospreis
6 Lose80 € Lospreis
⋅ 20

Damit haben wir nun den gesuchten Wert, der den 6 Lose entspricht: 80 € Lospreis

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 203 km den 15 Liter pro 100km entsprechen.

: 2
⋅ 3

10 Liter pro 100km300 km
5 Liter pro 100km600 km
15 Liter pro 100km200 km

⋅ 2
: 3

Der urpsrünglich vorgegebene Wert 203 km (für 15 Liter pro 100km) war also falsch, richtig wäre 200 km gewesen.


Jetzt überprüfen wir, ob die 503 km den 6 Liter pro 100km entsprechen.

: 5
⋅ 3

10 Liter pro 100km300 km
2 Liter pro 100km1500 km
6 Liter pro 100km500 km

⋅ 5
: 3

Der urpsrünglich vorgegebene Wert 503 km (für 6 Liter pro 100km) war also falsch, richtig wäre 500 km gewesen.