Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 1 Lastwagen müsste dafür 56 mal fahren.
Wie oft müssten 7 LKWs fahren?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Lastwagen in der ersten Zeile auf 7 Lastwagen in der zweiten Zeile zu kommen, müssen wir mit 7 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 56 Fuhren durch 7 teilen, um auf den Wert zu kommen, der den 7 Lastwagen entspricht:
|
⋅ 7
|
![]() |
|
![]() |
: 7
|
|
⋅ 7
|
![]() |
|
![]() |
: 7
|
Damit haben wir nun den gesuchten Wert, der den 7 Lastwagen entspricht: 8 Fuhren
Dreisatz (antiproportional)
Beispiel:
Wenn 10 Personen das Schulhaus putzen, brauchen sie dafür 6 h.
Wie lange bräuchten 12 Personen hierfür?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Personen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 10 Personen teilen müssen.) Diese Zahl sollte eine Teiler von 10 und von 12 sein, also der ggT(10,12) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 Personen:
|
Um von 10 Personen in der ersten Zeile auf 2 Personen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 h nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 2 Personen links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 2 Personen in der mittleren Zeile mit 6 multiplizieren, um auf die 12 Personen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 6
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 6
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 30 h in der mittleren Zeile durch 6 dividieren:
|
: 5
⋅ 6
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 6
|
Damit haben wir nun den gesuchten Wert, der den 12 Personen entspricht: 5 h
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 8 Lastwagen | 5 Fuhren |
| ? | ? |
| 10 Lastwagen | ? |
Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 10 sein, also der ggT(8,10) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 Lastwagen:
|
Um von 8 Lastwagen in der ersten Zeile auf 2 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Fuhren nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 Lastwagen links entspricht:
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 2 Lastwagen in der mittleren Zeile mit 5 multiplizieren, um auf die 10 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 4
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 5
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 20 Fuhren in der mittleren Zeile durch 5 dividieren:
|
: 4
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 5
|
Damit haben wir nun den gesuchten Wert, der den 10 Lastwagen entspricht: 4 Fuhren
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit 4 CPU-Kernen 15 ms rechnen.
Wie lange bräuchte ein Computer mit 3 solchen CPU-Kernen?
Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 4 ms rechnen könnte?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 CPU-Kerne:
|
Um von 4 CPU-Kerne in der ersten Zeile auf 1 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 15 ms nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 CPU-Kerne links entspricht:
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 1 CPU-Kerne in der mittleren Zeile mit 3 multiplizieren, um auf die 3 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 4
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 CPU-Kerne entspricht: 20 ms
Für die andere Frage (Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 4 ms rechnen könnte?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "ms"-Werte haben und nach einem "CPU-Kerne"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die ms in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 15 ms teilen müssen.) Diese Zahl sollte eine Teiler von 15 und von 4 sein, also der ggT(15,4) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 ms:
|
Um von 15 ms in der ersten Zeile auf 1 ms in der zweiten Zeile zu kommen, müssen wir durch 15 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 CPU-Kerne nicht durch 15 teilen, sondern mit 15 multiplizieren um auf den Wert zu kommen, der den 1 ms links entspricht:
|
: 15
|
![]() |
|
![]() |
⋅ 15
|
Jetzt müssen wir ja wieder die 1 ms in der mittleren Zeile mit 4 multiplizieren, um auf die 4 ms in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 15
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 15
: 4
|
Damit haben wir nun den gesuchten Wert, der den 4 ms entspricht: 15 CPU-Kerne
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 12 Spezi-Flaschen den 4 Gäste entsprechen.
|
: 5
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 4
|
Der urpsrünglich vorgegebene Wert 12 Spezi-Flaschen (für 4 Gäste) war also falsch, richtig wäre 10 Spezi-Flaschen gewesen.
Jetzt überprüfen wir, ob die 7 Spezi-Flaschen den 8 Gäste entsprechen.
|
: 5
⋅ 8
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 8
|
Der urpsrünglich vorgegebene Wert 7 Spezi-Flaschen (für 8 Gäste) war also falsch, richtig wäre 5 Spezi-Flaschen gewesen.


