nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Karls hat für seine Geburtstagsparty 56 Flaschen Spezi bekommen.

Wie viele Flaschen würde jeder bekommen, wenn insgesamt 7 Personen auf der Party wären?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Gast56 Spezi-Flaschen
7 Gäste?

Um von 1 Gäste in der ersten Zeile auf 7 Gäste in der zweiten Zeile zu kommen, müssen wir mit 7 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 56 Spezi-Flaschen durch 7 teilen, um auf den Wert zu kommen, der den 7 Gäste entspricht:

⋅ 7
1 Gast56 Spezi-Flaschen
7 Gäste?
: 7
⋅ 7
1 Gast56 Spezi-Flaschen
7 Gäste8 Spezi-Flaschen
: 7

Damit haben wir nun den gesuchten Wert, der den 7 Gäste entspricht: 8 Spezi-Flaschen

Dreisatz (antiproportional)

Beispiel:

Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 5€ für ein Los verlangen, müssten sie 80 Lose verkaufen um genügend Geld zusammen zu bekommen.

Wie viele Lose müssten sie bei einem Lospreis von 4 € verkaufen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 € Lospreis80 Lose
??
4 € Lospreis?

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 4 sein, also der ggT(5,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 € Lospreis:


5 € Lospreis80 Lose
1 € Lospreis?
4 € Lospreis?

Um von 5 € Lospreis in der ersten Zeile auf 1 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 80 Lose nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 € Lospreis links entspricht:

: 5

5 € Lospreis80 Lose
1 € Lospreis?
4 € Lospreis?

⋅ 5
: 5

5 € Lospreis80 Lose
1 € Lospreis400 Lose
4 € Lospreis?

⋅ 5

Jetzt müssen wir ja wieder die 1 € Lospreis in der mittleren Zeile mit 4 multiplizieren, um auf die 4 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 4

5 € Lospreis80 Lose
1 € Lospreis400 Lose
4 € Lospreis?

⋅ 5
: 4

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 400 Lose in der mittleren Zeile durch 4 dividieren:

: 5
⋅ 4

5 € Lospreis80 Lose
1 € Lospreis400 Lose
4 € Lospreis100 Lose

⋅ 5
: 4

Damit haben wir nun den gesuchten Wert, der den 4 € Lospreis entspricht: 100 Lose

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

4 Minuten pro Tag6 Tage
??
3 Minuten pro Tag?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Minuten pro Tag:


4 Minuten pro Tag6 Tage
1 Minute pro Tag?
3 Minuten pro Tag?

Um von 4 Minuten pro Tag in der ersten Zeile auf 1 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 Tage nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 Minuten pro Tag links entspricht:

: 4

4 Minuten pro Tag6 Tage
1 Minute pro Tag?
3 Minuten pro Tag?

⋅ 4
: 4

4 Minuten pro Tag6 Tage
1 Minute pro Tag24 Tage
3 Minuten pro Tag?

⋅ 4

Jetzt müssen wir ja wieder die 1 Minuten pro Tag in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 3

4 Minuten pro Tag6 Tage
1 Minute pro Tag24 Tage
3 Minuten pro Tag?

⋅ 4
: 3

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 24 Tage in der mittleren Zeile durch 3 dividieren:

: 4
⋅ 3

4 Minuten pro Tag6 Tage
1 Minute pro Tag24 Tage
3 Minuten pro Tag8 Tage

⋅ 4
: 3

Damit haben wir nun den gesuchten Wert, der den 3 Minuten pro Tag entspricht: 8 Tage

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Wenn Frau Baumann so Auto fährt, dass sie 3 Liter pro 100km verbraucht, kommt sie mit einer Tankfüllung 1200 km weit.

Wie weit würde sie mit einer Tankfüllung kommen, wenn sie mit einem "2 Liter/100km "-Schnitt fahren würde?
Mit welchem "Liter pro 100km"-Schnitt muss sie fahren, dass sie mit einer Tankfüllung 400 km weit kommt?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


3 Liter pro 100km1200 km
??
2 Liter pro 100km?

Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 3 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 3 und von 2 sein, also der ggT(3,2) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Liter pro 100km:


3 Liter pro 100km1200 km
1 Liter pro 100km?
2 Liter pro 100km?

Um von 3 Liter pro 100km in der ersten Zeile auf 1 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 1200 km nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 1 Liter pro 100km links entspricht:

: 3

3 Liter pro 100km1200 km
1 Liter pro 100km3600 km
2 Liter pro 100km?

⋅ 3

Jetzt müssen wir ja wieder die 1 Liter pro 100km in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 2

3 Liter pro 100km1200 km
1 Liter pro 100km3600 km
2 Liter pro 100km1800 km

⋅ 3
: 2

Damit haben wir nun den gesuchten Wert, der den 2 Liter pro 100km entspricht: 1800 km



Um von 1200 km in der ersten Zeile auf 400 km in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 3 Liter pro 100km mit 3 multiplizieren, um auf den Wert zu kommen, der den 400 km entspricht:

: 3
1200 km3 Liter pro 100km
400 km?
⋅ 3
: 3
1200 km3 Liter pro 100km
400 km9 Liter pro 100km
⋅ 3

Damit haben wir nun den gesuchten Wert, der den 400 km entspricht: 9 Liter pro 100km

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 11 ms den 4 CPU-Kerne entsprechen.

: 3
⋅ 2

6 CPU-Kerne6 ms
2 CPU-Kerne18 ms
4 CPU-Kerne9 ms

⋅ 3
: 2

Der urpsrünglich vorgegebene Wert 11 ms (für 4 CPU-Kerne) war also falsch, richtig wäre 9 ms gewesen.


Jetzt überprüfen wir, ob die 10 ms den 3 CPU-Kerne entsprechen.

: 2
⋅ 1

6 CPU-Kerne6 ms
3 CPU-Kerne12 ms
3 CPU-Kerne12 ms

⋅ 2
: 1

Der urpsrünglich vorgegebene Wert 10 ms (für 3 CPU-Kerne) war also falsch, richtig wäre 12 ms gewesen.