nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Karls hat für seine Geburtstagsparty 60 Flaschen Spezi bekommen.

Wie viele Flaschen würde jeder bekommen, wenn insgesamt 4 Personen auf der Party wären?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Gast60 Spezi-Flaschen
4 Gäste?

Um von 1 Gäste in der ersten Zeile auf 4 Gäste in der zweiten Zeile zu kommen, müssen wir mit 4 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 60 Spezi-Flaschen durch 4 teilen, um auf den Wert zu kommen, der den 4 Gäste entspricht:

⋅ 4
1 Gast60 Spezi-Flaschen
4 Gäste?
: 4
⋅ 4
1 Gast60 Spezi-Flaschen
4 Gäste15 Spezi-Flaschen
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Gäste entspricht: 15 Spezi-Flaschen

Dreisatz (antiproportional)

Beispiel:

Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 5€ für ein Los verlangen, müssten sie 100 Lose verkaufen um genügend Geld zusammen zu bekommen.

Wie viele Lose müssten sie bei einem Lospreis von 2 € verkaufen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 € Lospreis100 Lose
??
2 € Lospreis?

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 € Lospreis:


5 € Lospreis100 Lose
1 € Lospreis?
2 € Lospreis?

Um von 5 € Lospreis in der ersten Zeile auf 1 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 100 Lose nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 € Lospreis links entspricht:

: 5

5 € Lospreis100 Lose
1 € Lospreis?
2 € Lospreis?

⋅ 5
: 5

5 € Lospreis100 Lose
1 € Lospreis500 Lose
2 € Lospreis?

⋅ 5

Jetzt müssen wir ja wieder die 1 € Lospreis in der mittleren Zeile mit 2 multiplizieren, um auf die 2 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 2

5 € Lospreis100 Lose
1 € Lospreis500 Lose
2 € Lospreis?

⋅ 5
: 2

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 500 Lose in der mittleren Zeile durch 2 dividieren:

: 5
⋅ 2

5 € Lospreis100 Lose
1 € Lospreis500 Lose
2 € Lospreis250 Lose

⋅ 5
: 2

Damit haben wir nun den gesuchten Wert, der den 2 € Lospreis entspricht: 250 Lose

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

5 CPU-Kerne9 ms
??
3 CPU-Kerne?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 3 sein, also der ggT(5,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 CPU-Kerne:


5 CPU-Kerne9 ms
1 CPU-Kern?
3 CPU-Kerne?

Um von 5 CPU-Kerne in der ersten Zeile auf 1 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 9 ms nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 CPU-Kerne links entspricht:

: 5

5 CPU-Kerne9 ms
1 CPU-Kern?
3 CPU-Kerne?

⋅ 5
: 5

5 CPU-Kerne9 ms
1 CPU-Kern45 ms
3 CPU-Kerne?

⋅ 5

Jetzt müssen wir ja wieder die 1 CPU-Kerne in der mittleren Zeile mit 3 multiplizieren, um auf die 3 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 3

5 CPU-Kerne9 ms
1 CPU-Kern45 ms
3 CPU-Kerne?

⋅ 5
: 3

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 45 ms in der mittleren Zeile durch 3 dividieren:

: 5
⋅ 3

5 CPU-Kerne9 ms
1 CPU-Kern45 ms
3 CPU-Kerne15 ms

⋅ 5
: 3

Damit haben wir nun den gesuchten Wert, der den 3 CPU-Kerne entspricht: 15 ms

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 8€ für ein Los verlangen, müssten sie 50 Lose verkaufen um genügend Geld zusammen zu bekommen.

Wie viele Lose müssten sie bei einem Lospreis von 10 € verkaufen?
Wie hoch muss man den Preis ansetzen, wenn man erwartet, das sich 80 Lose verkaufen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


8 € Lospreis50 Lose
??
10 € Lospreis?

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 10 sein, also der ggT(8,10) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 € Lospreis:


8 € Lospreis50 Lose
2 € Lospreis?
10 € Lospreis?

Um von 8 € Lospreis in der ersten Zeile auf 2 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 50 Lose nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 € Lospreis links entspricht:

: 4

8 € Lospreis50 Lose
2 € Lospreis200 Lose
10 € Lospreis?

⋅ 4

Jetzt müssen wir ja wieder die 2 € Lospreis in der mittleren Zeile mit 5 multiplizieren, um auf die 10 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 5

8 € Lospreis50 Lose
2 € Lospreis200 Lose
10 € Lospreis40 Lose

⋅ 4
: 5

Damit haben wir nun den gesuchten Wert, der den 10 € Lospreis entspricht: 40 Lose



Für die andere Frage (Wie hoch muss man den Preis ansetzen, wenn man erwartet, das sich 80 Lose verkaufen?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "Lose"-Werte haben und nach einem "€ Lospreis"-Wert gesucht wird:


50 Lose8 € Lospreis
??
80 Lose?

Wir suchen einen möglichst großen Zwischenwert für die Lose in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 50 Lose teilen müssen.) Diese Zahl sollte eine Teiler von 50 und von 80 sein, also der ggT(50,80) = 10.

Wir suchen deswegen erst den entsprechenden Wert für 10 Lose:


50 Lose8 € Lospreis
10 Lose?
80 Lose?

Um von 50 Lose in der ersten Zeile auf 10 Lose in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 € Lospreis nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 10 Lose links entspricht:

: 5

50 Lose8 € Lospreis
10 Lose40 € Lospreis
80 Lose?

⋅ 5

Jetzt müssen wir ja wieder die 10 Lose in der mittleren Zeile mit 8 multiplizieren, um auf die 80 Lose in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 8

50 Lose8 € Lospreis
10 Lose40 € Lospreis
80 Lose5 € Lospreis

⋅ 5
: 8

Damit haben wir nun den gesuchten Wert, der den 80 Lose entspricht: 5 € Lospreis

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 4 h den 10 Personen entsprechen.

: 3
⋅ 5

6 Personen5 h
2 Personen15 h
10 Personen3 h

⋅ 3
: 5

Der urpsrünglich vorgegebene Wert 4 h (für 10 Personen) war also falsch, richtig wäre 3 h gewesen.


Jetzt überprüfen wir, ob die 10 h den 3 Personen entsprechen.

: 2
⋅ 1

6 Personen5 h
3 Personen10 h
3 Personen10 h

⋅ 2
: 1

Der urpsrünglich vorgegebene Wert 10 h (für 3 Personen) war also korrekt.