Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 1€ für ein Los verlangen, müssten sie 360 Lose verkaufen um genügend Geld zusammen zu bekommen.
Wie viele Lose müssten sie bei einem Lospreis von 4 € verkaufen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 € Lospreis in der ersten Zeile auf 4 € Lospreis in der zweiten Zeile zu kommen, müssen wir mit 4 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 360 Lose durch 4 teilen, um auf den Wert zu kommen, der den 4 € Lospreis entspricht:
|
⋅ 4
|
![]() |
|
![]() |
: 4
|
|
⋅ 4
|
![]() |
|
![]() |
: 4
|
Damit haben wir nun den gesuchten Wert, der den 4 € Lospreis entspricht: 90 Lose
Dreisatz (antiproportional)
Beispiel:
Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 10€ für ein Los verlangen, müssten sie 50 Lose verkaufen um genügend Geld zusammen zu bekommen.
Wie viele Lose müssten sie bei einem Lospreis von 25 € verkaufen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 10 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 10 und von 25 sein, also der ggT(10,25) = 5.
Wir suchen deswegen erst den entsprechenden Wert für 5 € Lospreis:
|
Um von 10 € Lospreis in der ersten Zeile auf 5 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 50 Lose nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 5 € Lospreis links entspricht:
|
: 2
|
![]() |
|
![]() |
⋅ 2
|
|
: 2
|
![]() |
|
![]() |
⋅ 2
|
Jetzt müssen wir ja wieder die 5 € Lospreis in der mittleren Zeile mit 5 multiplizieren, um auf die 25 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 2
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 5
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 100 Lose in der mittleren Zeile durch 5 dividieren:
|
: 2
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 5
|
Damit haben wir nun den gesuchten Wert, der den 25 € Lospreis entspricht: 20 Lose
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 3 € Lospreis | 100 Lose |
| ? | ? |
| 2 € Lospreis | ? |
Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 3 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 3 und von 2 sein, also der ggT(3,2) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 € Lospreis:
|
Um von 3 € Lospreis in der ersten Zeile auf 1 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 100 Lose nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 1 € Lospreis links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 1 € Lospreis in der mittleren Zeile mit 2 multiplizieren, um auf die 2 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 300 Lose in der mittleren Zeile durch 2 dividieren:
|
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Damit haben wir nun den gesuchten Wert, der den 2 € Lospreis entspricht: 150 Lose
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Ein Hausmeister hat ein extra Budget für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld). Wenn er 6 Helfer:innen einstellt, reicht es für jeden 50 € Lohn.
Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 10 Helfer:innen hätte?
Wie viele Helfer:innen könnte man mit einem Lohn von 100 € bezahlen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 10 sein, also der ggT(6,10) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 Helfer:innen:
|
Um von 6 Helfer:innen in der ersten Zeile auf 2 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 50 € Lohn nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 Helfer:innen links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 2 Helfer:innen in der mittleren Zeile mit 5 multiplizieren, um auf die 10 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 5
|
Damit haben wir nun den gesuchten Wert, der den 10 Helfer:innen entspricht: 30 € Lohn
Um von 50 € Lohn in der ersten Zeile auf 100 € Lohn in der zweiten Zeile zu kommen, müssen wir mit 2 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 6 Helfer:innen durch 2 teilen, um auf den Wert zu kommen, der den 100 € Lohn entspricht:
|
⋅ 2
|
![]() |
|
![]() |
: 2
|
|
⋅ 2
|
![]() |
|
![]() |
: 2
|
Damit haben wir nun den gesuchten Wert, der den 100 € Lohn entspricht: 3 Helfer:innen
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 1 Fuhren den 25 Lastwagen entsprechen.
|
: 2
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 5
|
Der urpsrünglich vorgegebene Wert 1 Fuhren (für 25 Lastwagen) war also falsch, richtig wäre 2 Fuhren gewesen.
Jetzt überprüfen wir, ob die 9 Fuhren den 5 Lastwagen entsprechen.
|
: 2
⋅ 1
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 1
|
Der urpsrünglich vorgegebene Wert 9 Fuhren (für 5 Lastwagen) war also falsch, richtig wäre 10 Fuhren gewesen.


