Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 1€ für ein Los verlangen, müssten sie 450 Lose verkaufen um genügend Geld zusammen zu bekommen.
Wie viele Lose müssten sie bei einem Lospreis von 9 € verkaufen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 € Lospreis in der ersten Zeile auf 9 € Lospreis in der zweiten Zeile zu kommen, müssen wir mit 9 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 450 Lose durch 9 teilen, um auf den Wert zu kommen, der den 9 € Lospreis entspricht:
|
⋅ 9
|
![]() |
|
![]() |
: 9
|
|
⋅ 9
|
![]() |
|
![]() |
: 9
|
Damit haben wir nun den gesuchten Wert, der den 9 € Lospreis entspricht: 50 Lose
Dreisatz (antiproportional)
Beispiel:
Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit 5 CPU-Kernen 9 ms rechnen.
Wie lange bräuchte ein Computer mit 3 solchen CPU-Kernen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 3 sein, also der ggT(5,3) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 CPU-Kerne:
|
Um von 5 CPU-Kerne in der ersten Zeile auf 1 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 9 ms nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 CPU-Kerne links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 CPU-Kerne in der mittleren Zeile mit 3 multiplizieren, um auf die 3 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 45 ms in der mittleren Zeile durch 3 dividieren:
|
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 CPU-Kerne entspricht: 15 ms
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 5 Liter pro 100km | 800 km |
| ? | ? |
| 4 Liter pro 100km | ? |
Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 4 sein, also der ggT(5,4) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Liter pro 100km:
|
Um von 5 Liter pro 100km in der ersten Zeile auf 1 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 800 km nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Liter pro 100km links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 Liter pro 100km in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 4
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 4000 km in der mittleren Zeile durch 4 dividieren:
|
: 5
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 4
|
Damit haben wir nun den gesuchten Wert, der den 4 Liter pro 100km entspricht: 1000 km
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 5 Lastwagen müssten dafür 10 mal fahren.
Wie oft müssten 2 LKWs fahren?
Wie viele LKWs bräuchte man, damit es mit 5 Fuhren für jeden reicht?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Lastwagen:
|
Um von 5 Lastwagen in der ersten Zeile auf 1 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 10 Fuhren nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Lastwagen links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 Lastwagen in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 2
|
Damit haben wir nun den gesuchten Wert, der den 2 Lastwagen entspricht: 25 Fuhren
Um von 10 Fuhren in der ersten Zeile auf 5 Fuhren in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 5 Lastwagen mit 2 multiplizieren, um auf den Wert zu kommen, der den 5 Fuhren entspricht:
|
: 2
|
![]() |
|
![]() |
⋅ 2
|
|
: 2
|
![]() |
|
![]() |
⋅ 2
|
Damit haben wir nun den gesuchten Wert, der den 5 Fuhren entspricht: 10 Lastwagen
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 100 Lose den 3 € Lospreis entsprechen.
|
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Der urpsrünglich vorgegebene Wert 100 Lose(für 3 € Lospreis) war also korrekt.
Jetzt überprüfen wir, ob die 15 Lose den 20 € Lospreis entsprechen.
|
: 1
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 1
: 4
|
Der urpsrünglich vorgegebene Wert 15 Lose (für 20 € Lospreis) war also korrekt.


