Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Wenn eine Person das Schulhaus putzt, braucht sie dafür 60 h.
Wie lange bräuchten 4 Personen hierfür?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Personen in der ersten Zeile auf 4 Personen in der zweiten Zeile zu kommen, müssen wir mit 4 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 60 h durch 4 teilen, um auf den Wert zu kommen, der den 4 Personen entspricht:
|
⋅ 4
|
![]() |
|
![]() |
: 4
|
|
⋅ 4
|
![]() |
|
![]() |
: 4
|
Damit haben wir nun den gesuchten Wert, der den 4 Personen entspricht: 15 h
Dreisatz (antiproportional)
Beispiel:
Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 10€ für ein Los verlangen, müssten sie 60 Lose verkaufen um genügend Geld zusammen zu bekommen.
Wie viele Lose müssten sie bei einem Lospreis von 12 € verkaufen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 10 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 10 und von 12 sein, also der ggT(10,12) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 € Lospreis:
|
Um von 10 € Lospreis in der ersten Zeile auf 2 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 60 Lose nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 2 € Lospreis links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 2 € Lospreis in der mittleren Zeile mit 6 multiplizieren, um auf die 12 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 6
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 6
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 300 Lose in der mittleren Zeile durch 6 dividieren:
|
: 5
⋅ 6
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 6
|
Damit haben wir nun den gesuchten Wert, der den 12 € Lospreis entspricht: 50 Lose
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 5 Lastwagen | 9 Fuhren |
| ? | ? |
| 3 Lastwagen | ? |
Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 3 sein, also der ggT(5,3) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Lastwagen:
|
Um von 5 Lastwagen in der ersten Zeile auf 1 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 9 Fuhren nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Lastwagen links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 Lastwagen in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 45 Fuhren in der mittleren Zeile durch 3 dividieren:
|
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 Lastwagen entspricht: 15 Fuhren
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Wenn 7 Personen das Schulhaus putzen, brauchen sie dafür 8 h.
Wie lange bräuchten 4 Personen hierfür?
Wie viele Personen bräuchte man, damit jeder 7 h putzen müsste?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Personen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 7 Personen teilen müssen.) Diese Zahl sollte eine Teiler von 7 und von 4 sein, also der ggT(7,4) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Personen:
|
Um von 7 Personen in der ersten Zeile auf 1 Personen in der zweiten Zeile zu kommen, müssen wir durch 7 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 h nicht durch 7 teilen, sondern mit 7 multiplizieren um auf den Wert zu kommen, der den 1 Personen links entspricht:
|
: 7
|
![]() |
|
![]() |
⋅ 7
|
Jetzt müssen wir ja wieder die 1 Personen in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Personen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 7
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 7
: 4
|
Damit haben wir nun den gesuchten Wert, der den 4 Personen entspricht: 14 h
Für die andere Frage (Wie viele Personen bräuchte man, damit jeder 7 h putzen müsste?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "h"-Werte haben und nach einem "Personen"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die h in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 h teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 7 sein, also der ggT(8,7) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 h:
|
Um von 8 h in der ersten Zeile auf 1 h in der zweiten Zeile zu kommen, müssen wir durch 8 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 7 Personen nicht durch 8 teilen, sondern mit 8 multiplizieren um auf den Wert zu kommen, der den 1 h links entspricht:
|
: 8
|
![]() |
|
![]() |
⋅ 8
|
Jetzt müssen wir ja wieder die 1 h in der mittleren Zeile mit 7 multiplizieren, um auf die 7 h in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 8
⋅ 7
|
![]() ![]() |
|
![]() ![]() |
⋅ 8
: 7
|
Damit haben wir nun den gesuchten Wert, der den 7 h entspricht: 8 Personen
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 6 ms den 3 CPU-Kerne entsprechen.
|
: 4
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 3
|
Der urpsrünglich vorgegebene Wert 6 ms (für 3 CPU-Kerne) war also falsch, richtig wäre 8 ms gewesen.
Jetzt überprüfen wir, ob die 2 ms den 6 CPU-Kerne entsprechen.
|
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 3
|
Der urpsrünglich vorgegebene Wert 2 ms (für 6 CPU-Kerne) war also falsch, richtig wäre 4 ms gewesen.


