nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Ein Hausmeister hat ein extra Budget von 480 € für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld).

Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 4 Helfer:innen hätte?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Helfer:in480 € Lohn
4 Helfer:innen?

Um von 1 Helfer:innen in der ersten Zeile auf 4 Helfer:innen in der zweiten Zeile zu kommen, müssen wir mit 4 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 480 € Lohn durch 4 teilen, um auf den Wert zu kommen, der den 4 Helfer:innen entspricht:

⋅ 4
1 Helfer:in480 € Lohn
4 Helfer:innen?
: 4
⋅ 4
1 Helfer:in480 € Lohn
4 Helfer:innen120 € Lohn
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Helfer:innen entspricht: 120 € Lohn

Dreisatz (antiproportional)

Beispiel:

Karls hat für seine Geburtstagsparty Spezi bekommen. Dabei reicht es für jeden genau 8 Flaschen, wenn insgesamt 6 Personen auf seiner Party sind.

Wie viele Flaschen würde jeder bekommen, wenn insgesamt 4 Personen auf der Party wären?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


6 Gäste8 Spezi-Flaschen
??
4 Gäste?

Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 4 sein, also der ggT(6,4) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 Gäste:


6 Gäste8 Spezi-Flaschen
2 Gäste?
4 Gäste?

Um von 6 Gäste in der ersten Zeile auf 2 Gäste in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 Spezi-Flaschen nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 Gäste links entspricht:

: 3

6 Gäste8 Spezi-Flaschen
2 Gäste?
4 Gäste?

⋅ 3
: 3

6 Gäste8 Spezi-Flaschen
2 Gäste24 Spezi-Flaschen
4 Gäste?

⋅ 3

Jetzt müssen wir ja wieder die 2 Gäste in der mittleren Zeile mit 2 multiplizieren, um auf die 4 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 2

6 Gäste8 Spezi-Flaschen
2 Gäste24 Spezi-Flaschen
4 Gäste?

⋅ 3
: 2

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 24 Spezi-Flaschen in der mittleren Zeile durch 2 dividieren:

: 3
⋅ 2

6 Gäste8 Spezi-Flaschen
2 Gäste24 Spezi-Flaschen
4 Gäste12 Spezi-Flaschen

⋅ 3
: 2

Damit haben wir nun den gesuchten Wert, der den 4 Gäste entspricht: 12 Spezi-Flaschen

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

8 CPU-Kerne5 ms
??
10 CPU-Kerne?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 10 sein, also der ggT(8,10) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 CPU-Kerne:


8 CPU-Kerne5 ms
2 CPU-Kerne?
10 CPU-Kerne?

Um von 8 CPU-Kerne in der ersten Zeile auf 2 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 ms nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 CPU-Kerne links entspricht:

: 4

8 CPU-Kerne5 ms
2 CPU-Kerne?
10 CPU-Kerne?

⋅ 4
: 4

8 CPU-Kerne5 ms
2 CPU-Kerne20 ms
10 CPU-Kerne?

⋅ 4

Jetzt müssen wir ja wieder die 2 CPU-Kerne in der mittleren Zeile mit 5 multiplizieren, um auf die 10 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 5

8 CPU-Kerne5 ms
2 CPU-Kerne20 ms
10 CPU-Kerne?

⋅ 4
: 5

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 20 ms in der mittleren Zeile durch 5 dividieren:

: 4
⋅ 5

8 CPU-Kerne5 ms
2 CPU-Kerne20 ms
10 CPU-Kerne4 ms

⋅ 4
: 5

Damit haben wir nun den gesuchten Wert, der den 10 CPU-Kerne entspricht: 4 ms

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Wenn 5 Personen das Schulhaus putzen, brauchen sie dafür 12 h.

Wie lange bräuchten 4 Personen hierfür?
Wie viele Personen bräuchte man, damit jeder 10 h putzen müsste?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 Personen12 h
??
4 Personen?

Wir suchen einen möglichst großen Zwischenwert für die Personen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Personen teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 4 sein, also der ggT(5,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Personen:


5 Personen12 h
1 Person?
4 Personen?

Um von 5 Personen in der ersten Zeile auf 1 Personen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 12 h nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Personen links entspricht:

: 5

5 Personen12 h
1 Person60 h
4 Personen?

⋅ 5

Jetzt müssen wir ja wieder die 1 Personen in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Personen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 4

5 Personen12 h
1 Person60 h
4 Personen15 h

⋅ 5
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Personen entspricht: 15 h



Für die andere Frage (Wie viele Personen bräuchte man, damit jeder 10 h putzen müsste?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "h"-Werte haben und nach einem "Personen"-Wert gesucht wird:


12 h5 Personen
??
10 h?

Wir suchen einen möglichst großen Zwischenwert für die h in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 12 h teilen müssen.) Diese Zahl sollte eine Teiler von 12 und von 10 sein, also der ggT(12,10) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 h:


12 h5 Personen
2 h?
10 h?

Um von 12 h in der ersten Zeile auf 2 h in der zweiten Zeile zu kommen, müssen wir durch 6 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Personen nicht durch 6 teilen, sondern mit 6 multiplizieren um auf den Wert zu kommen, der den 2 h links entspricht:

: 6

12 h5 Personen
2 h30 Personen
10 h?

⋅ 6

Jetzt müssen wir ja wieder die 2 h in der mittleren Zeile mit 5 multiplizieren, um auf die 10 h in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 6
⋅ 5

12 h5 Personen
2 h30 Personen
10 h6 Personen

⋅ 6
: 5

Damit haben wir nun den gesuchten Wert, der den 10 h entspricht: 6 Personen

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 8 Spezi-Flaschen den 14 Gäste entsprechen.

: 4
⋅ 7

8 Gäste7 Spezi-Flaschen
2 Gäste28 Spezi-Flaschen
14 Gäste4 Spezi-Flaschen

⋅ 4
: 7

Der urpsrünglich vorgegebene Wert 8 Spezi-Flaschen (für 14 Gäste) war also falsch, richtig wäre 4 Spezi-Flaschen gewesen.


Jetzt überprüfen wir, ob die 9 Spezi-Flaschen den 7 Gäste entsprechen.

: 8
⋅ 7

8 Gäste7 Spezi-Flaschen
1 Gäste56 Spezi-Flaschen
7 Gäste8 Spezi-Flaschen

⋅ 8
: 7

Der urpsrünglich vorgegebene Wert 9 Spezi-Flaschen (für 7 Gäste) war also falsch, richtig wäre 8 Spezi-Flaschen gewesen.