nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Wenn Karla mit ihrem Handy jeden Tag immer 1 Minute telefonieren würde, würden ihre Freiminuten noch genau 36 Tage halten.

Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 9 min telefonieren würde?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Minute pro Tag36 Tage
9 Minuten pro Tag?

Um von 1 Minuten pro Tag in der ersten Zeile auf 9 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir mit 9 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 36 Tage durch 9 teilen, um auf den Wert zu kommen, der den 9 Minuten pro Tag entspricht:

⋅ 9
1 Minute pro Tag36 Tage
9 Minuten pro Tag?
: 9
⋅ 9
1 Minute pro Tag36 Tage
9 Minuten pro Tag4 Tage
: 9

Damit haben wir nun den gesuchten Wert, der den 9 Minuten pro Tag entspricht: 4 Tage

Dreisatz (antiproportional)

Beispiel:

Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 5€ für ein Los verlangen, müssten sie 100 Lose verkaufen um genügend Geld zusammen zu bekommen.

Wie viele Lose müssten sie bei einem Lospreis von 2 € verkaufen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 € Lospreis100 Lose
??
2 € Lospreis?

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 € Lospreis:


5 € Lospreis100 Lose
1 € Lospreis?
2 € Lospreis?

Um von 5 € Lospreis in der ersten Zeile auf 1 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 100 Lose nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 € Lospreis links entspricht:

: 5

5 € Lospreis100 Lose
1 € Lospreis?
2 € Lospreis?

⋅ 5
: 5

5 € Lospreis100 Lose
1 € Lospreis500 Lose
2 € Lospreis?

⋅ 5

Jetzt müssen wir ja wieder die 1 € Lospreis in der mittleren Zeile mit 2 multiplizieren, um auf die 2 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 2

5 € Lospreis100 Lose
1 € Lospreis500 Lose
2 € Lospreis?

⋅ 5
: 2

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 500 Lose in der mittleren Zeile durch 2 dividieren:

: 5
⋅ 2

5 € Lospreis100 Lose
1 € Lospreis500 Lose
2 € Lospreis250 Lose

⋅ 5
: 2

Damit haben wir nun den gesuchten Wert, der den 2 € Lospreis entspricht: 250 Lose

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

3 Liter pro 100km1000 km
??
2 Liter pro 100km?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 3 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 3 und von 2 sein, also der ggT(3,2) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Liter pro 100km:


3 Liter pro 100km1000 km
1 Liter pro 100km?
2 Liter pro 100km?

Um von 3 Liter pro 100km in der ersten Zeile auf 1 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 1000 km nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 1 Liter pro 100km links entspricht:

: 3

3 Liter pro 100km1000 km
1 Liter pro 100km?
2 Liter pro 100km?

⋅ 3
: 3

3 Liter pro 100km1000 km
1 Liter pro 100km3000 km
2 Liter pro 100km?

⋅ 3

Jetzt müssen wir ja wieder die 1 Liter pro 100km in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 2

3 Liter pro 100km1000 km
1 Liter pro 100km3000 km
2 Liter pro 100km?

⋅ 3
: 2

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 3000 km in der mittleren Zeile durch 2 dividieren:

: 3
⋅ 2

3 Liter pro 100km1000 km
1 Liter pro 100km3000 km
2 Liter pro 100km1500 km

⋅ 3
: 2

Damit haben wir nun den gesuchten Wert, der den 2 Liter pro 100km entspricht: 1500 km

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Wenn 5 Personen das Schulhaus putzen, brauchen sie dafür 10 h.

Wie lange bräuchten 2 Personen hierfür?
Wie viele Personen bräuchte man, damit jeder 5 h putzen müsste?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 Personen10 h
??
2 Personen?

Wir suchen einen möglichst großen Zwischenwert für die Personen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Personen teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Personen:


5 Personen10 h
1 Person?
2 Personen?

Um von 5 Personen in der ersten Zeile auf 1 Personen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 10 h nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Personen links entspricht:

: 5

5 Personen10 h
1 Person50 h
2 Personen?

⋅ 5

Jetzt müssen wir ja wieder die 1 Personen in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Personen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 2

5 Personen10 h
1 Person50 h
2 Personen25 h

⋅ 5
: 2

Damit haben wir nun den gesuchten Wert, der den 2 Personen entspricht: 25 h



Um von 10 h in der ersten Zeile auf 5 h in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 5 Personen mit 2 multiplizieren, um auf den Wert zu kommen, der den 5 h entspricht:

: 2
10 h5 Personen
5 h?
⋅ 2
: 2
10 h5 Personen
5 h10 Personen
⋅ 2

Damit haben wir nun den gesuchten Wert, der den 5 h entspricht: 10 Personen

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 10 Spezi-Flaschen den 4 Gäste entsprechen.

: 7
⋅ 4

7 Gäste8 Spezi-Flaschen
1 Gast56 Spezi-Flaschen
4 Gäste14 Spezi-Flaschen

⋅ 7
: 4

Der urpsrünglich vorgegebene Wert 10 Spezi-Flaschen (für 4 Gäste) war also falsch, richtig wäre 14 Spezi-Flaschen gewesen.


Jetzt überprüfen wir, ob die 7 Spezi-Flaschen den 8 Gäste entsprechen.

: 7
⋅ 8

7 Gäste8 Spezi-Flaschen
1 Gäste56 Spezi-Flaschen
8 Gäste7 Spezi-Flaschen

⋅ 7
: 8

Der urpsrünglich vorgegebene Wert 7 Spezi-Flaschen (für 8 Gäste) war also korrekt.