nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 1€ für ein Los verlangen, müssten sie 450 Lose verkaufen um genügend Geld zusammen zu bekommen.

Wie viele Lose müssten sie bei einem Lospreis von 9 € verkaufen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 € Lospreis450 Lose
9 € Lospreis?

Um von 1 € Lospreis in der ersten Zeile auf 9 € Lospreis in der zweiten Zeile zu kommen, müssen wir mit 9 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 450 Lose durch 9 teilen, um auf den Wert zu kommen, der den 9 € Lospreis entspricht:

⋅ 9
1 € Lospreis450 Lose
9 € Lospreis?
: 9
⋅ 9
1 € Lospreis450 Lose
9 € Lospreis50 Lose
: 9

Damit haben wir nun den gesuchten Wert, der den 9 € Lospreis entspricht: 50 Lose

Dreisatz (antiproportional)

Beispiel:

Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit 5 CPU-Kernen 9 ms rechnen.

Wie lange bräuchte ein Computer mit 3 solchen CPU-Kernen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 CPU-Kerne9 ms
??
3 CPU-Kerne?

Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 3 sein, also der ggT(5,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 CPU-Kerne:


5 CPU-Kerne9 ms
1 CPU-Kern?
3 CPU-Kerne?

Um von 5 CPU-Kerne in der ersten Zeile auf 1 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 9 ms nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 CPU-Kerne links entspricht:

: 5

5 CPU-Kerne9 ms
1 CPU-Kern?
3 CPU-Kerne?

⋅ 5
: 5

5 CPU-Kerne9 ms
1 CPU-Kern45 ms
3 CPU-Kerne?

⋅ 5

Jetzt müssen wir ja wieder die 1 CPU-Kerne in der mittleren Zeile mit 3 multiplizieren, um auf die 3 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 3

5 CPU-Kerne9 ms
1 CPU-Kern45 ms
3 CPU-Kerne?

⋅ 5
: 3

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 45 ms in der mittleren Zeile durch 3 dividieren:

: 5
⋅ 3

5 CPU-Kerne9 ms
1 CPU-Kern45 ms
3 CPU-Kerne15 ms

⋅ 5
: 3

Damit haben wir nun den gesuchten Wert, der den 3 CPU-Kerne entspricht: 15 ms

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

5 Liter pro 100km800 km
??
4 Liter pro 100km?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 4 sein, also der ggT(5,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Liter pro 100km:


5 Liter pro 100km800 km
1 Liter pro 100km?
4 Liter pro 100km?

Um von 5 Liter pro 100km in der ersten Zeile auf 1 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 800 km nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Liter pro 100km links entspricht:

: 5

5 Liter pro 100km800 km
1 Liter pro 100km?
4 Liter pro 100km?

⋅ 5
: 5

5 Liter pro 100km800 km
1 Liter pro 100km4000 km
4 Liter pro 100km?

⋅ 5

Jetzt müssen wir ja wieder die 1 Liter pro 100km in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 4

5 Liter pro 100km800 km
1 Liter pro 100km4000 km
4 Liter pro 100km?

⋅ 5
: 4

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 4000 km in der mittleren Zeile durch 4 dividieren:

: 5
⋅ 4

5 Liter pro 100km800 km
1 Liter pro 100km4000 km
4 Liter pro 100km1000 km

⋅ 5
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Liter pro 100km entspricht: 1000 km

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 5 Lastwagen müssten dafür 10 mal fahren.

Wie oft müssten 2 LKWs fahren?
Wie viele LKWs bräuchte man, damit es mit 5 Fuhren für jeden reicht?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 Lastwagen10 Fuhren
??
2 Lastwagen?

Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Lastwagen:


5 Lastwagen10 Fuhren
1 Lastwagen?
2 Lastwagen?

Um von 5 Lastwagen in der ersten Zeile auf 1 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 10 Fuhren nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Lastwagen links entspricht:

: 5

5 Lastwagen10 Fuhren
1 Lastwagen50 Fuhren
2 Lastwagen?

⋅ 5

Jetzt müssen wir ja wieder die 1 Lastwagen in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 2

5 Lastwagen10 Fuhren
1 Lastwagen50 Fuhren
2 Lastwagen25 Fuhren

⋅ 5
: 2

Damit haben wir nun den gesuchten Wert, der den 2 Lastwagen entspricht: 25 Fuhren



Um von 10 Fuhren in der ersten Zeile auf 5 Fuhren in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 5 Lastwagen mit 2 multiplizieren, um auf den Wert zu kommen, der den 5 Fuhren entspricht:

: 2
10 Fuhren5 Lastwagen
5 Fuhren?
⋅ 2
: 2
10 Fuhren5 Lastwagen
5 Fuhren10 Lastwagen
⋅ 2

Damit haben wir nun den gesuchten Wert, der den 5 Fuhren entspricht: 10 Lastwagen

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 100 Lose den 3 € Lospreis entsprechen.

: 5
⋅ 3

5 € Lospreis60 Lose
1 € Lospreis300 Lose
3 € Lospreis100 Lose

⋅ 5
: 3

Der urpsrünglich vorgegebene Wert 100 Lose(für 3 € Lospreis) war also korrekt.


Jetzt überprüfen wir, ob die 15 Lose den 20 € Lospreis entsprechen.

: 1
⋅ 4

5 € Lospreis60 Lose
5 € Lospreis60 Lose
20 € Lospreis15 Lose

⋅ 1
: 4

Der urpsrünglich vorgegebene Wert 15 Lose (für 20 € Lospreis) war also korrekt.