Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit einem CPU-Kern 50 ms rechnen.
Wie lange bräuchte ein Computer mit 5 solchen CPU-Kernen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 CPU-Kerne in der ersten Zeile auf 5 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir mit 5 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 50 ms durch 5 teilen, um auf den Wert zu kommen, der den 5 CPU-Kerne entspricht:
|
⋅ 5
|
![]() |
|
![]() |
: 5
|
|
⋅ 5
|
![]() |
|
![]() |
: 5
|
Damit haben wir nun den gesuchten Wert, der den 5 CPU-Kerne entspricht: 10 ms
Dreisatz (antiproportional)
Beispiel:
Karls hat für seine Geburtstagsparty Spezi bekommen. Dabei reicht es für jeden genau 9 Flaschen, wenn insgesamt 5 Personen auf seiner Party sind.
Wie viele Flaschen würde jeder bekommen, wenn insgesamt 3 Personen auf der Party wären?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 3 sein, also der ggT(5,3) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Gäste:
|
Um von 5 Gäste in der ersten Zeile auf 1 Gäste in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 9 Spezi-Flaschen nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Gäste links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 Gäste in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 45 Spezi-Flaschen in der mittleren Zeile durch 3 dividieren:
|
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 Gäste entspricht: 15 Spezi-Flaschen
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 5 Helfer:innen | 100 € Lohn |
| ? | ? |
| 2 Helfer:innen | ? |
Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Helfer:innen:
|
Um von 5 Helfer:innen in der ersten Zeile auf 1 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 100 € Lohn nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Helfer:innen links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 Helfer:innen in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 2
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 500 € Lohn in der mittleren Zeile durch 2 dividieren:
|
: 5
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 2
|
Damit haben wir nun den gesuchten Wert, der den 2 Helfer:innen entspricht: 250 € Lohn
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit 6 CPU-Kernen 4 ms rechnen.
Wie lange bräuchte ein Computer mit 8 solchen CPU-Kernen?
Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 6 ms rechnen könnte?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 8 sein, also der ggT(6,8) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 CPU-Kerne:
|
Um von 6 CPU-Kerne in der ersten Zeile auf 2 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 ms nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 CPU-Kerne links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 2 CPU-Kerne in der mittleren Zeile mit 4 multiplizieren, um auf die 8 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 4
|
Damit haben wir nun den gesuchten Wert, der den 8 CPU-Kerne entspricht: 3 ms
Für die andere Frage (Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 6 ms rechnen könnte?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "ms"-Werte haben und nach einem "CPU-Kerne"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die ms in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 ms teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 6 sein, also der ggT(4,6) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 ms:
|
Um von 4 ms in der ersten Zeile auf 2 ms in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 CPU-Kerne nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 2 ms links entspricht:
|
: 2
|
![]() |
|
![]() |
⋅ 2
|
Jetzt müssen wir ja wieder die 2 ms in der mittleren Zeile mit 3 multiplizieren, um auf die 6 ms in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 3
|
Damit haben wir nun den gesuchten Wert, der den 6 ms entspricht: 4 CPU-Kerne
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 31 Lose den 15 € Lospreis entsprechen.
|
: 3
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 5
|
Der urpsrünglich vorgegebene Wert 31 Lose (für 15 € Lospreis) war also falsch, richtig wäre 30 Lose gewesen.
Jetzt überprüfen wir, ob die 25 Lose den 18 € Lospreis entsprechen.
|
: 1
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 1
: 2
|
Der urpsrünglich vorgegebene Wert 25 Lose (für 18 € Lospreis) war also korrekt.


