nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 1 Lastwagen müsste dafür 60 mal fahren.

Wie oft müssten 4 LKWs fahren?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Lastwagen60 Fuhren
4 Lastwagen?

Um von 1 Lastwagen in der ersten Zeile auf 4 Lastwagen in der zweiten Zeile zu kommen, müssen wir mit 4 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 60 Fuhren durch 4 teilen, um auf den Wert zu kommen, der den 4 Lastwagen entspricht:

⋅ 4
1 Lastwagen60 Fuhren
4 Lastwagen?
: 4
⋅ 4
1 Lastwagen60 Fuhren
4 Lastwagen15 Fuhren
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Lastwagen entspricht: 15 Fuhren

Dreisatz (antiproportional)

Beispiel:

Wenn Karla mit ihrem Handy jeden Tag immer 6 Minuten telefonieren würde, würden ihre Freiminuten noch genau 4 Tage halten.

Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 8 min telefonieren würde?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


6 Minuten pro Tag4 Tage
??
8 Minuten pro Tag?

Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 8 sein, also der ggT(6,8) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 Minuten pro Tag:


6 Minuten pro Tag4 Tage
2 Minuten pro Tag?
8 Minuten pro Tag?

Um von 6 Minuten pro Tag in der ersten Zeile auf 2 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 Tage nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 Minuten pro Tag links entspricht:

: 3

6 Minuten pro Tag4 Tage
2 Minuten pro Tag?
8 Minuten pro Tag?

⋅ 3
: 3

6 Minuten pro Tag4 Tage
2 Minuten pro Tag12 Tage
8 Minuten pro Tag?

⋅ 3

Jetzt müssen wir ja wieder die 2 Minuten pro Tag in der mittleren Zeile mit 4 multiplizieren, um auf die 8 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 4

6 Minuten pro Tag4 Tage
2 Minuten pro Tag12 Tage
8 Minuten pro Tag?

⋅ 3
: 4

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 12 Tage in der mittleren Zeile durch 4 dividieren:

: 3
⋅ 4

6 Minuten pro Tag4 Tage
2 Minuten pro Tag12 Tage
8 Minuten pro Tag3 Tage

⋅ 3
: 4

Damit haben wir nun den gesuchten Wert, der den 8 Minuten pro Tag entspricht: 3 Tage

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

5 Helfer:innen80 € Lohn
??
4 Helfer:innen?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 4 sein, also der ggT(5,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Helfer:innen:


5 Helfer:innen80 € Lohn
1 Helfer:in?
4 Helfer:innen?

Um von 5 Helfer:innen in der ersten Zeile auf 1 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 80 € Lohn nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Helfer:innen links entspricht:

: 5

5 Helfer:innen80 € Lohn
1 Helfer:in?
4 Helfer:innen?

⋅ 5
: 5

5 Helfer:innen80 € Lohn
1 Helfer:in400 € Lohn
4 Helfer:innen?

⋅ 5

Jetzt müssen wir ja wieder die 1 Helfer:innen in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 4

5 Helfer:innen80 € Lohn
1 Helfer:in400 € Lohn
4 Helfer:innen?

⋅ 5
: 4

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 400 € Lohn in der mittleren Zeile durch 4 dividieren:

: 5
⋅ 4

5 Helfer:innen80 € Lohn
1 Helfer:in400 € Lohn
4 Helfer:innen100 € Lohn

⋅ 5
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Helfer:innen entspricht: 100 € Lohn

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Wenn Frau Baumann so Auto fährt, dass sie 7 Liter pro 100km verbraucht, kommt sie mit einer Tankfüllung 800 km weit.

Wie weit würde sie mit einer Tankfüllung kommen, wenn sie mit einem "4 Liter/100km "-Schnitt fahren würde?
Mit welchem "Liter pro 100km"-Schnitt muss sie fahren, dass sie mit einer Tankfüllung 700 km weit kommt?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


7 Liter pro 100km800 km
??
4 Liter pro 100km?

Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 7 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 7 und von 4 sein, also der ggT(7,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Liter pro 100km:


7 Liter pro 100km800 km
1 Liter pro 100km?
4 Liter pro 100km?

Um von 7 Liter pro 100km in der ersten Zeile auf 1 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 7 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 800 km nicht durch 7 teilen, sondern mit 7 multiplizieren um auf den Wert zu kommen, der den 1 Liter pro 100km links entspricht:

: 7

7 Liter pro 100km800 km
1 Liter pro 100km5600 km
4 Liter pro 100km?

⋅ 7

Jetzt müssen wir ja wieder die 1 Liter pro 100km in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 7
⋅ 4

7 Liter pro 100km800 km
1 Liter pro 100km5600 km
4 Liter pro 100km1400 km

⋅ 7
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Liter pro 100km entspricht: 1400 km



Für die andere Frage (Mit welchem "Liter pro 100km"-Schnitt muss sie fahren, dass sie mit einer Tankfüllung 700 km weit kommt?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "km"-Werte haben und nach einem "Liter pro 100km"-Wert gesucht wird:


800 km7 Liter pro 100km
??
700 km?

Wir suchen einen möglichst großen Zwischenwert für die km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 800 km teilen müssen.) Diese Zahl sollte eine Teiler von 800 und von 700 sein, also der ggT(800,700) = 100.

Wir suchen deswegen erst den entsprechenden Wert für 100 km:


800 km7 Liter pro 100km
100 km?
700 km?

Um von 800 km in der ersten Zeile auf 100 km in der zweiten Zeile zu kommen, müssen wir durch 8 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 7 Liter pro 100km nicht durch 8 teilen, sondern mit 8 multiplizieren um auf den Wert zu kommen, der den 100 km links entspricht:

: 8

800 km7 Liter pro 100km
100 km56 Liter pro 100km
700 km?

⋅ 8

Jetzt müssen wir ja wieder die 100 km in der mittleren Zeile mit 7 multiplizieren, um auf die 700 km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 8
⋅ 7

800 km7 Liter pro 100km
100 km56 Liter pro 100km
700 km8 Liter pro 100km

⋅ 8
: 7

Damit haben wir nun den gesuchten Wert, der den 700 km entspricht: 8 Liter pro 100km

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte.

Lösung einblenden

Wir überprüfen zuerst, ob die 13 ms den 3 CPU-Kerne entsprechen.

: 4
⋅ 3

4 CPU-Kerne9 ms
1 CPU-Kern36 ms
3 CPU-Kerne12 ms

⋅ 4
: 3

Der Wert 13 ms war also falsch, richtig wäre 12 ms gewesen.


Jetzt überprüfen wir, ob die 4 ms den 9 CPU-Kerne entsprechen.

: 4
⋅ 9

4 CPU-Kerne9 ms
1 CPU-Kerne36 ms
9 CPU-Kerne4 ms

⋅ 4
: 9

Der Wert 4 ms war also korrekt.