Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Wenn Karla mit ihrem Handy jeden Tag immer 1 Minute telefonieren würde, würden ihre Freiminuten noch genau 50 Tage halten.
Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 5 min telefonieren würde?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Minuten pro Tag in der ersten Zeile auf 5 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir mit 5 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 50 Tage durch 5 teilen, um auf den Wert zu kommen, der den 5 Minuten pro Tag entspricht:
|
⋅ 5
|
![]() |
|
![]() |
: 5
|
|
⋅ 5
|
![]() |
|
![]() |
: 5
|
Damit haben wir nun den gesuchten Wert, der den 5 Minuten pro Tag entspricht: 10 Tage
Dreisatz (antiproportional)
Beispiel:
Wenn Karla mit ihrem Handy jeden Tag immer 8 Minuten telefonieren würde, würden ihre Freiminuten noch genau 6 Tage halten.
Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 12 min telefonieren würde?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 12 sein, also der ggT(8,12) = 4.
Wir suchen deswegen erst den entsprechenden Wert für 4 Minuten pro Tag:
|
Um von 8 Minuten pro Tag in der ersten Zeile auf 4 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 Tage nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 4 Minuten pro Tag links entspricht:
|
: 2
|
![]() |
|
![]() |
⋅ 2
|
|
: 2
|
![]() |
|
![]() |
⋅ 2
|
Jetzt müssen wir ja wieder die 4 Minuten pro Tag in der mittleren Zeile mit 3 multiplizieren, um auf die 12 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 3
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 12 Tage in der mittleren Zeile durch 3 dividieren:
|
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 3
|
Damit haben wir nun den gesuchten Wert, der den 12 Minuten pro Tag entspricht: 4 Tage
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 5 Helfer:innen | 100 € Lohn |
| ? | ? |
| 2 Helfer:innen | ? |
Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Helfer:innen:
|
Um von 5 Helfer:innen in der ersten Zeile auf 1 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 100 € Lohn nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Helfer:innen links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 Helfer:innen in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 2
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 500 € Lohn in der mittleren Zeile durch 2 dividieren:
|
: 5
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 2
|
Damit haben wir nun den gesuchten Wert, der den 2 Helfer:innen entspricht: 250 € Lohn
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Wenn Frau Baumann so Auto fährt, dass sie 5 Liter pro 100km verbraucht, kommt sie mit einer Tankfüllung 1000 km weit.
Wie weit würde sie mit einer Tankfüllung kommen, wenn sie mit einem "2 Liter/100km "-Schnitt fahren würde?
Mit welchem "Liter pro 100km"-Schnitt muss sie fahren, dass sie mit einer Tankfüllung 500 km weit kommt?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Liter pro 100km:
|
Um von 5 Liter pro 100km in der ersten Zeile auf 1 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 1000 km nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Liter pro 100km links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 Liter pro 100km in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 2
|
Damit haben wir nun den gesuchten Wert, der den 2 Liter pro 100km entspricht: 2500 km
Um von 1000 km in der ersten Zeile auf 500 km in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 5 Liter pro 100km mit 2 multiplizieren, um auf den Wert zu kommen, der den 500 km entspricht:
|
: 2
|
![]() |
|
![]() |
⋅ 2
|
|
: 2
|
![]() |
|
![]() |
⋅ 2
|
Damit haben wir nun den gesuchten Wert, der den 500 km entspricht: 10 Liter pro 100km
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 3 h den 15 Personen entsprechen.
|
: 3
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 5
|
Der urpsrünglich vorgegebene Wert 3 h(für 15 Personen) war also korrekt.
Jetzt überprüfen wir, ob die 4 h den 5 Personen entsprechen.
|
: 9
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 9
: 5
|
Der urpsrünglich vorgegebene Wert 4 h (für 5 Personen) war also falsch, richtig wäre 9 h gewesen.


