Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
2. Strahlensatz (gleiche Seite)
Beispiel:
Die beiden blauen Geraden sind parallel.
Berechne x.
Nach dem 2. Strahlensatz gilt:
=
| = | |||
| = | |⋅ 12.6 | ||
| = |
2. Strahlensatz (2 Seiten)
Beispiel:
Die beiden blauen Geraden sind parallel.
Berechne x.
Nach dem 2. Strahlensatz gilt:
=
| = | |||
| = | |⋅ 10 | ||
| = |
2. Strahlensatz (3 Segmente)
Beispiel:
Die beiden blauen Geraden sind parallel.
Berechne x und y.
Wir betrachten zuerst den Teil rechts vom Zentrum.
Nach dem 2. Strahlensatz gilt:
=
| = | |||
| = | |⋅ 37.4 | ||
| = |
Nun betrachten wir den Teil links vom Zentrum.
Nach dem 2. Strahlensatz gilt:
=
| = | |||
| = | |⋅ 11 | ||
| = |
doppelter Strahlensatz (klein 2)
Beispiel:
Die beiden blauen Geraden sind parallel.
Berechne x und y.
Nach dem 1. Strahlensatz gilt:
=
| = | |||
| = | |⋅ 18 | ||
| = |
Nach dem 2. Strahlensatz gilt:
=
| = | |||
| = | |⋅ 14 | ||
| = |
Strahlensatz Anwendungen
Beispiel:

Die Grundfläche einer senkrechten quadratischen Pyramide ist b=28 m lang. Die Länge der Seitenkanten ist l=14 m. Die Pyramide wird parallel zur Grundfläche abgetragen, so dass ein Pyramidenstumpf entsteht. Die Länge der Seitenkanten l verkürzt sich dadurch von 14 auf 6 m. Wie breit ist dann die quadratische Fläche der Oberseite des entstehenden Pyramidenstumpfs?

Wenn man in die Skizze ein paar Strecken einzeichnet, erkennt man eine Strahlensatzfigur:
Dabei gilt nach dem 2. Strahlensatz:
= bzw. =
Aus dem Text können wir herauslesen:
l = l2 + l1 =14
l1 = 6
l2 = 8
b = 28
Gesucht ist die Breite der neuen Oberseite. Wir wählen also b2 als x.
Jetzt können wir die Werte in die obige Strahlensatzgleichung einsetzen und erhalten:
=
| = | |||
| = | |⋅ 28 | ||
| = |
b2 ist also .
Die Lösung ist somit: 16
