Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
2. Strahlensatz (gleiche Seite)
Beispiel:
Die beiden blauen Geraden sind parallel.
Berechne x.
Nach dem 2. Strahlensatz gilt:
=
| = | |||
| = | |⋅ 22.5 | ||
| = |
2. Strahlensatz (2 Seiten)
Beispiel:
Die beiden blauen Geraden sind parallel.
Berechne x.
Nach dem 2. Strahlensatz gilt:
=
| = | |||
| = | |⋅ 30 | ||
| = |
2. Strahlensatz (3 Segmente)
Beispiel:
Die beiden blauen Geraden sind parallel.
Berechne x und y.
Wir betrachten zuerst den Teil rechts vom Zentrum.
Nach dem 2. Strahlensatz gilt:
=
| = | |||
| = | |||
| = | |⋅ 6 | ||
| = |
Nun betrachten wir den Teil links vom Zentrum.
Nach dem 2. Strahlensatz gilt:
=
| = | |||
| = | |⋅ 6 | ||
| = |
Strahlensätze (4 Var.) II
Beispiel:
Die beiden blauen Geraden sind parallel.
Berechne x, y, z und t.
Wir betrachten zuerst den Teil mit x.
Nach dem 1. Strahlensatz gilt:
=
| = | |||
| = | |⋅ 8 | ||
| = |
Nun betrachten wir den Teil mit y.
Nach dem 1. Strahlensatz gilt:
=
| = | |||
| = | |⋅ 7.5 | ||
| = |
Nun betrachten wir den Teil mit z.
Nach dem 2. Strahlensatz gilt:
=
| = | |||
| = | |⋅ 3 | ||
| = | = 4 |
Nun betrachten wir den Teil mit t.
Nach dem 2. Strahlensatz gilt:
=
| = | |||
| = | |⋅ 6.1 | ||
| = |
Strahlensatz Anwendungen
Beispiel:

Die Grundfläche einer senkrechten quadratischen Pyramide ist b=36 m lang. Parallel zur Grundfläche wird eine zweite Ebene eingezogen, deren Grundfläche ein Quadrat mit Seitenlänge 16 m ist. Die Kantenlänge des oberen pyramidenformigen Stocks beträgt 8 m. Bestimme die Kantenlänge des unteren Stockwerks (in Form eines Pyramidenstumpfs).

Wenn man in die Skizze ein paar Strecken einzeichnet, erkennt man eine Strahlensatzfigur:
Dabei gilt nach dem 2. Strahlensatz:
= bzw. =
Aus dem Text können wir herauslesen:
l2 = 8
b2 = 16
b = 36
Gesucht ist die Kantenlänge des unteren Stocks der Pyramide. Wir wählen also l1 als x.
Jetzt können wir die Werte in die obige Strahlensatzgleichung einsetzen und erhalten:
=
| = | |||
| = | |||
| = | |⋅ 8 | ||
| = | |||
| = | | | ||
| = |
l1 ist also .
Die Lösung ist somit: 10
